Mass spectroscopy and Ar calculations                                 

1)   A sample of sulphur has three isotopes: sulphur-32, sulphur-33 and sulphur-34. Calculate the relative atomic mass from the data below:  Give your answer to the appropriate number of decimals places.

 

percentage abundance

95.02

0.76

4.22

Isotopic mass

32

33

34


RAM = S  (Abundance x m/z)

                                        Total  Abundance          

           

RAM  =  (95.02 x 32)  +  (0.76 x 33)  +  (4.22 x 34)

                                                    (95.02  +  0.76  +  4.22)

 

                        RAM  =  32.09    (2dp as question is to 2dp)

 

2)  Boron has 2 isotopes and the mass spectrum is shown below.  Calculate its relative atomic mass:

 

                        RAM  =  (1 x 10)  +  (4 x 11)

                                                 (1  +  4)

 

                        RAM  =  10.8

 

3)   Lithium has two naturally occurring isotopes 6Li and 7Li. Calculate the percentage abundance of each isotopes given that the Ar of Lithium is 6.9.  Show your working.

            6.9 is 9/10 th's between 6Li and 7Li

            So 90 % must be 7Li so 10 % must be 6Li

            OR:

RAM = S  (Abundance x m/z)

                                        Total  Abundance          

           

6.9  =  (A x 6)  +  ((100-A) x 7))               Where A is the Abundance of 6Li

                                           (A  +  100  -  A)

 

6.9  =  6A  +  (7(100-A))

                                                  100

 

100  x  6.9  =  6A  +  700  -  7A

 

690  =  6A  +  700  -  7A

                                              

690  -700  =  6A  -  7A

 

-10  =  -A

 

A  =  10 %

 

4)  A specific alloy of bronze has been developed for use in aircraft due to its high strength and resistance to corrosion. 

       It is an alloy of two metals and ts mass spectrum is shown below. Identify the two metals in this bronze and explain why there are three peaks.

Al, 27Al

Cu with 2 isotopes, 63Cu and 65Cu

5)  For the above question, calculate the relative atomic mass of the element with Isotopes.  For copper ONLY

 

RAM = S  (Abundance x m/z)

                                        Total  Abundance          

           

RAM  =  (124 x 63)  +  (56 x 65)

                                                (124  +  56)

 

                        RAM  =  63.6

 

6)   A sample of magnesium has three isotopes: magnesium-24, magnesium -25 and magnesium -26. Given that the relative atomic mass of magnesium is 24.3, calculate the relative abundance for magnesium 24 from the data below:

 

Relative abundance

 

100

110

Isotopic mass

24

25

26


RAM  =  (A x 24)  +  (100 x 25)  +  (110 x 26)              Where A is the abundance of 24Mg

                                                    (A  +  100  +  110)

 

24.3  =  24A  +  2500  +  2860

                                                    (A  +  210)

 

24.3(A  +  210)  =  24A  +  5360

 

24.3A  +  5103  =  24A  +  5360

 

24.3A  -  24A  =  5360  -  5103

 

0.3A  =  257

 

A  =  257

          0.3

 

A  =  857

 

7)  Sketch the mass spectrum you would likely see for Chlorine molecules given the following data:

 

Relative abundance

3

1

Isotopic mass

35

37

 

 

 

 

Possible combinations of the molecules Cl2+ :

35Cl – 35Cl+

Total mass = 70, total abundance = 6  (3+3)

 

37Cl – 35Cl+  and 35Cl – 37Cl+     (ie 2 scenarios likely)

Total mass = 72, Total abundance = 8  (1+3) + (3+1)

 

37Cl – 37Cl+

Total mass = 74, total abundance = 2  (1+1)

 

 

8)  Mass spectroscopy is a technique used to determine relative abundancies of isotopes of elements.

       a)  Briefly explain the stages in mass spectroscopy:

 

Ionisation

Atoms / molecules are ionised by losing an electron.

Acceleration

The ions are accelerated using a negatively charged plate.  They are all given the same kinetic energy.  The speed at which the ion will travel will depend upon the mass of the ion, m/z

Ion drift

Time of flight:  Higher mass ions (m/z) move slower than lower mass ions (m/z)

Detector

The ions with a smaller mass reach the detector first.  The ion picks up an electron.

 

       b)  Write an equation showing the ionisation stage, use M to represent an atom:

 

            M  à  M+  +  e-

 

       c)  Write an equation to show what happens at the detector, use M to represent an atom:

 

            M+  +  e-  à  M