Organic compounds

Answer the following questions: /58

1. Identify compound A. Show your working and justify your answers. [7]

Composition:

C 52.17\%; H 13.04\%; O 34.78\% $\quad \mathrm{Ef}=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ [1]
Mass spectra

Infra red spectrum

Use the information above to identify compound A: Ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ [1]
Mass spec: Molecular ion peak $=46, \mathrm{Mr}=46 \quad \mathrm{Mf}=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \quad$ [1]
Molecular ion $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}^{+}$[1] fragment $29=\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$[1]
IR spec: Peak at 3400 - indicates OH [1] No peak at 1700, no C=O [1]
2. Identify compound B. Show your working and justify your answers. [8]

Composition:
C 54.55\% H 9.09\% O 36.36\%
$\mathrm{Ef}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \quad[1]$

Mass spectra

Infra red spectrum

Use the information above to identify compound B: Ethanal, $\mathrm{CH}_{3} \mathrm{CHO}$ [1]
Mass spec: Molecular ion peak $=44, \mathrm{Mr}=44 \quad \mathrm{Mf}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \quad$ [1]
Molecular ion $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}^{+} \quad[1] \quad$ fragment $29=\mathrm{CHO}^{+}$[1]
IR spec: No peak at 3400 - no OH [1] Peak at 1700, C=O [1]
Therefore an aldehyde as A is a primary alcohol [1]
3. Identify compound C. Show your working and justify your answers. [8]

Composition:
$\mathrm{C} 40.00 \%$; $\mathrm{H} 6.67 \%$; $\mathrm{O} 53.33 \% \quad \mathrm{Ef}=\mathrm{CH}_{2} \mathrm{O}[1]$

Mass spectra

Infra red spectrum

Use the information above to identify compound C: Ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ [1]
Mass spec: Molecular ion peak $=60, \mathrm{Mr}=60 \quad \mathrm{Mf}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \quad$ [1]
Molecular ion $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}^{+} \quad$ [1] fragment $45=\mathrm{COOH}^{+}$[1]
IR spec: Peak at $3400-\mathrm{OH}$ [1] Peak at 1700, C=O [1]
Therefore a carboxylic acid as A is a primary alcohol [1]

Questions:

4. This question is about reaction 1 :
a. Write a balanced chemical reaction. [1]
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ [1]
b. 2.30 g of A reacted with an excess of the oxidising mixture to produce 2.00 g of B . Calculate the \% yield for this reaction. [5]

Limiting reagent $=$ Ethanol [1] Moles ethanol $=2.3 / 46=0.0500$ [1]
Maximum moles of ethanal that could be made $=0.0500$ [1]
Actual moles of ethanal $=2.00 / 44=0.0455$ [1]
$\%$ yield $=(0.0455 / 0.0500) \times 100=91 \%$ [1]
c. Calculate the atom economy. [1]

Atom economy $=(44 / 62) \times 100=71.0 \%$ [1]
d. What is the oxidising mixture and state any colour changes you would see. [3]

Sodium dichromate [1] sulphuric acid [1] Orange - green [1]
e. How would you make B? Explain how this is different from reaction 2. [2]

Distil aldehyde off as it is formed [1] you would reflux first to make C [1]
5. This question is about reaction 3:
a. Write a balanced chemical reaction. [1]
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
b. 2.30 g of A reacted with 3.50 g of C. 4.00 g of D was made. Calculate the $\%$ yield for this reaction. [6]

Moles $\mathrm{A} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}=2.3 / 46=0.0500$ [1] Limiting reagent [1]

Moles $\mathrm{C} / \mathrm{CH}_{3} \mathrm{COOH}=3.5 / 60=0.0583[1]$
Moles D / $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ that could be made $=0.0500$ [1]

Moles $\mathrm{D} / \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ actually made $=4.00 / 88=0.0455$ [1]
$\%$ yield $=(0.0455 / 0.0500) \times 100=91.0[1]$
c. Calculate the atom economy.

Atom economy $=(88 / 106) \times 100=83.0 \%$ [1]
6. This question is about compound E
a. Identify compound E. Show your working and justify your answers. [1]

Composition:
C 37.21\%; H 7.75\%; CI 55.04\%
$\mathrm{Ef}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}[1]$

Mass spectra

b. Explain the relatively large molecular ion peaks at 64 and 66? [1] Due to isotopes (of chlorine) [1]
c. Use your knowledge from unit 1 to explain the actual Mr of E [1] There is a larger abundance of ${ }^{35} \mathrm{CI}$ than ${ }^{37} \mathrm{CI}$ [1]
7. Use your knowledge of organic chemistry to identify F and G. [2]

F = Ethene [1] G = Ethane [1]
8. Use your knowledge of organic chemistry to identify the types of reactions in reactions 4,5 and 6. [3]

4: Substitution [1] 5: Addition [1] 6: Addition [1]
9. Which of the reactions 4,5 and 6 will have the highest atom economy? Explain your answer. [2]
Reaction 5 and 6 [1]: They are addition reactions [1]
10. Pick one of the reactions, $1-6$ to draw a mechanism. [5]

Must be reaction 5 or 6: Dipole on H_{2} or $\mathrm{H}_{2} \mathrm{O}$ [1] Curly arrow from $\mathrm{C}=\mathrm{C}$ to $\square+\mathrm{H}$ on H_{2} or $\mathrm{H}_{2} \mathrm{O}$ [1] Curly arrow from $\mathrm{H}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ bond to \square - H or O [1] Correct carbocation [1] Curly arrow from LP on H or O to the positive C on the carbocation [1]

