Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

June 2008

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)
Advanced Subsidiary GCE Chemistry (3882)
MARK SCHEME FOR THE UNITS
Unit/Content Page
2811 Foundation Chemistry 1
2812 Chains and Rings 8
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper 21
2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination 27
2814 Chains, Rings and Spectroscopy 33
2815/01 Trends and Patterns 40
2815/02 Biochemistry 45
2815/03 Environmental Chemistry 51
2815/04 Methods of Analysis and Detection 55
2815/06 Transition Elements 59
2816/01 Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper 67
2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination 74
Grade Thresholds 80

2811 Foundation Chemistry

Question			Expected Answers	Marks	Additional Guidance
1	a		protons neutrons electrons ${ }^{113} \mathrm{ln}$ 49 64 49 ${ }^{115} \mathrm{ln}$ 49 66 49 ${ }^{113}$ In line correct ${ }^{115}$ In line correct	2	mark by row
	b		$\begin{aligned} & A_{\mathrm{r}}=113 \times 4.23 / 100+115 \times 95.77 / 100 \\ & 114.9154 \checkmark \text { (calculator value) } \\ & =114.9 \checkmark \text { to } 1 \text { decimal place } \end{aligned}$	2	Allow one mark for $A_{r}=114.9154$ with no working out Allow two marks for $A_{\mathrm{r}}=114.9$ with no working out If a candidate uses incorrect values in 1st line, then the 2nd mark can still be awarded if the calculated value is from 113.1 to 114.9 expressed to one decimal place. ie if \%s are the wrong way round in 1st line, then an answer of 113.1 gets the 2nd mark.
	C		with labels: scattering of labelled electrons between other species \checkmark regular 2-D arrangement of labelled + ions with some attempt to show electrons \checkmark	2	1st mark is for any symbol that is labelled an electron that is between something else: ie: between + ions, atoms, protons, nuclei, +, p, circles, etc. Allow: e or e^{-}with no label Do not allow '-' with no label 2nd mark for labelled + ions, positive ions, cations that can be touching and must be 2-D (ie not just a row). Allow In^{+}or $\mathrm{In}+$ with charge from 1+ to 7+ NOT protons (commonest mistake)

Question		Expected Answers	Marks	Additional Guidance
d	i	$M_{r}=$ weighted mean/average mass of a molecule \checkmark compared with carbon-12 \checkmark 1/12th (of mass) of carbon-12/ on a scale where carbon-12 is $12 \checkmark$ (but not 12 g)	3	1st mark: reference to molecule is essential Allow just 'average mass of molecule' or 'mean mass of molecule' alternative allowable definitions: mass of one mole of molecules \checkmark compared to $1 / 12^{\text {th }} \checkmark$ (the mass of) one mole/12 g of carbon-12 \checkmark mass of one mole of molecules \checkmark $1 / 12^{\text {th }} \checkmark$ the mass of one mole/12 g of carbon-12 \checkmark
	ii	ratio: $\ln : \mathrm{I}=23.19 / 115: 76.81 / 127$ Empirical formula: InI_{3} Molecular formula $=\ln _{2} I_{6}$ $O R$ mass $\ln =23.19 \times 992 / 100$ OR 230 (g) AND mass $\mathrm{I}=76.81 \times 992 / 100$ OR $762(\mathrm{~g}) \checkmark$ moles $\ln =230 / 115$ OR 2 AND moles $\mathrm{I}=762 / 127$ OR $6 \checkmark$ Molecular formula $=\left.\ln _{2}\right\|_{6} \checkmark$	3	Allow use of 114.9 for In (ie from answer to 1(b)) If a candidate uses atomic numbers, the ratio is still 1:3. The 2nd and 3rd marks can still be awarded by error carried forwards. Although unlikely, an correct answer of $\operatorname{In}_{2} I_{6}$ with no working should be awarded all three marks. If candidate shows inverse for ratios: ie In : I = 115/23.19: 127/76.81 \qquad then the candidate can be awarded the 2nd mark only for $\mathrm{In}_{3} \mid$ by error carried forwards.
		Total	12	

Question			Expected Answers	Marks	Additional Guidance
2	a	i	Ca \checkmark	1	Allow names throughout (i)-(vi)
		ii	$\mathrm{N} \checkmark$	1	
		iii	$\mathrm{Cl} \checkmark$	1	
		iv	B \checkmark	1	Allow Al
		v	K \checkmark	1	
		vi	C/Si/B \checkmark	1	
	b	i	cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots for example chosen Correct charges on both ions \checkmark e.g.	2	An ionic compound must be chosen and it must have correct formula to score at all For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. Circles not required Ignore inner shell electrons Allow: $2\left[\mathrm{Na}^{+}\right] 2[\mathrm{Na}]^{+}\left[\mathrm{Na}^{+}\right]_{2}$ (brackets not required) Do not allow: for $\mathrm{Na}_{2} \mathrm{O},\left[\mathrm{Na}_{2}\right]^{2+}\left[\mathrm{Na}_{2}\right]^{+}[2 \mathrm{Na}]^{2+}[\mathrm{Na}]$
		ii	electron pair(s) in covalent bond shown correctly using dots and crosses in a molecule of a compound correct number of outer shell electrons in example chosen e.g. 2 'x o' between O and H for 1st mark correct outer shell electrons for O and H for 2nd mark	2	A covalent compound must be chosen and it must have correct formula to score at all For 'dot-and-cross' diagram, accept different symbols for electrons from each atom. ie X and / If example chosen is molecule of an element, then 2 nd mark can be awarded if candidate has used dots and crosses for all outer shell electrons around each atom. Circles not required

Question			Expected Answers	Marks	Additional Guidance
3	a	i	moles $=55 / 24,000=2.3 \times 10^{-3} / 0.0023(\mathrm{~mol})^{\checkmark}$	1	Allow calc $2.291666667 \times 10^{-3}$ and correct rounding to a minimum of 2 sig fig, ie 0.0023 (ie rounding is being assessed here)
		i	[bleach] $=1000 \times 2.3 \times 10^{-3} / 3=0.77\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$	1	From (a)(i), allow use of calc value $=0.763888888$ For any rounded value of $2.291666667 \times 10^{-3}$ down to a minimum of 2 sig fig, ie 0.0023 , allow any value in range $\mathbf{0 . 7 6}$ to $0.77 \mathrm{~mol} \mathrm{dm}^{-3}$ (ie rounding has been assessed above) For ECF, $=1000 \mathrm{x}$ ans to (i) $/ 3$
		i	$\begin{aligned} & \text { moles } \mathrm{HCl} \text { at start }=1.0 \times 6.0 / 1000=6 \times 10^{-3} \checkmark \\ & \text { moles } \mathrm{HCl} \text { that reacted }=2 \times 2.3 \times 10^{-3} \\ & =4.6 \times 10^{-3} / 0.0046 \mathrm{~mol} \\ & \text { excess } \begin{aligned} \mathrm{HCl} & =6 \times 10^{-3}-4.6 \times 10^{-3} \\ = & 1.4 \times 10^{-3} \mathrm{~mol} / 0.0014 \mathrm{~mol} \checkmark \end{aligned} \end{aligned}$ (mark is for answer)	3	Marking screen shows parts (i) and (iii) $\text { ECF }=\text { ans to (i) } \times 2$ ECF: moles HCl at start - moles HCl that reacted Common mistake: If a candidate does not multiply ans to (i) by 2, then ECF answer will be 0.00371 (from 0.00229) or 0.0037 (from 0.0023) Both answers would gain 2 marks for this part.
	b	i	iodine $/ I_{2}$ produced correct balanced equation: $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \quad / \quad \mathrm{Cl}_{2}+2 \mathrm{NaI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{NaCl}$	2	I_{2} as a product in an attempted equation would score 1st mark
		$\begin{array}{\|l\|} \hline \mathbf{i} \\ \mathbf{i} \end{array}$	chlorine reacts with water forming $\mathrm{Cl}^{-} \mathrm{OR}$ chloride / $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ClO}^{-}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-} \checkmark$ $\mathrm{AgCl}(\mathrm{s}) /$ precipitate is silver chloride $O R \mathrm{AgCl}(\mathrm{s}) \checkmark$ chloride $O R \mathrm{Cl}^{-}$reacts with silver nitrate $O R \mathrm{Ag}^{+} \checkmark$ $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \quad / \mathrm{AgNO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{AgCl}+\mathrm{HNO}_{3}$	4	Allow: $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HClO}+\mathrm{HCl}$ can be credited for this marking point in equation as $\mathrm{AgCl}(\mathrm{s})$ can be credited for this marking point in equation as Cl^{-} State symbols not required $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{s})$ would get last three marks!

Question		Expected Answers	Marks	Additional Guidance
C	i	attraction of an atom/nucleus for electrons \checkmark attraction for electrons in a (covalent) bond \checkmark	2	For 1st mark, atom/nucleus is essential Commonest correct answer: 'Attraction of an atom for the electrons in a covalent bond'
	i	four bonds shown with at least 2 wedges, one in; one out \checkmark bond angle $=109.5^{\circ} \checkmark$	2	For bond into paper, accept: Allow correct shape with no atom labels: Bond angle can just be stated as this is the only one bond angle that applies, so no labelling required. Allow $109^{\circ}-110^{\circ}$
	i	Cl is more electronegative (than H or C) \checkmark CCl_{4} is symmetrical In CCl_{4} dipoles cancel	3	USE annotations with ticks, crosses, con, ecf, etc for this part. Allow: Cl is $\delta-/$ slightly negative OR shown as dipole: $\mathrm{H}^{\delta+}-\mathrm{Cl}^{\delta-} O R \mathrm{C}^{\delta+}-\mathrm{Cl}^{\delta-}$ Do not allow 'negative' $\mathrm{OR} \mathrm{Cl}^{-} \mathrm{OR}$ chloride ion OR chlorine ion Allow CCl_{4} is tetrahedral
		Total	18	

Question			Expected Answers	Marks	Additional Guidance
4	a		A: $\mathrm{CaO} \checkmark$ B: $\quad \mathrm{CO}_{2} \checkmark$ C: $\quad \mathrm{Ca}(\mathrm{OH})_{2} \checkmark$ D: $\quad \mathrm{CaCl}_{2} \checkmark$ E: $\quad \mathrm{H}_{2} \mathrm{O} \checkmark$ F: $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} / \mathrm{CaH}_{2} \mathrm{C}_{2} \mathrm{O}_{6} \checkmark$	6	Brackets essential Allow any order of atoms in a correct formula
	b		$\begin{aligned} & 2 \mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CaO}(\mathrm{~s}) / \\ & \mathrm{Ca}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaO}(\mathrm{~s}) \end{aligned}$ state symbols for $\mathrm{Ca}, \mathrm{O}_{2}$ and $\mathrm{CaO} \checkmark$ correct balanced equation \checkmark Oxidation is loss of electrons AND reduction is gain of electrons \checkmark Ca loses 2 electrons AND O gains 2 electrons OR Ca loses 2 electrons AND O_{2} gains 4 electrons \checkmark	4	USE annotations with ticks, crosses, con, ecf, etc for this part. Allow 'multiples', ie $4 \mathrm{Ca}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CaO}(\mathrm{s})$ Allow balanced equation with a species on both sides, ie $\mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaO}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ Must be in terms of electrons Ignore any reference to oxidation number Allow equations (accept 'e' without '-' sign): $\mathrm{Ca} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-} / \mathrm{Ca}-2 \mathrm{e}^{-} \longrightarrow \mathrm{Ca}^{2+}$ $\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{2-} / \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{O}^{2-}$
			reactivity increases (down the group) \checkmark atomic radii increases/ there are more shells \checkmark there is more shielding/ more screening \checkmark Increased shielding and distance outweigh the increased nuclear charge / the nuclear attraction decreases \checkmark easier to remove outer electrons/ ionisation energy decreases/	5	USE annotations with ticks, crosses, con, ecf, etc for this part. 'down the group' not required 'more' is essential allow 'more electron repulsion from inner shells' Allow 'nuclear pull' ignore any reference to 'effective nuclear charge'
			QWC - At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear.	1	QWC mark must be indicated with a tick or cross through the Quality of Written Communication prompt at the bottom of page 9. Then scroll up to start of (b), counting ticks.
			Total	16	

2812 Chains and Rings

Question	Expected Answers	Marks	Additional Guidance
$\mathbf{1 a ~ i ~}$	$\mathrm{C}_{6} \mathrm{H}_{14} \checkmark$	$\mathbf{1}$	there is no other acceptable response
ii	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br} \quad \checkmark$	$\mathbf{1}$	there is no other acceptable response
iii	hexan-2-ol \checkmark	$\mathbf{1}$	Allow hexanol-2 do not allow e.g. 2-hexanol, hex-2-ol, hexa-2-ol
iv	$\mathrm{HBr} \checkmark$	$\mathbf{1}$	Allow $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4}$ Do not allow dil. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

b i	1. curly arrow from π - bond to $\mathrm{Br}^{(\delta+)} \checkmark$ 2. correct dipoles \& curly arrow from bond to $\mathrm{Br}^{\delta-} \checkmark$ 3. intermediate (either primary/secondary carbonium/bromonium ion) \checkmark 4. Br must have charge and lone pair. Curly arrow from anywhere on Br to $\mathrm{C}+\checkmark$	4	curly arrow must have full arrow head if half-arrow heads used, penalize once only. ignore δ - on $\mathrm{C}=\mathrm{C}$ double bond ignore " ${ }^{\text {" }}$ on $\mathrm{Br}-\mathrm{Br}$ bond curly arrows must be precise curly arrow 1 must start at the $\mathrm{C}=\mathrm{C}$ double bond (not the C) and must go to the $\mathrm{Br}^{\delta+}$ or just above the $\mathrm{Br}^{\delta+}$ curly arrow 2 must start from the $\mathrm{Br}-\mathrm{Br}$ bond and go to the $\mathrm{Br}^{\delta-}$ or just past the $\mathrm{Br}^{\delta-}$ curly arrow 3 must go from Br^{-}to the $\mathrm{C}+$ allow primary carbonium ion or bromonium ion as an alternative to the carbonium ion If HBr is used instead of Br_{2} candidate loses marking point 1. If ethene (or other alkene) appears as the intermediate, candidate loses marking point 3. If intermediate has $\mathrm{C}^{\delta+}$, candidate loses marking point 3. If intermediate drawn as candidate loses marking point 3.

Question	Expected Answers	Marks	Additional Guidance
ii	(electrophilic) addition \checkmark	1	nucleophilic addition loses the mark ignore bromination.
iii	decolourises/(red/orange/brown/yellow) to colourless \checkmark	1	not goes clear not discolours
c i	n 1. 1 mark if monomer and repeat unit are correct \checkmark 2. 1 mark if the n_{s} are shown in correct position and bracket around repeat unit \checkmark	2	Ignore bond linkage to $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ unless the bond clearly goes to the CH_{3}. $n \mathrm{C}_{6} \mathrm{H}_{12} \longrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)_{n}$ also gets both marks Allow if end bonds are within brackets. If end bonds are not shown, candidate loses marking point 1. If equation is not balanced, candidate loses marking point 2. If they draw 2(monomers) $\longrightarrow 2$ repeat units candidate loses marking point 2.
ii	poly(hex-1-ene)/polyhex-1-ene $\quad \checkmark$	1	Allow poly(hexene-1) / polyhexene-1
	Total	13	

Question No.	Expected Answers			Marks	Additional Guidance
2a	same molecular formula, different structure/arrangement of atoms \checkmark			1	not same formula Allow different displayed/skeletal formulae
b			secondary	6	Penalise bond linkage to OH once in this question. Do not penalise bond linkage to CH_{3}. If names written as methylprop-1-ol and methylprop-2-ol, penalise once in this question. allow $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$
		methylpropan-1-ol	primary \checkmark		allow 2-methylpropan-1-ol
		methylpropan-2-ol			allow 2-methylpropan-2-ol allow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ penalise "sticks" once only in this question. e.g DO NOT penalise "sticks" elsewhere on the paper.

C	 1. H-bond shown in correct position \checkmark 2. dipoles shown as $\mathrm{O}^{\delta-}$ and as $-\mathrm{O}-\mathrm{H}^{\delta+}$ 3. Ione pair shown on O as part of a dotted \qquad hydrogen bond \checkmark	3	allow if two H -bonds are shown between the two $\mathrm{O}-\mathrm{H}$, candidate loses marking point 1. If hydrogen bond drawn between butan-1-ol and water candidate loses marking point 1.
d		1	ester group must be displayed Allow $\mathrm{C}_{4} \mathrm{H}_{9}$ etc.
e i	1. butanoic acid \checkmark 2. ir spectrum shows OH at about $3000 \mathrm{~cm}^{-1} \checkmark$ 3. $\mathrm{C}=\mathrm{O}$ at about $1700 \mathrm{~cm}^{-1} \checkmark$ OR 1. butanoic acid 2. ir spectrum shows peaks at about $1700 \mathrm{~cm}^{-1}$ and $3000 \mathrm{~cm}^{-1} \checkmark$ 3. peaks correctly identified as $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ respectively.	3	Check spectrum for labels. Allow correctly labelled peaks on spectrum. allow ranges in data book: $2500-3300 \mathrm{~cm}^{-1}$ for $\mathrm{O}-\mathrm{H}$ $1680-1750 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ not $3230-3550 \mathrm{~cm}^{-1}$ for $\mathrm{O}-\mathrm{H}$

ii	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ Allow ecf to e(i) as aldehyde/butanal. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$	2	If candidate identifies $\mathrm{e}(\mathrm{i})$ as carboxylic acid but writes equation for aldehyde. No marks. allow $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ correct product $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2} \mathrm{H}$ scores $1 \checkmark$ Allow as ecf $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ but as ecf $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O} /$ scores 1 mark. If the equation is not balanced, 1 mark available for unambiguous formula of the correct / ecf organic product. e.g $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ or $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ would not score the mark
	Total	16	

Question No.	Expected Answers	Marks	Additional Guidance
3 a i	working to show C:H ratio 1:2 \quad : $\mathrm{CH}_{2} \checkmark$	2	must see working as $\mathrm{C}_{4} \mathrm{H}_{8}$ is given as the molecular formula in part (ii) If calculation of $\mathrm{C}: \mathrm{H}$ ratio is incorrect allow ecf for empirical formula.
ii	working ($56 / 14=4$) to show molecular formula is $\mathrm{C}_{4} \mathrm{H}_{8}$ / $4 \times 12+8=56$	1	Allow 85.7% of $56=48$ therefore 4 C
b	 cis trans 1. skeletal formulae \checkmark 2. correct structure in correct box \checkmark	2	allow 1 mark if cis-trans correctly drawn as structural/displayed formulae and correctly labeled. cis trans or cis trans scores 1 mark if both skeletal formulae drawn correctly but in the wrong boxes - 1 mark can be awarded
	Total	5	

Question	Expected Answers	Marks	Additional Guidance
4a i		2	allow 1 mark if two correct isomers are drawn using either displayed or structural formula e.g. any two from: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{CH}$ award 1 mark for correct isomers but deduct one mark for not drawing skeletal formulae.
ii	3,3-dimethylpentane \checkmark	1	Ignore comma and hyphen Not bimethyl/bismethyl
iii	F \checkmark	1	Allow 3-methylhexane.

b	1. Unambiguous organic product \checkmark 2. Balanced equation \checkmark	2	scores only 1 Do not allow 2H / 2[H].
C i	$\begin{aligned} & M_{r}=88 \quad \checkmark \\ & \% \mathrm{O}={ }^{16} / 88 * 100=18.2(\%) \end{aligned}$	2	18.2(\%) with no working scores 2 marks 18.18 (\%) with no working scores 1 mark Allow ecf on incorrect M_{r}
ii	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}+71 / 2 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$	2	correct formula for MTBE - allow $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O} /$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCH}_{3} /$ displayed formula as shown in question allow 1 mark if formula for MTBE and mole ratio are correct such that 1MTBE :5CO $\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ gets 1 mark \checkmark If formula of MTBE is incorrect allow ecf for balanced equation. Max 1 mark.
d i	Iow boiling point/easily vapourised/evaporates quickly/turns to a gas easily	1	Ignore reference to flammability.
ii	loss of petrol by evaporation/fuel-air mixture might be incorrect/not enough liquid petrol getting to the engine/carburettor/causes knocking/ causes preignition/ causes auto-ignition/more difficult to store or transport/more difficult to fill-up	1	Ignore vague answers such as more chance of catching fire/explosion/dangerous

Question	Expected Answers	Marks	Additional Guidance
Ticks \checkmark must be used for this question. Use \checkmark or \times for QWC			
5a	1. reagent $-\mathrm{OH}^{-} / \mathrm{NaOH} / \mathrm{KOH}$ 2. solvent - water/aqueous (ignore reference to ethanol) 3. conditions- hot/warm/reflux/heat $\checkmark \checkmark$ $\mathrm{RX}+\mathrm{OH}^{-} / \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ROH}+\mathrm{X}^{-} / \mathrm{HX}$	3	need all three for 2 marks, any 2 scores 1 mark allow general equation using \mathbf{R} or any correct equation allow reagent, conditions \& solvent mark from the equation such that scores all 3 marks if acid catalyst usedit cancels the OH^{-}reagent

	1. reagent $-\mathrm{OH}^{-} / \mathrm{NaOH} / \mathrm{KOH}$ 2. solvent - ethanol/alcohol/ethanolic 3. conditions-hot/warm/reflux/heat e.g. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{X}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O}$	$\checkmark \checkmark$	3	need all three for 2 marks, any 2 scores 1 mark if acid catalyst usedit cancels the OH^{-}reagent any mention of water/(aq) candidate loses marking point 2. allow any correct equation If HBr is a product, candidate loses equation mark. allow reagent, conditions \& solvent mark from the equation such that If ethanoic is used instead of ethanolic penalise only once.

	reagent $-\mathrm{NH}_{3}$ solvent - ethanol/alcohol/ethanolic $\mathrm{RX}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{RNH}_{2}+\mathrm{NH}_{4} \mathrm{XI}$ $\mathrm{RX}+\mathrm{NH}_{3} \longrightarrow \mathrm{RNH}_{2}+\mathrm{HX}$ using an acid (catalyst) loses the NH_{3} mark.	3	ignore any reference to temperature and pressure ignore any reference to heating in a sealed tube
any mention of water/(aq) candidate loses marking point 2.			

b	1. correct aıpoie \checkmark 2. The OH must have lone pair on O and charge e.g. : OH^{-}. Curly arrow from anywhere on the OH^{-}to $\mathrm{C}^{\delta+}$ 3. curly arrow from $\mathrm{C}-\mathrm{X}$ bond to $\mathrm{X}^{\delta-}$ 4. states that the mechanism is nucleophilic substitution/draws correct products \checkmark	4	"nucleophilic substitution" cannot be credited from part a. Penalise bond linkage to OH once in this question. credit $S_{N} 1$ mechanism: can score all 4 marks.
	Total	14	

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Question			Expected Answers	Marks	Additional Guidance
1	(a)	i	enthalpy/energy change to break 1 mole of a (covalent) bond in the gaseous state \checkmark	2	do not allow first mark: - if energy released - if break and make - if ionic - if heat $2^{\text {nd }}$ mark stand alone ignore 'under standard conditions'
		ii	$\begin{aligned} & \text { bonds broken }=1(\mathrm{C}-\mathrm{C})+5(\mathrm{C}-\mathrm{H})+1(\mathrm{C}-\mathrm{O})+1(\mathrm{O}-\mathrm{H})+ \\ & 3(\mathrm{O}=\mathrm{O})=4728(\mathrm{~kJ}) \checkmark \\ & \text { bonds formed }=4(\mathrm{C}=\mathrm{O})+6(\mathrm{O}-\mathrm{H})=6004(\mathrm{~kJ}) \checkmark \\ & \Delta H_{\mathrm{c}} \tilde{=} 1276\left(\mathrm{kJmol}^{-1}\right) \checkmark \end{aligned}$ Alternative if $1(\mathrm{O}-\mathrm{H})$ cancelled on both sides the values are bonds broken $=4264(\mathrm{~kJ}) \checkmark$ bonds formed $=5540(\mathrm{~kJ}) \checkmark$ $\Delta H_{\mathrm{c}}=-1276\left(\mathrm{kJmol}^{-1}\right)^{\checkmark}$	3	no working necessary -allow one mark for each value allow ecf on values for final answer but sign must be consistent with their values no working necessary -allow one mark for each value allow ecf on values for final answer but sign must be consistent with their values
	(b)	i	$\begin{aligned} & \text { cycle } / \Delta H_{\mathrm{r}}=\Sigma \Delta H \text { (products) }-\Sigma \Delta H(\text { reactants }) \checkmark \\ & \left.1273+\Delta H_{\mathrm{c}}=\tilde{6} 394\right)+\tilde{6}(286) \checkmark \\ & \Delta H_{\mathrm{c}} \approx 2807\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	3	cycle need not be drawn correctly/drawn at all 2807 scores 3 common errors and their effect $\begin{array}{\|l} -5353,-1377,-837,181,625,1921,2807 \text { score } 2 \\ -3923,-3637,-3383,-2989,-1921,-625,-181,593,837 \end{array}$ $\text { score } 1$

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}-1953,-593 \text { score 0 }\end{array}
$$

if these answers are seen, score appropriately any other

answers must be checked

one error scores 2, two errors scores 1\end{array}\right]\)| | | 1 |
| :--- | :--- | :--- |
| | | ii |
| | respiration other answer is acceptable | |
| ignore qualification eg exothermic, aerobic, anaerobic | | |

Question			Expected Answers	Marks	Additional Guidance
2	(a)	i	(becomes paler because equilibrium) moves to RHS /towards products /towards HI \checkmark (because) the (forward) reaction is endothermic/ reverse reaction is exothermic	2	becomes paler is in the question, first mark is for direction of equilibrium movement Ignore any discussion on number of moles/rates both marks stand alone
		ii	(becomes darker because) the molecules are pushed closer together/ space between particles decreases/ their concentration increases/ density increases/ equilibrium position does not alter \checkmark because there are the same number of moles (of gas) on each side \checkmark	3	becomes darker is in the question, first mark is for comment on effect on particles all three marks are stand alone
	(b)	i	because there are more collisions \checkmark and more of the collisions have $\underline{E}_{\underline{a}} /$ exceed $\underline{E}_{\underline{a}} /$ have the required energy to react	2	activation energy/ E_{a} / required energy to react must be mentioned for the $2^{\text {nd }}$ mark
		ii	because the particles collide more (frequently) \checkmark	1	any mention of energy or E_{a} negates the mark any idea of more particles are added negates the mark
	(c)	i	hydrogen was added/used \checkmark	1	not 'concentration of hydrogen increases'
		ii	amount of $\mathrm{HI} /$ products goes up/ amount of $\mathrm{I}_{2} / \mathrm{H}_{2}$ reactants goes down/ as equilibrium moves to RHS \checkmark (new) equilibrium established/reaches equilibrium again/ concentrations become constant / rate forward = rate back \checkmark	2	do not allow $2^{\text {nd }}$ mark if restore to original equilibrium or if the reason given is invalid eg increase in temperature
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	i	x axis energy y axis number/fraction of particles/molecules/atoms \checkmark	2	not activation energy/E ${ }_{a}$ allow kinetic energy/KE/speed/velocity/enthalpy allow 1 mark if labels both correct but on reversed axes
		ii	on diagram labelled E_{a} lines with and without catalyst \checkmark explanation - more particles/collisions have energy greater or equal to \underline{E}_{a} / required energy to react, with catalyst \checkmark	2	E_{a} must be labelled on one line (lines must be drawn and meet the curve) lines must be to RHS of hump if two graphs are drawn, first mark not awarded activation energy/ $E_{\mathrm{a}} /$ required energy to react must be mentioned for the $2^{\text {nd }}$ mark
	(b)	i	gas/ hydrogen is given off/produced/formed/released \checkmark	1	
		ii	sketch to show line falling more steeply \checkmark finishing at same horizontal level \checkmark	2	graph must start at the same point as the original the line need not continue very far as long as it is clearly at the same horizontal
	(c)	i	diagram to show products below reactants energy 'hump' between reactants and products \checkmark	2	products must be labelled hump can be rectangular or curved AW
		ii	ΔH labelled/ (-)120 \checkmark $E_{\mathrm{a}} \text { labelled/250 } \checkmark$	2	accept double headed arrows or lines single headed arrows must have arrow in correct direction
		iii	$E_{\mathrm{a}}=370\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$	1	If answer = 130, refer back to Q3(c)i ecf if endothermic drawn
			Total	12	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	i	use ticks from annotation box- place as close to marking point as possible high pressure 1. would give good rate \checkmark 2. and move equilibrium to RHS or towards products/ give good yield of ammonia 3. too high is expensive/ safety considerations high temperature 4. would give good rate \checkmark 5. but moves equilibrium to LHS or towards reactants/ gives poor yield of ammonia \checkmark 6. temperature is a compromise \checkmark catalyst 7. iron used \checkmark	7	no credit for specified conditions of temperature and pressure low temperature would give a slow rate \checkmark but moves equilibrium to RHS or towards products/ gives good yield of ammonia \checkmark temperature is a compromise \checkmark 'compromise' is a stand alone mark
		ii	cooling to/below $-33^{\circ} \mathrm{C} \checkmark$ to liquefy/condense ammonia	2	actual temperature need to be quoted (-196 to $-33^{\circ} \mathrm{C}$) or cool to below boiling point of ammonia any mention of (fractional) distillation/evaporation/heating negates $2^{\text {nd }}$ mark
		iii	(unreacted) nitrogen and hydrogen are recycled \checkmark	1	must be nitrogen and hydrogen or reactants

June 2008

(b)	i	$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} \checkmark$	1	$\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \checkmark$ multiples allowed accept any acid NOT water $\begin{aligned} & \text { eg } \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}^{4} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \checkmark \\ & \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}^{4} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{HSO}_{4} \checkmark \\ & 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}^{4} \rightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}{ }^{2} \checkmark \\ & \mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl} \checkmark \end{aligned}$
	ii	$3 \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ formula of ammonium phosphate balancing	2	balancing only for correct species
		Total	13	

2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination

AS Practical Test 2813/03: May 2008
Mark Scheme

PLAN (Skill P)

[16 marks (out of 19 available)]

T Titration procedure - 7 marks

T1 Accurate dilution of the sulphuric acid provided:
Acid measured with a pipette, use of distilled water and a volumetric flask
Dilution factor does not need to be justified, but should be between 5 and 25
T2 Correct equation for suitably selected neutralisation reaction (not ionic)
The alkaline reagent chosen must be water-soluble
No T2 for incorrect sub-scripts or letter cases (eg $\mathrm{H}^{2} \mathrm{So4}$)
T3 Uses equation to justify concentration or mass of alkali used in titration
T3 can only be awarded if acid was diluted and this is allowed for in calculation.
T4 Outline description of use of burette and pipette in procedure
T5 At least two consistent titres (or within $0.1 \mathrm{~cm}^{3}$ - unit needed) obtained
T6 Suitable indicator chosen and correct end-point/final colour stated

T7 Gives clear specimen calculation or explains showing how the titre gives evidence for the dibasic nature of the acid, related to a chemical equation.
An explained comparison with results for equimolar HCl can score the mark
G Gas collection procedure - 8 marks
Use of a suitable metal ($M g$ or Zn) or any metal carbonate is acceptable. Use of $\mathrm{Na}, \mathrm{Ca}, \mathrm{Al}, \mathrm{Fe}$ (or other less reactive metal) can score G2, G3, G4, G5 and G6 only

G1 Equation for a suitable reaction (for which the produced gas can be measured)
G2 Diagram showing gas collection in a syringe or inverted burette or measuring cylinder [1] Do not penalise minor inaccuracies in diagram - but will it work as drawn?

G3 Ignition tube inside flask or inner container or divided flask used and this keeps reagents apart/stops them reacting while apparatus is assembled or this prevents gas being lost before bung is inserted or [when apparatus assembled] tilt the ignition tube [to mix reagents/ start the reaction][1]
Two points required for G3 - the precaution and a reason/description

G4 Measure volume of gas when fizzing stops or syringe stops moving
There must be some visual indication of completed reaction before reading is taken.
G5 Calculates the [maximum] volume of acid so that all the gas fits into the collector. Calculation must be explicitly based on the volume of the syringe/collecting vessel

G6 Excess metal/metal carbonate is used to ensure that all of the sulphuric acid reacts
G7 Calculates [minimum] mass of metal or metal carbonate [so that it is in excess]
G8 One accuracy precaution
Either repeat whole experiment
and take mean of readings or until volume of gas is consistent
Or use of gas syringe reduces loss of carbon dioxide caused by its solubility in water
S Safety, Sources and QWC - 4 marks
S1 Sulphuric acid (1M) is irritant/corrosive and one of the following precautions

- if spilt rinse spill with plenty of water
- dilute before use [in titration] to reduce hazard level
- wear gloves

No S1 if the hazard is over stated - eg "sulphuric acid is very corrosive"
S2 References to two secondary sources quoted as footnotes or at end of Plan.

- Book references must have page numbers
- Internet references must go beyond the first slash of web address
- Accept one specific reference to "Hazcards" (number or title required)

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Allow not more than five different errors in legibility, spelling, punctuation or grammar.
S4 QWC: information is organised clearly and accurately
Is the answer "yes" to all three of the following questions?

- Is a word count given and within the limits 450-1050 words?
- Is scientific language used correctly? (Allow one error without penalty.)
- Are the descriptions logical and without lots of irrelevant or repeated material?

Practical Test (B)

Page 3 Part 1 (Skill I)

Mass readings

Check the following five points.

- Both mass readings must be listed
- Labelling of masses must have minimum of the words "bottle"/"container" (aw)
- Unit (g) must be shown with one (or both) of the weighings
- All three masses should be recorded to two (or, consistently, to three) decimal places.
- \quad Subtraction to give mass of \mathbf{Z} must be correct

Five bullets correct = 2 marks: Four bullets correct = 1 mark

If only the mass of Z is shown award 0 .

Presentation of titration data

Check the following six points.

- Table grid drawn (at least three lines) and all burette data is shown in the table, including first/trial.
- Correctly labelled table (initial, final and difference - aw) for burette data
- Three (or more) titres are shown
- All "accurate" burette data are quoted to two decimal places, ending in . 00 or .05
- No readings recorded above $50 \mathrm{~cm}^{3}$
- All subtractions are correct

Six bullets correct = $\mathbf{2}$ marks: Five bullets correct $=\mathbf{1}$ mark
A table giving only the titre differences scores 0 in this sub-section.

Self-consistency of titres

Check the following four points

- The titres for two accurate experiments are within $0.20 \mathrm{~cm}^{3}$.
- The ticked titres (or the titres used to calculate the mean) are within $0.10 \mathrm{~cm}^{3}$
- Two titres are ticked
- Units, cm^{3} or ml , must be given somewhere (once in or alongside the table is sufficient).

Four bullets correct = $\mathbf{2}$ marks: Three bullets correct $=1$ mark

Mean titre correctly calculated

- The mean should normally be calculated using the closest two accurate titres.

However, a candidate may use the trial/first reading if appropriate, without penalty.

Accuracy- 7 marks

- If a Centre worked in two or more different sessions using different solutions, each candidate must be matched to the appropriate set of supervisor's data.

Write down the supervisor's mass and mean titre, rounded to nearest $0.05 \mathbf{c m}^{3}$, in a ring next to the candidate's table.
Calculate what the adjusted candidate's titre (T) would have been if the candidate had used the same mass of Z as the supervisor.

Use the conversion chart below to award the mark out of 7 for accuracy.

\boldsymbol{T} is within $\mathbf{0 . 2 5} \mathrm{cm}^{3}$ of mean supervisor's value	$[7$ marks $]$
\boldsymbol{T} is within $\mathbf{0 . 4 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[6]$
\boldsymbol{T} is within $\mathbf{0 . 6 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[5]$
\boldsymbol{T} is within $\mathbf{0 . 8 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[4]$
\boldsymbol{T} is within $\mathbf{1 . 0 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[3]$
\boldsymbol{T} is within $\mathbf{1 . 2 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[2]$
\boldsymbol{T} is within $\mathbf{1 . 5 0} \mathrm{cm}^{3}$ of mean supervisor's value	$[1$ mark

Spread penalty

("Spread" is defined by the titres actually used by the candidate to calculate the mean)
If the titres used have a spread $>0.40 \mathrm{~cm}^{3}$, deduct 1 mark from accuracy.
Increase the deduction by 1 mark for every $0.20 \mathrm{~cm}^{3}$ of spread

Safety - 2 marks

Diluting the alkali/ making a solution/ adding water.....
.....reduces the [level of] hazard /makes it less corrosive
A comparison is required for this mark

Pages 4-6: Part 2 (Skill A)

Answers should be quoted to 3 significant figures.
Use of wrong sig. fig. in an otherwise correct answer loses one mark on the first occasion only. Allow "error carried forward" between sections of this Part
(a) 1 mark

Mass of pure $\mathrm{KOH}=5.50 \times 0.86=4.73 \mathrm{~g}$
(b) 2 marks
M_{r} of $\mathrm{KOH}=56.1$
[1]
Concentration $=4.73 / 56.1=0.0843 \mathrm{~mol} \mathrm{dm}^{-3}$
Correct answer only = 1 mark
(c) 2 marks

$$
\begin{equation*}
\mathrm{n}(\mathrm{KOH})=\operatorname{answer}(\boldsymbol{b}) \mathrm{x}^{\text {mean titre }} / 1000 \tag{1}
\end{equation*}
$$

This is a method mark
Correct answer obtained from candidate's own data (approximately 0.00230 mol)
(d) 2 marks
M_{r} of sulphamic acid $=97.1$
$\mathrm{n}($ sulphamic acid) $=$ mass used $/ 97.1$ (see table below)
(e) 1 mark

Candidate multiplies answer (d) by ${ }^{25} / 250$ (or divides by 10)
(f) 2 marks

Ratio $={ }^{(\mathrm{c})} /{ }_{(\mathrm{e})}=\mathrm{mol} \mathrm{KOH} /$ mol acid
Correct working is essential for this mark.
Answer = 1
(g) 3 marks
(i) $2 \mathrm{H}_{2} \mathrm{O}, 3 \mathrm{H}_{2} \mathrm{O}$
(ii) First of three equations ticked

The equation shows I mole KOH reacting with 1 mole sulphamic acid The justification must include the word "mole" (or molar).
(h) 1 mark

1 mole of H^{+}

Pages 7-9: Part 3 (Skill E)

(a) 4 marks available (but 3 on question paper)

Only two marks can be awarded if the second equation (1:1 mole ratio) is used.
Valid explanation of choice of the balanced equation, first or third, chosen
$\mathrm{n}\left(\mathrm{H}_{3} \mathrm{NSO}_{3}\right)=0.010(0.00999)$
$n\left(\mathrm{H}_{2}\right)=0.0050$ [or 0.010] or 0.015 (depending on the equation/mole ratio selected)
Volume $\left(\mathrm{H}_{2}\right)=120 \mathrm{~cm}^{3}$ or $240 \mathrm{~cm}^{3}$ or $360 \mathrm{~cm}^{3}$, which is too much for the syringe
(b) 1 mark
[Mg is in excess] to ensure that all sulphamic acid, Z, reacts
(c) 9 marks available (but 6 on question paper)

The candidate's best three strands are counted
C1 Some gas escapes while bung is being inserted or reaction begins before stopper is put in

C2 Use an inner ignition tube to hold a reagent or divided flask to hold one of the reagents [1]
C3 Keep reagents apart before inserting the stopper or prevent collisions between reagents while apparatus is being assembled

D1 Error in measuring the mass of [sulphamic] acid or mass of acid used is very small
D2 Calculates correctly the \% error in measurement of mass
Allow ${ }^{0.01} / 0.97 \times 100=1.03 \%$ or ${ }^{0.02} / 0.97 \times 100=2.06 \%$
D3 Use balance reading to 3 (or more) decimal places

E1 Syringe only is less accurately calibrated/reads to nearest cm^{3}

E2 Use an inverted burette instead of a syringe

F1 Friction/ stiffness in gas syringe
F2 Rotate the syringe gently while gas is being collected or lubricate the syringe

G1 Reaction is exothermic, so volume of gas expands or gas is not collected at RTP
G2 Wait until gas cools to room temperature before measuring the volume or carry out reaction in water bath

H1 Corrosion/ oxide layer on the surface of magnesium
$\mathrm{H} 2 \mathrm{MgO} /$ oxide layer reacts with acid without producing any gas/hydrogen
H3 Clean surface of Mg by a specified method (eg rub with sand paper)
J1 A small volume of air is displaced when the bung is inserted
J2 Record initial volume from syringe after this displacement has occurred
K1 Magnesium will react slowly with water
Award one mark only for this strand, since this effect is insignificant
(d) 4 marks
(i) Logical attempt to use the ratios $\left({ }^{80} / 0.64\right.$ and $\left.{ }^{50} / 0.45\right)$ or inverted or attempts to calculate mole ratios of gas:acid for both experiments

Use calculated ratios to show clearly that readings aren't consistent, so repeat needed [1]
(ii) Titres obtained in titration agreed within $0.1 \mathrm{~cm}^{3}$ or were consistent

Student's readings are not consistent and these results are not reliable

2814 Chains, Rings and Spectroscopy

Question	Expected Answers		Marks
2 (a) (i)	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$		[1]
(ii)	conc $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$		[1]
(b)	mechanism		
	$\mathrm{NO}_{2}{ }^{+} \checkmark$ curly arrow from bond to electrophile \checkmark		
		(the 'smile' must end at C2 and C5 and the + charge must not be at the tetrahedral carbon)	
	involvement of catalyst		
	equation to show formation of $\mathrm{NO}_{2}{ }^{+} / \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \checkmark$ e.g. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ regeneration of $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$ e.g. HSO_{4} shown accepting H^{+}or equation: $\mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$		[6]
(c)	accept any dinitrobenzene isomer - eg		[1]
(d)	Sn and (conc) $\mathrm{HCl} \checkmark$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ / phenylamine \checkmark equation \checkmark $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+6[\mathrm{H}] \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	(allow any other suitable reducing agents)	
	$\mathrm{NaNO}_{2} / \mathrm{HNO}_{2}$ and HCl and $<10^{\circ} \mathrm{C} \checkmark$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}$/ diazonium \checkmark equation \checkmark $\text { e.g. } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}^{+}+\mathrm{HNO}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}+2 \mathrm{H}_{2} \mathrm{O}$		
	phenol and alkali \checkmark formula of an azo dye \checkmark e.g. -		[8]
[Total: 17]			

Question	Expected Answers		Marks
3 (a)		(allow any unambiguous structures)	[1]
(b)	peptide bond correct on at least one structure alanine as N -terminal... and C -terminal	(ignore the attempted structure of valine as the formula given is not easy to interpret)	[3]
(c)	correct ionisation of $-\mathrm{NH}_{2}$ and --COO$/-\mathrm{COONa}$ groups \checkmark	(do not allow a covalent O-Na bond)	[1]
(d)	Cl^{-}		[2]
(e)			[3]
(f)	any valid isomers which are 2-amino carboxylic acids - e.g. C D	(i.e. any isomers of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ and $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$)	[2]
[Total: 12]			

Question	Expected Answers	Marks
4 (a)	fumaric acid and malic acid identified one correct explanation \checkmark - e.g. the $C=C$ bond does not rotate /has restricted rotation / has different groups on both $C=C$ carbons AW \checkmark has a chiral centre / four different groups around a $C \checkmark$	[2]
(b)	use of $\mathrm{NaOH} / \mathrm{Na} / \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{NaHCO}_{3} \checkmark$ rest of the equation and balancing \checkmark - e.g.	[2]
(c)		[1]
(d) (i)	```in presence of \(\mathrm{D}_{2} \mathrm{O}\) two peaks \(\checkmark\) relative peak areas 2:1 \(\checkmark\) (splitting of peak with area 2) is a doublet 11:1 \(\checkmark\) (splitting of peak with area 1) is a triplet/1:2:1 \(\checkmark\) without \(\mathrm{D}_{2} \mathrm{O}\) five / three more peaks \(\checkmark\) due to the OH protons (not shown in \(\mathrm{D}_{2} \mathrm{O}\)) \(\checkmark\) AW```	[6]
Qwc	mark for good communication of how the adjacent/neighbouring hydrogens affect the splitting (e.g. use of the $n+1$ rule)	[1]
(ii)	shifts peak at $\delta=11.0-11.7 \mathrm{ppm}$ and peak at $\delta=2.0-2.9 \mathrm{ppm} \checkmark$ explanation: either ... (only) two environments / molecule is symmetrical AW \checkmark or (peak at $\delta=11.0-11.7 \mathrm{ppm}$ is due to) COOH and (peak at $\delta=2.0-2.9 \mathrm{ppm}$ is due to) $\mathrm{CH}_{2} \checkmark$	[2]
[Total: 14]		

Question	Expected Answers	Marks
5 (a)	section of the polymer $\checkmark-$ eg	[1]
(b)	 one COOH group other COOH group and the rest of the structure	[2]
(c) (i)	$\mathrm{CH}_{3} \mathrm{OH} \checkmark$ (heat) with conc $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$	[2]
(ii)	HCN / KCN \checkmark	[1]
(iii)	nucleophilic addition \checkmark	[1]
(iv)	$\mathrm{H}_{2} \mathrm{O} \checkmark$	[1]
(d)	$\begin{aligned} & M_{r} \mathrm{CH}_{3} \mathrm{COCOOH}=88 \text { and } M_{r} \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN}) \mathrm{COOCH}_{3}=111 \\ & \text { theoretical yield }=12.6(\mathrm{~kg}) / 113.6 \text { (moles) } \checkmark \end{aligned}$ $@ 30 \%=3.78$ kg answer rounded to 2 sig figs \checkmark	[4]
[Total: 12]		

2815/01 Trends and Patterns

Mark Scheme Page 1 of 5	Unit Code 2815/01	Session June	$\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$	Fin	Version Mark Scheme
Question	Expected Answers			Marks	Additional Guidance
1 (a)	Any three from Strontium ion smaller than barium ion / strontium ion has a higher charge density / ora (1);			3	No mark for just writing decomposition temp is higher for BaCO_{3} If SrCO_{3} with higher temp award 0 marks Must use correct particle but only penalise once in part (a) Allow Sr^{2+} is more polarising and distorts the carbonate ion (2) $/ \mathrm{Sr}^{2+}$ polarises the carbonate ion causing more distortion (2) Allow marks from a labeled diagram
(b) (i)	$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}(1)$			1	Allow any correct multiple Ignore state symbols
(ii)	Oxide (ion) sm has a higher oxide (ion) ha (1); So oxide (ion) magnesium io attraction to p bond / MgO h (1)	than nitrat density th gher charg a stronger nitrate (ion) e ion / MgO onger attra	oxide (ion) (ion) / itrate (ion) to aker onger ionic tween ions	2	Allow ora Must use correct particle but only penalise once 'It' refers to oxide (ion) or MgO Allow MgO has stronger bond between charged particles

Mark Scheme Page 2 of 5	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$	Version Final Mark Scheme	
Question	Expected Answers			Marks	Additional Guidance
1 (c) (i)	Fe goes from +2 to +3 which is oxidation (1); S goes from +6 to +4 which is reduction (1)			2	If no other marks awarded allow one mark for correct identification of all oxidation numbers or ecf from wrong oxidation numbers if both oxidation and reduction identified
(c) (ii)	Idea of use of $(2 \times)+929-826-297-396$ / correct use of molar ratios (1);$=(+) 339(1)$			2	Allow full marks for correct answer with no working out Allow one mark for -590 / - 339 / 3377 / - 3377 Unit not needed
(iii)	```(Moles of \(\mathrm{SO}_{2}=0.00385\) so) moles of \(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=0.00771\) (1); \(M_{\mathrm{r}}\) of \(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=277.9\) (1); (So mass \(=2.14\)) and \(\%=76.9 / 77.0\) (1) Or \(M_{\mathrm{r}}\) of \(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=277.9\) (1); (Moles of \(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=0.01\) so) moles of \(\mathrm{SO}_{2}=\) 0.005 (1); \((\) So volume \(=120)\) and \(\%=76.9 / 77.0(1)\)```			3	Allow (Moles of $\mathrm{SO}_{2}=0.004 \mathrm{so}$) moles of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=$ 0.008 (1) Allow ecf from wrong moles and/or M_{r} of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ Allow ecf from wrong M_{r} Allow ecf from wrong moles of SO_{2} Percentage must be quoted to 3 sig figs
				$\begin{aligned} & \text { Total } \\ & =13 \end{aligned}$	

Mark Scheme Page 3 of 5	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$	Version Final Mark Scheme	
Question	Expected Answers			Marks	Additional Guidance
2 (a)	$\mathrm{MoO}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mo}(1)$			1	Ignore state symbols Allow correct multiples
(b)	$[\mathrm{Kr}] 4 \mathrm{~d}^{3}$ and $\left(\mathrm{Mo}^{3+}\right)$ has an incomplete filled dsubshell (1)			1	Allow has incomplete 4d sub-shell / incomplete d orbital Ignore errors in [Kr]
(c)	Correct molar ratio of Mo and Cr species $\begin{equation*} 3 \mathrm{MoO}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{MoO}_{4}^{2-} \tag{1} \end{equation*}$ But $\begin{aligned} & 3 \mathrm{MoO}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+ \\ & 3 \mathrm{MoO}_{4}^{2-} \\ & \text { (2) } \end{aligned}$			2	Ignore $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$ and e^{-}in equation For the second mark the H^{+}and $\mathrm{H}_{2} \mathrm{O}$ must be cancelled down to 2 and 1
(d) (i)	$\mathrm{K}_{2} \mathrm{FeO}_{4}(1)$			1	
(ii)	Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=0.00627$ (1); Moles of $\mathrm{OH}^{-}=0.0400(1)$; $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in excess since there needs to be 0.0627 moles of OH^{-}/ evidence of working out the reagent in excess (1)			3	Allow reverse argument e.g. 0.0400 moles of OH^{-}can only react with 0.004 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Allow ecf from wrong moles
				$\begin{gathered} \text { Total } \\ =8 \end{gathered}$	

Mark Scheme Page 4 of 5	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$	Version Final Mark Scheme	
Question	Expected Answers			Marks	Additional Guidance
3 (a)	```Ca+}(\textrm{g})->\mp@subsup{\textrm{Ca}}{}{2+}(\textrm{g})+\mp@subsup{\textrm{e}}{}{-}(1) atomisation (of oxygen) / \DeltaH Hat (1); Second electron affinity (of oxygen) / \DeltaH ea2 (1); Ca(s) }->\textrm{Ca}(\textrm{g})(1```			4	State symbols needed
(b)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ - inter attraction betw $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$ temporary dip interactions / Correct comp intermediate (1)	e bonding ions (1); der Waals induced dip olecular fo of strength stronger th	tatic ry dipole uced dipole se.g. der Waals	3	Allow giant ionic / giant intermediate Allow simple molecular Comparison of forces dependent on forces being correct
(c)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ does not dissolve / does not react (1); AlCl_{3} reacts $/ \mathrm{AlCl}_{3}$ is hydrolysed / polarisation of water molecules by aluminium ion (1) AlCl_{3} - gives a colourless solution / misty fumes / steamy fumes / pH 1 to 6 (1)			3	Allow mark from an appropriate equation Allow acidic solution / gets hot / exothermic
(d) (i)	Correct dot and cross diagram (1)			1	Ignore lack of charge Ignore inner shells
(ii)	Tetrahedral / correct drawing of tetrahedral (1); Has four bond pairs / repulsion between four bond pairs / four bonds repelling (1)			2	Allow ecf from wrong dot and cross diagram for a $\mathrm{PCl}_{4}{ }^{+}$ species
				$\begin{gathered} \hline \text { Total } \\ 13 \\ \hline \end{gathered}$	

Mark Scheme Page 5 of 5	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$	Version Final Mark Scheme	
Question	Expected Answers			Marks	Additional Guidance
4	Bonding in complex ion Ligand donates an electron pair / copper accepts electron pair (1); Dative (covalent) / coordinate (1)			2	Allow even if not a copper complex Allow marks from a diagram
	Shape of complex ion Correct name or formula of copper complex ion (1); Correct shape of a copper complex either by name or clear drawing with indication of three dimensions (1); Correct bond angle (1) - e.g. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is octahedral and 90° - e.g. $\left[\mathrm{CuCl}_{4}\right]^{2-}$ is (flattened) tetrahedral and bond angle between 90° and 110°			3	Allow last two marking points if not a copper complex
	Ligand substitution Correct example of ligand substitution reaction involving a copper complex (1); Correct equation (1); Idea of one ligand being swapped with another one (1)			3	Allow all marks from an equation Allow last two marking points if not a copper complex
	Colour Correct colour of two copper complex ions one mark for each correct colour			2	If one colour given is wrong max 1 If two colours wrong score 0
	Quality of Written Communication. Answer must address the question set and include at least three of the following terms in the correct context - Electron / lone pair - Covalent - Dative - Coordinate - Octahedral - Tetrahedral - Square planar - Molecule			1	
				$\begin{aligned} & \text { Total } \\ & =11 \end{aligned}$	

2815/02 Biochemistry

Question	Expected Answers	Marks
$1 \quad \text { (a)(i) }$ (ii)	(α)-Helix in the spiral region \checkmark (β)-Sheets where there are parallel strands of amino acids \checkmark Hydrogen bonds Diagram using NH and CO of amide/peptide groups : $\mathrm{CO}---\mathrm{HN} \checkmark$. The link must be dotted or dashed.	[2] [2]
(b)	Two of: - lonic/electrostatic attraction using the $\mathrm{N}+/$ positive charge \checkmark. - \quad Van der Waals (Instantaneous dipole/induced dipole) using the (flat/ aryl/ imidazole) ring or CH_{2} or $\mathrm{C}=\mathrm{C} \checkmark$. - Hydrogen bonding using either NH \checkmark.	[2]
(c)(i) (ii)	Heat energy causes weak/ R-group/sidechain interactions to break \checkmark. Accept a specific example eg hydrogen bonding. Heavy metal ions react with SH groups/ interfere with disulphide bridges/disrupt van der Waals (Instantaneous dipole/induced dipole) forces/ react with COO^{-}groups \checkmark	[2]
2 (a)	OHCCHOHCHOHCHOHCHOHCH 2 OH \checkmark for the aldehyde/CHO \checkmark for the rest. Allow the rest mark if -COOH or a midchain ketone are used instead of aldehyde. Do not allow missing H atoms. Vertical versions acceptable, as are displayed structures. Do not expect stereochemistry.	[2]

(b)

3	Find six of the following points: Structure(max 4) $\sqrt{ } \sqrt{ } \sqrt{ }$ - (1)Cellulose molecules have $1 \beta-4$ glycosidic link, amylose 1α-4.(Ignore any reference to 1-6.) (2)Both are polymers of glucose (3) Cellulose molecules are linear/have straight chains. (4)Amylose has a helical structure.(Branched woukd be CON) - (5)Intermolecular hydrogen bonding holds cellulose together/ hydrogen bonding holds cellulose molecules close together. A diagram can help. - (6)Hydrogen bonding holds amylase helix together A diagram can help. Function(max 2) - (7)For amylose accept one of the following: Easily hydrolysed to glucose when needed for energy Compact- does not take up much space (in cell) Insoluble- cannot leave cell Stores much glucose with minimum osmotic effect Not involved in immediate cell metabolism (8) Cellulose molecules form strong fibres The QWC mark should be awarded to a well organised answer which shows understanding of three of the following : hydrogen bonding, helix, linear, glycosidic link , $\alpha \beta$, link between structure and function. The answer may be presented as a table.	[7]
4 (a)	 A link between stearic acid and glycerol \checkmark Link between phosphate and glycerol \checkmark Link between serine and phosphate. \checkmark Accept OOC. Allow up to two missing H atoms attached to C on glycerol but not extra OH groups.	[3]
(b)	van der Waals /instantaneous dipole-induced dipole forces Do not accept' hydrophobic'.	[1]

(c)(i) (ii)	one mark for correct sodium oleate \checkmark. Balance , Allow partial hydrolysis or hydrolysis using water giving oleic acid for the balancing mark.. Making soap/saponification.	[2]
(d)	- Triglycerides contain a higher proportion of carbon and hydrogen than carbohydrates/ carbohydrates are already partally oxidised/ more C to O or O to H bonds present in carbohydrates \checkmark. - Energy comes from formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O} / \mathrm{CO}$ and HO bonds \checkmark. (accept oxidation of C and H releases energy)	[2]
$\begin{array}{\|lc\|} \hline 5 & \text { (a) } \\ & \text { (i) } \\ & \text { (ii) } \end{array}$	They should identify: Phosphate attached to C3 and C5 \checkmark Base attached to C1 \checkmark	[2]
(b)(i)	Chain of nucleotides/chain of sugar-phosphate units \checkmark Formed by elimination of water between nucleotide units/sugarphosphate units/molecules/monomers. $\sqrt{2}$	[2]
(ii)	Hydrogen bonding \checkmark between bases $A T$ and $C G \checkmark$.This may be given as a diagram. or for second mark NH...N or NH... O Alternatively accept: van der Waals' forces \checkmark between the (nonpolar aromatic) rings on the bases $\sqrt{ }$	[2]

(c)	Four marks from: Four points from the following. $\checkmark \checkmark \checkmark \checkmark$.AW. - (1Double helix unwinds with breaking of hydrogen bonds/ van der Waals/mention of enzyme helicase. - (2The complementary base pairs are CG and AT. - (3)Exposed bases become hydrogen bonded to bases on free nucleotides/ mention of nucleotide triphosphates/ both strands act as templates for replication - (4)Incoming nucleotides attached to growing chain by a (phosphate) ester link / the joining of each nucleotide is catalysed by DNA polymerase - ©Semi-conservative replication/ each of the two resulting double helices contains one original strand and one newly synthesised strand No credit for pyrophosphate formation and hydrolysis. If candidates include RNA in their answer, award a maximum of 3 marks. Allow the marks for diagrams as long as the meaning is clear.	[4]

2815/03 Environmental Chemistry

Question	Expected Answers	Marks
1 (a)(i)	Methane/ $\mathrm{CH}_{4 .}$,	[1]
(ii)	Anaerobic/without oxygen \checkmark	[1]
(b)(i)	Any two of the following @ \checkmark veach.: Plastics: PVC/polythene/polypropylene/ etc Textiles: nylon/terylene/etc. Or cellulose in cotton/protein in wool/ Paper/cardboard: cellulose Plant material: cellulose/starch/etc AW throughout. Allow sensible alternatives	[4]
(ii) (iii)	Reduces bulk of waste/need for landfill sites To minimise formation of dioxins, or of HCl from PVC.	[1] [1]
(c)	Batteries. Other sensible alternatives. Not pencils. \checkmark	[1]
$2 \quad \text { (a)(i) }$	 $\mathrm{SiO}_{4} \checkmark$ Their diagram should show four oxygens attached to the central Si. The correct shape of the unit is tetrahedral $\sqrt{ }$ Units share \checkmark three of their four oxygen atoms (with neighbouring units on the sheet.)	[4]

(ii)		[2]
(iii)	Links between sheets within the layer are due to the sharing of the free O atoms $\sqrt{ } / \mathrm{Si}-\mathrm{O}-\mathrm{Al} /$ comment on covalent bonds \checkmark.	[2]
(b)(i)	Any one e.g. $K^{+r \cdot}$ Must show the correct charge. Accept $\mathrm{NH}_{4}^{+}, \mathrm{Mg}^{2+}$	[1]

\begin{tabular}{|c|c|c|}
\hline (ii) \& They have a larger available (internal) surface area \(\checkmark\). \& [1] \\
\hline \begin{tabular}{l}
(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Five marks from: \(\checkmark \checkmark \checkmark \checkmark \checkmark\) \\
(1)Dissolved \(\mathrm{CO}_{2}\) produces carbonic acid \\
(2) Equation \(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{CO}_{3}\) \\
(3)Sulphur dioxide reacts with water and oxygen \(\checkmark\) \\
(4) to make sulphuric acid .(Allow 1 mark only here for making sulphurous acid instead.) \\
(5)Equation \(\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+0.5 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{SO}_{4}\) (Allow \(\mathrm{H}_{2} \mathrm{SO}_{3}\) one.) \\
- © Equation for dissociation, partial or complete of carbonic, sulphuric or sulphurous acids \\
(7) Carbonic acid weak, sulphuric/ous acid stronger \\
QWC Well organised response which includes at least one balanced equation and correct use of two of the following terms: dissolved/solution, oxidation/oxidised, weak acid. \\
Boiling temporary hard water precipitates/makes insoluble \(\checkmark \mathrm{CaCO}_{3} \checkmark\). Symbol equation \(\checkmark\). (Equation + state symbols \(\checkmark \checkmark \checkmark\))
\[
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
\] \\
Ion exchange \(\checkmark\). Calcium ions exchanged for sodium/hydrogen ions. \(\checkmark\) or equation, eg \(\mathrm{Ca}^{2+}(a q)+\) \(\mathrm{Na}_{2} \mathrm{R}(\mathrm{s})=\mathrm{CaR}(\mathrm{s})+2 \mathrm{Na}^{+}(\mathrm{aq})\) \\
Accept use of sodium carbonate \(\checkmark\) with equation \(\checkmark\).
\[
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaSO}_{4}=\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{Na}_{2}
\] \\
\(\mathrm{SO}_{4}\) \\
Orionic \(\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})=\mathrm{CaCO}_{3}(\mathrm{~s})\)
\end{tabular} \& [5]

[1]

[3]
[2]

\hline (c) \& | It forms $\mathrm{HOCl} /$ chlorate(I)ion/equation \checkmark $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HCl}+\mathrm{HOCl}$ |
| :--- |
| This is an oxidising agent \checkmark which kills bacteria 'Kills bacteria' with an attempt at a chemical explanation \checkmark |
| 'Kills bacteria' without such an attempt earns no marks). | \& [2]

\hline 4 (a) \& | Accept any three of $\checkmark \checkmark \checkmark$ |
| :--- |
| - Increased by respiration |
| - Decreased by photosynthesis |
| - Varied by equilibrium(dissolving/evaporation) at water surface |
| - Combustion (of fossil fuels/forests/wood/coal etc). |
| - Emission from volcanoes | \& [3]

\hline
\end{tabular}

(b)(i)	They absorb infrared radiation \checkmark which causes the bonds in the molecule to vibrate (more) \checkmark. IR then radiated back to Earth \checkmark.	[3]
(ii)	Any two of: - Concentration - Residence time - Ability to absorb IR (in the water window) \checkmark.	[2]
(c)	Any five marks from: - UV radiation - Causes CFCl_{3} to break down producing Cl radical $\mathrm{CFCl}_{3}=\mathrm{CFCl}_{2}+\mathrm{Cl}$ - $\quad \mathrm{Cl}$ radical reacts with ozone $\mathrm{Cl}+\mathrm{O}_{3}=\mathrm{ClO}+$ O_{2} - ClO reacts with O atom $\mathrm{ClO}+\mathrm{O}=\mathrm{Cl}+\mathrm{O}_{2}$ - Mention of chain reaction or regeneration of Cl - O produced by photolysis/decomposition of $\mathrm{O}_{3} /$ $\mathrm{NO}_{2} / \mathrm{O}_{2}$ Accept a description in words instead of one only of the above equations. Termination reactions are not required.	[5]

2815/04 Methods of Analysis and Detection

Question	Expected Answers	Marks
1a i	$\mathrm{C}_{3} \mathrm{H}_{7}^{35} \mathrm{Cl}^{+} \downarrow$ $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{37} \mathrm{Cl}^{+} \checkmark$ (penalise lack of + charge only once on the paper)	2
ii	3:1 \quad,	1
b	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} / \mathrm{CH}_{2} \mathrm{Cl}^{+} / \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}^{+} \checkmark$ Do not allow $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$	1
c i	CO_{2}-calculation \checkmark $\mathrm{C}_{3} \mathrm{H}_{8}$-calculation \checkmark	2
ii	Exactly the same M_{r} / the same number of atoms of each element	1
		7

Question	Expected Answers	Marks
2a i	mobile phase = solvent/water stationary phase $=$ solid $/ \mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$	2
ii	mark consequentially to (a) (i) If stationary phase $=\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ - adsorption in stationary phase \checkmark separation depends on attraction of solutes for the stationary phase. / relative solubility in solvent or If stationary phase = solvent trapped in cellulose partition \checkmark separation depends on relative solubility between the mobile and the stationary phases.	2
iii	Ninhydrin / iodine \checkmark allow appropriate locating agent e.g. uv	1
b	run in one solvent \checkmark rotate through 90° and run in a different solvent \checkmark More effective as it is highly unlikely that any two solutes will have the same R_{f} values in two different solvents \checkmark	3
c i	$3 \checkmark$	1
ii	(1.1/3.9 = 0.28) range of 0.23-0.33 \checkmark	1
d	$\mathrm{pH}=2$	1
e	order from left to right is $\mathbf{C}-\mathbf{D}-\mathbf{B}-\mathbf{E}$ correct order scores all 3 B remains at starting point scores 1 E moves towards negative scores 1 C \& D correct scores 1	3
		14

Question	Expected Answers	Marks
3a	electron falls from high level to a lower levels \& emits (electromagnetic) radiation	1
b i	electrons fall from higher levels back to same lower levelv	1
ii	electrons fall back to different lower levels \checkmark	1
c i	$5.08 \times 10^{14} \checkmark \quad \mathrm{~s}^{-1} / \mathrm{Hz} \checkmark$	2
ii	$\begin{aligned} & \text { ecf on (i) } \\ & E=h f L \checkmark \\ & E=203000 / 2.03 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} \checkmark \end{aligned}$ $3 \text { Significant figures } \checkmark$	3
d	$\begin{aligned} & \text { uses graph to obtain } \mathrm{Na}^{+} \text {content }=550 \mu \mathrm{~g} \checkmark \\ & \times 100=55000 \mu \mathrm{~g} \quad \text { ecf } \\ & 5.5 \% \checkmark \text { ecf } \end{aligned}$	3
		11

Question	Expected Answers	Marks
4a	```Calculates empirical to be \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\) - must see working (\%/Ar) \(\checkmark\) empirical mass \(=44 \checkmark\) \(M_{\mathrm{r}}=88\) hence molecular formula is \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \checkmark\)```	3
b	infra-red: identifies $\mathrm{C}=\mathrm{O}$ at about $1700 \mathrm{~cm}^{-1} / 1680-1750 \checkmark$ identifies C-O at about $1100 \mathrm{~cm}^{-1} / 1000-1300 \checkmark$ identifies O-H at about $3500 \mathrm{~cm}^{-1} / 3230-3550 \checkmark$ nmr: Four different H environments \checkmark $\delta=1.4 \mathrm{CH}_{3}$ split into a doublet showing it to be next to a CH $\delta=2.2 \mathrm{CH}_{3}$ next to a $\mathrm{C}=\mathrm{O}$ singlet - no Hs on the adjacent $\mathrm{C} \checkmark$ $\delta=3.7$ due to $\mathrm{OH} \checkmark$ $\delta=4.2$ due to H next to CH_{3} because it is split into a quartet \checkmark identifies compound \mathbf{F} as 3-hydroxybutanone/	9
QWC	Uses three correct scientific terms such as: fingerprint region, wavenumber, abundance, chemical shift, splitting patterns, environment, doublet, singlet, quartet, , absorptions, peak or correct units such as $\mathrm{cm}^{-1}, \delta, \mathrm{ppm}$,	1
		13

2815/06 Transition Elements

Mark Scheme Page 1 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	```= alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit ___ (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument```			
Question	Expected Answers			Marks
1 (a) (i)	Pink to blue			1
(ii)	Tetrahedral			1
(iii)	Ligand substitution Accept ligand exchange			1
(b)	 Lone pairs shown on both nitrogens Accept $\mathrm{H}_{2} \mathrm{~N}$ - with lone pair shown on nitrogen atom Accept a complex if ligand is shown as a displayed formula			1
(c) (i)	Optical			1
(ii)	 Accept three loops Accept other correct ways of showing 3-d structure Ignore charges or lack of charge			2 Total: 7

(c) (i)	Emf $=(+) 0.23 \mathrm{~V}$	1
(ii)	$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$	
Electrons must be cancelled		
Accept multiples	1	

(c)	In octahedral complexes d-electrons are repelled/made less stable by ligand lone pairs or, ligands approach along x, y and z axes AW Repulsion/interaction between ligand 'lone pair' and axial orbitals is greater than for inter-axial orbitals	
(d)	Idea of different energy gaps Idea of different frequency / wavelength / colour of visible light absorbed or transmitted	1
(e)	Complex A is red-blue / violet-red / purple / magenta Complex B is violet / violet-blue / mauve / blue	1 1 Total: 10

Mark Scheme Page 4 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit _ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora \(=\) or reverse argument```			
Question	Expected Answers			Marks
4 (a)	Standard cell potential is +0.37 V Standard cell potential is positive therefore the reaction is feasible Alternative: Second equilibrium is less positive and will move from right to left supplying electrons First equilibrium will accept electrons and move from left to right so that equation as written is likely to occur.			1
(b)	Oxidation and reduction Of the same species / Cu^{+}			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	As solid / in non aqueous solvents / when not in aqueous solution			1
				Total: 5

Mark Scheme Page 5 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit __ (underlining) key words which must be used to gain credit \(\overline{\text { ecf }}=\) error carried forward AW = alternative wording ora = or reverse argument```			
Question	Expected Answers			Marks
5 (a)	Zinc (Accept Zn)			1
(b)	On titration, solution changes from (dark) brown to straw coloured /becomes lighter / straw coloured / accept colour starts to disappear Starch indicator added close to end point / when straw coloured End point is when blue/black colour disappears to leave 'off white' precipitate / solid $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cul}+\mathrm{I}_{2}$ (1 mark for correct species 1 mark for balanced) $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 I^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ (1 mark for correct species 1 mark for balanced) Quality of Written Communication: One mark awarded for correct spelling, punctuation and grammar in at least two complete and relevant sentences			1 1 1 2 2 1

(c)	Moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used $=0.00378$ moles $25 \mathrm{~cm}^{3} \mathrm{Cu}^{2+}=0.00378$ moles $500 \mathrm{~cm}^{3} \mathrm{Cu}^{2+}=00756$ moles Cu^{2+} Mass of $\mathrm{Cu}=0.0756 \times 63.5=4.80 \mathrm{~g}$ $\% \mathrm{Cu}=(4.80 / 6.00) \times 100=80.0 \%$ Allow ecf on the calculation.	1

2816/01 Unifying Concepts in Chemistryl Experimental Skills 2 Written Paper

\begin{tabular}{|c|c|c|}
\hline Question \& Expected Answers \& Marks \\
\hline 1 (a) \& \begin{tabular}{l}
\[
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOC} \mathrm{CO}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \downarrow
\] \\
Square brackets required. Do not award if \(p\) used anywhere
\end{tabular} \& [1] \\
\hline (b)(i) \& \begin{tabular}{l}
\begin{tabular}{lcccc}
component \(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\) \& \(\mathrm{H}_{2} \mathrm{O}\) \& \(\mathrm{CH}_{3} \mathrm{COOHC}_{2} \mathrm{H}_{5} \mathrm{OH}\) \\
initial amount \(/ \mathrm{mol}\) \& 8.0 \& 5.0 \& 0.0 \& 0.0 \\
F amount \(/ \mathrm{mol}\) \& 6.0 \& 3.0 \& 2.0 \& 2.0 \\
\& \(\checkmark\) \& \& \(\checkmark\) \&
\end{tabular} \\
Allow 6, 3, 2 and 2 (ie without ' .0 ') \\
moles of component \\
total number of moles \\
For 'component', allow a specific example or 'substance' \\
moles of a component relative to \(O R\) compared with total number of moles \\
credit 'amount' in place of 'moles' \\
2/total moles in (i) \(=2 / 13\) OR 0.15(4) \(\checkmark\) \\
ie answer depends on total moles in (i) \\
allow 0.153846153 and any correct rounding back to 2 sig figs \\
If \(2 / 13\) is shown, then ignore anything that follows.
\[
\begin{aligned}
K_{c}=\frac{2.0 \times 2.0}{6.0 \times 3.0}=4.0 / 18.0 \& =0.22222 \ldots . \\
\& =0.22 \text { (ie to } 2 \text { sig figs) } \checkmark \\
\& \text { no units OR }{ }^{\prime}-\text { OR 'none' } \checkmark
\end{aligned}
\] \\
Credit units if shown cancelled in working \\
For ECF, the values used should be the candidate values from (b)(i). \\
If \(K_{c}\) expression is incorrect, then the only acceptable ECF response is from an 'upside-down' expression.
\end{tabular} \& [2]
[2]

[3]

\hline (c) \& | equilibrium/reaction has shifted to the right/in favour of products \checkmark |
| :--- |
| forward reaction is endothermic \checkmark |
| allow 'it is endothermic' $O R$ 'the reaction is endothermic' |
| K_{c} has increased | \& [3]

\hline \& \& 11

\hline
\end{tabular}

$2 \quad \text { (a)(i) }$ (ii) (iii)	Expt 2: initial rate $=4.6 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \checkmark$ Expt 3: initial rate $=2.3 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \checkmark$ Expt 4: initial rate $=5.75 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \checkmark$ If powers of ten are not shown, then do not credit on the first occasion. Then treat as ECF. $\begin{aligned} & k=\frac{\text { rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{l}^{-}\right]} \text {OR } \frac{2.30 \times 10^{-6}}{0.020 \times 0.010} \\ & =1.15 \times 10^{-2} / 0.0115 / 0.012 \checkmark \text { units: } \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark \end{aligned}$ $\text { allow: } \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ Correct numerical value automatically gets the 1st mark also, even if values from a different experiment have been used. If an incorrect rate value is used from (a)(i), then mark 2nd mark and units mark are available (ie ECF) Overall reaction: $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$ reacts with $2 \mathrm{~mol} \mathrm{I}^{-}$and 2 mol H^{+}/ shows stoichiometry/shows mole ratio 2nd order (overall) OR 1st order wrt $\mathrm{H}_{2} \mathrm{O}_{2}$ and 1st order wrt I^{-} / rate determining step involves $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{I}^{-} \checkmark$ rate is not affected by H^{+}/ the reaction is zero order wrt H^{+}/ the rate determining step does not involve $\mathrm{H}^{+} \checkmark$ Note that ' $\left[\mathrm{H}^{+}\right]$is a catalyst' will CON this marking point. reaction must proceed via more than one step \checkmark	[3] [3] 4 marking points giving 3 max
(b)	 Allow 2 mm tolerance on 0,0	[1]

(c)

$\begin{aligned} & \mathrm{H}: \mathrm{O}: \mathrm{N}: \mathrm{C} \\ & =6.38 / 1: 51.06 / 16: 29.79 / 14: 12.77 / 12 \text { OR } \\ & =6.38: 3.19: 2.13: 1.06 \mathrm{r} \end{aligned}$	[5]
empirical/molecular formula $=\mathrm{H}_{6} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{C} \checkmark$	
Correct empirical formula automatically gets 1st mark	
$M_{\mathrm{r}}=6+48+28+12=94 \checkmark$	
$150 \mathrm{~cm}^{3}$ of solution needs $2.30 \times 150 / 1000=0.345 \mathrm{~mol} \checkmark$ mass required $=94 \times 0.345=32.43 \mathrm{~g} \checkmark$	
Upside down expression can gain final 4 marks	
ECF from 1st marking point gives $\mathrm{C}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{H} \checkmark$	
$M_{r}=147 \checkmark$	
$150 \mathrm{~cm}^{3}$ of solution needs $2.30 \times 150 / 1000=0.345 \mathrm{~mol} \checkmark$ mass required $=147 \times 0.345=50.715 \mathrm{~g}$ V	
(or ECF from 2 steps above)	
Use of atomic numbers can gain final 4 marks	
ECF from 1st marking point gives $\mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{C} \checkmark$	
$M_{r}=91 \checkmark$	
$150 \mathrm{~cm}^{3}$ of solution needs $2.30 \times 150 / 1000=0.345 \mathrm{~mol} \checkmark$ mass required $=91 \times 0.345=31.395 \mathrm{~g}$	
(or ECF from 2 steps above)	
For all possible routes, allow rounding back to 2 sig figs in final answer	

3 (a)	partly dissociates/ionises \checkmark proton $/ \mathrm{H}^{+}$donor \checkmark	[2]
(b)	$\begin{aligned} & \left(K_{\mathrm{w}}=\right)\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \checkmark \text { state symbols not needed } \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-12.72}=1.91 / 1.9 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark} \\ & {[\mathrm{KOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{1.91 \times 10^{-13}}} \\ & =0.0524 \mathrm{~mol} \mathrm{dm} \\ & \text { Accept any value between } 0.052 \text { and } 0.050746 \text { (answer } \\ & \text { depends on degree of rounding for } \mathrm{H}^{+} \text {but } 2 \text { sig fig minimum.) } \\ & \text { Alternatively via pOH } \\ & \text { pOH }=14-12.72=1.28 \checkmark \\ & {[\mathrm{KOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-\mathrm{pOH}}=0.0524 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark} \\ & \text { (calculator: } 0.052480746) \end{aligned}$	[1] [2]
(c)	$\begin{aligned} & n(\text { vitamin } \mathrm{C})=0.500 / 176=2.84 \times 10^{-3} \checkmark \\ & {[\text { vitamin } \mathrm{C}]=1000 / 125 \times 2.84 \times 10^{-3}=0.0227(2) \mathrm{mol} \mathrm{dm}^{-3}} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]} \checkmark=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]\right) \text { OR } \sqrt{ }\left(6.76 \times 10^{-5} \times 0.0227\right) \checkmark} \\ & =1.24 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \end{aligned}$ (must involve a square root of two numbers multiplied together) $\mathrm{pH}=-\log \left(1.24 \times 10^{-3}\right)=2.91$ Accept a calculated value between 2.90 to 2.91 Common incorrect responses: 4.41 would score 5 marks (uses cm^{3} instead of dm^{3}) 5.91 would score 5 marks (conversion multiplies by 1000 instead of dividing by 1000) 5.81 would score 5 marks (no square root) 2.1 would score 1 mark in isolation ($\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{a}}$)	[6]
		13

4	Buffer A buffer solution minimises/resists/opposes pH changes \checkmark Do not allow 'keeps pH constant'. How a buffer works Mark this part for any of the possible buffer systems above. equilibrium: HA $\mathrm{H}^{+}+\mathrm{A}^{-} \checkmark$ HA reacts with added alkali $/ \mathrm{HA}+\mathrm{OH}^{-} \rightarrow /$ added alkali reacts with $\mathrm{H}^{+} / \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ $\rightarrow \mathrm{A}^{-} /$Equil \rightarrow right \checkmark A^{-}reacts with added acid $/\left[\mathrm{H}^{+}\right]$increases \checkmark \rightarrow HA / Equil \rightarrow left \checkmark Components methanoic acid $/ \mathrm{HCOOH} \checkmark$ sodium methanoate $/ \mathrm{HCOONa} \checkmark$ ECF: salt of weak acid chosen above. Do not allow a carboxylate ion Quality of Written Communication A correct equation and a correct chemistry sentence related to buffers \checkmark Write Q by equation and tick through QWC prompt	$[5]$
	[2]	

5 (a)	stage 1 $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2} \checkmark$ stage 2 $2 \mathrm{CaO}+5 \mathrm{C} \longrightarrow 2 \mathrm{CaC}_{2}+\mathrm{CO}_{2} /$ $\mathrm{CaO}+3 \mathrm{C} \longrightarrow \mathrm{CaC}_{2}+\mathrm{CO} \checkmark$ stage 3 $\mathrm{CaC}_{2}+\mathrm{N}_{2} \longrightarrow \mathrm{CaCN}_{2}+\mathrm{C} \checkmark$ ignore state symbols. These are the only acceptable equations. For stage $2, \mathrm{O}_{2}$ is not an acceptable product.	[3]
(b)	OR 'dot-and-cross' correct except for extra two electrons \checkmark two extra electrons shown as dots, crosses or as other symbols so that there are 8 electrons around each atom with a 2 - charge shown \checkmark	[2]
(c)	$\begin{aligned} & \mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NH}_{3} / \\ & \mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}+2 \mathrm{NH}_{3} / \\ & \mathrm{CaCN}_{2}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2}+2 \mathrm{NH}_{3} / \\ & \mathrm{CaCN}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaO}+\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} / \\ & \mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} / \\ & \mathrm{CaCN}_{2}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaO}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} / \\ & \mathrm{CaCN}_{2}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \end{aligned}$ or other correct alternative. Products must be compounds, not elements such as N_{2} and $\mathrm{H}_{2}, \mathrm{O}_{2}$, Ca and C. Equation that forms a sensible calcium compound, eg $\mathrm{CaCO}_{3}, \mathrm{CaO}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \checkmark$ complete balanced equation (see above for examples) $\mathrm{CaCO}_{3} / \mathrm{CaO} / \mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} / \mathrm{NH}_{3}$ react with acid soils $\mathrm{NH}_{3} /\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} / \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ acts as fertiliser \checkmark	[4]
(d)	$\begin{aligned} & \mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} / \\ & \mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CaO}: \checkmark \\ & M\left(\mathrm{CaCO}_{3}\right)=100.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark \text { Not } 100 \\ & n\left(\mathrm{CaCO}_{3}\right)=20 \times 10^{3} / 100.1=199.8 \mathrm{~mol} \checkmark \text { allow } 200 \mathrm{~mol} \end{aligned}$ Same number of moles $\mathrm{C}_{2} \mathrm{H}_{2}$ formed, volume $\mathrm{C}_{2} \mathrm{H}_{2}=199.8 \times 24=4795.2 \mathrm{dm}^{3} \checkmark$ allow $4800 \mathrm{dm}^{3}$ Calc value $=4795.204795 \mathrm{dm}^{3}$ $\begin{aligned} & 2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{C}_{2} \mathrm{H}_{2}+21_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} / \\ & 2 \mathrm{C}_{2} \mathrm{H}_{2}+31 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{C}_{2} \mathrm{H}_{2}+11_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	[5]
		14

2816/03 Unifying Concepts in Chemistryl Experimental Skills 2 Practical Examination

Skill P 16 marks maximum (out of 19 available)

A titration (T) must be used as one method.
For the second method, several alternatives are available, including:

- $\quad P$ (Precipitation)
- G (Gas Measurement
- $\quad N$ (Enthalpy of neutralisation)

A number of other methods, such as a "thermometric titration" and neutralisation followed by evaporation, were also credited

Titration method (T) - $\mathbf{7}$ marks

T1 Controlled dilution of concentrated NaOH provided
Use of pipette, distilled water and [any] volumetric flask are required for this.
T2 Uses dilution volumes that produce [NaOH] between 0.020 and $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ and states correct concentration when diluted and simple justification (eg by ratio of volumes) or related safety comment

Do not allow a volume less than $5.0 \mathrm{~cm}^{3}$ (or "awkward to measure" volumes)
T3 Titrate with specified acid of suitable stated concentration and the chemical equation for the reaction selected

T4 Statement of use of pipette and burette in titration procedure
Acid and alkali may be used either way round in the apparatus
T5 Obtain two consistent/ concordant titres (or within $0.1 \mathrm{~cm}^{3}$)
T6 Named indicator and correct final colour
Phenolphthalein is colourless (if acid in burette) or pink (not purple) (alkali in burette) Many other indicators are acceptable if a strong acid is used.

T7 Sketched pH curve to justify choice of indicator.
Sketch must show indicator "change range" within sudden pH change.

Precipitation method (P) - $\mathbf{8}$ marks

P1 Pipette a known/specified volume of the NaOH provided
P2 Add excess of a solution of a suitable reagent for the precipitation reaction and this ensures that all of NaOH reacts

Any soluble salt of $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ni}$ or Fe (etc) is suitable.
P3 Equation/ionic equation for reaction, with state symbols
eg $\mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$
P4 Calculate [minimum] mass of salt to be added to NaOH
Calculation does not need to allow for mass of water of crystallisation

P5 Filter mixture using pre-weighed filter paper
P6 Two accuracy precautions (from the six below)

- stir or swirl mixture of solutions [to ensure complete reaction]
- use distilled water to transfer all traces of precipitate [from beaker] into filter paper
- use of reduced pressure/Buchner filtration
- use fine/ high grade filter paper (or multiple thickness)
- wash residue [while on filter paper] with distilled water
- repeat whole experiment to obtain consistent results

P7 Dry residue in an oven/ hot cupboard/ desiccator and re-weigh to constant mass
P8 Specimen calculation of $[\mathrm{NaOH}]$ from mass of precipitate/residue obtained
Calculation must include correct M_{r} value eg $\mathrm{Cu}(\mathrm{OH})_{2}=97.5$

Gas collection method (G) - 8 marks

G1 Use powdered zinc/aluminium with undiluted/2M NaOH
G2 Valid equation for the reaction chosen
$2 \mathrm{Al}+2 \mathrm{NaOH}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}+3 \mathrm{H}_{2}$ or $\mathrm{Zn}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{Zn}(\mathrm{OH})_{4}+\mathrm{H}_{2}$
or $2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
or $\mathrm{Zn}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
or $2 \mathrm{Al}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}_{3} \mathrm{AlO}_{3}+3 \mathrm{H}_{2}$
or $2 \mathrm{Al}+6 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}_{3} \mathrm{Al}(\mathrm{OH})_{6}+3 \mathrm{H}_{2}$
G3 Justify volume of NaOH by calculation, so that collecting vessel is not over-filled
G4 Calculate mass of Al or Zn needed and states that it is used in excess.
G5 Diagram showing apparatus used:
flask with gas collection in a gas syringe/measuring cylinder/inverted burette
G6 Description includes the three required measurements:

- the volume of NaOH using a pipette/ burette
- the mass of Al or Zn
- the volume of gas collected when fizzing ceases/syringe stops moving

G7 An "inner tube" (or equivalent precaution) containing one reagent is needed to keep reagents apart or prevent premature reaction/gas loss.

G8 Calculation of $[\mathrm{NaOH}]$ from volume of gas collected

Enthalpy of neutralisation method (N) - 8 marks

N1 Measure 2 M NaOH solution with a pipette/burette
N2 Add measured excess (+ reason) of specified acid from burette/ pipette
Reason: to ensure that all NaOH reacts/ is neutralised
N3 Calculation to justify [minimum] volume (or concentration) of acid selected
N4 Measure initial temperatures of both solutions
and measure maximum temperature reached when mixed/ after reaction
N5 Precautions: stir mixture and use a plastic cup, calorimeter or a vacuum flask
N6 Repeat whole experiment and take mean of temperature rise or until consistent temperature rise obtained

N7 Calculation of the heat change (with unit)
The sum of the volumes of the two solutions must be used in $m \times s \times \delta T$
N8 Comparison with enthalpy change of neutralisation for 1 mole ($\left.\Delta H_{\text {neut }}\right)$ and calculation of the concentration of NaOH

Candidate must refer to use of data source for value of $\Delta H_{\text {neut }}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Safety, sources and qwc (S) - 4 marks
S1 Risk assessment for sodium hydroxide in the procedure chosen
NaOH is corrosive: wear gloves or face shield when handling/pouring. or NaOH is corrosive: wash spillages with plenty of water

S2 Two sources quoted in the text or at end of Plan.

- Book references must have chapter or page numbers
- Internet reference must go beyond the first slash of web address
- Accept one reference to a specific "Hazcard"

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Candidate makes no more than 5 different types of error in legibility, spelling, punctuation or grammar.

S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits $450-1050$ words?
- Is scientific language, including units, used correctly?
- \quad Are the descriptions logical and without lots of irrelevant or repeated material?

Practical Test (B)

Part 1 (page 3) - 5 marks

Four mass readings, listed and clearly labelled
All readings quoted to 2 dp (or 3 dp consistently) and unit (g) given for each
Two accuracy marks for mass loss are awarded relative to Supervisor's results.
Mass loss $\left(\mathrm{CO}_{2}\right)=$ readings (1+2-3-4)
Candidate's mass loss is within $\mathbf{0 . 1 0} \mathbf{g}$ (incl) of supervisor. award 2 marks
Candidate's mass loss is within $\mathbf{0 . 2 5} \mathbf{g}$ (incl) of supervisor. .award 1 mark

Acid spray is harmful to eyes or acid spray is irritant

Part 2 (page 4) - 7 marks

13 readings of maximum temperature shown in table
All readings must be recorded to nearest 0.0 or 0.50 C , as instructed on paper.
Initial reading shown $(\mathrm{V}=0)$ at a "sensible" room temperature (within 2.0 oC of supervisor) and readings show a continuous increase to a max temperature then a continuous fall

There are 5 accuracy marks awarded from the results table (not from the graph)..
Volume of acid added for highest temp recorded is same as supervisor $\rightarrow \mathbf{2}$ marks
Award 1 mark if volume of acid added for maximum is within 2.0 cm 3 of supervisor Maximum temperature rise recorded is within 0.5 oC of supervisor's $\rightarrow \mathbf{3}$ marks

Maximum temperature rise is within 1.0 oC of supervisor's $\boldsymbol{\rightarrow} \mathbf{2}$ marks
Maximum temperature rise is within 2.0 oC of supervisor's $\boldsymbol{\rightarrow} \mathbf{1}$ mark

Part 3 - 10 marks
[Page 5-5 marks]
(a) Graph axes labelled with names/symbols and units and temp as y-axis

Sensible uniform scales for both axes
Plotted points must use at least half of the large squares (7x5)
Points plotted correctly (within half of a small square)
The LHS will be a curve - allow curve or line for RHS, if it is the best fit.
Two lines/curves show a distinct intersection (not rounded at maximum)
[Page 6-5 marks]
(b) Maximum temperature reached, read from graph to 1 d.p.

Answer must be given to 3 sig fig and be correct to nearest 0.50 C (or closer)
(c) Suitable volume of sulphuric acid, \mathbf{G}, for neutralisation volume chosen

For a plateau graph, the middle of the plateau must be selected
(d) LHS: as more acid is added and more reacts, more heat is produced

MAX: all alkali neutralised/reacted [so maximum amount of heat produced]
RHS: cold acid added cools the solution down

Part 4-8 marks

[Page 7-5 marks]
All answers are required to 3 significant figures.
(a) Mass loss correctly calculated (readings $1+2-3-4$)
(b) Number of moles calculated correctly from data $=$ mass loss $/ 44$
(c) $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(d) n (sulphuric acid) used $=0.5 \times$ (b) $[=0.030 \mathrm{~mol}$ approx]

This is a method mark for correct use of the 2:1 mole ratio
Answer: concentration of acid correctly calculated $=[" b " \times 0.5 \times 1000 / 25]$
[Page 8-3 marks]
(e)(i) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) No of moles of sulphuric acid used $=1 /{ }_{1000} x$ " $4 \mathrm{~d} " x$ " 3 c " (= volume at max)

Concentration of NaOH correctly calculated from candidate's answer to 4(d)
Concentration of $\mathrm{NaOH}=\left[2 \times 1000 /_{25} \times\right.$ moles of acid $\left.\mathbf{G}\right]=0.080 \times$ " $4 d$ " x "3c"

Part 5-14 marks maximum (but 15 marks possible)

[Page 9-5 marks available]
(a) 2 marks

$$
\begin{aligned}
& n\left(\mathrm{NaHCO}_{3}\right)=1.25 \times 0.025 \times 2[=0.0625 \mathrm{~mol}] \\
& \text { mass of } \mathrm{NaHCO}_{3}=2 \times 0.03125 \times 84=5.25 \mathrm{~g} \ldots \text { so } 6 \mathrm{~g} \text { is excess } \\
& \quad \text { Answer allowed to } 2,3 \text { or } 4 \text { sig fig }
\end{aligned}
$$

(b) $\mathbf{3}$ marks available (but only 2 on the question paper)

> Gives time for the reaction to finish

$$
\text { Gives time for } \mathrm{CO}_{2} \text { (not "gas") to escape from/ diffuse out of flask }
$$

Carbon dioxide is denser than air so it diffuses slowly or CO_{2} is denser than air, so mass of flask and contents would be too high
(c) Page 10-8 marks maximum (but 11 marking points)

C1 Heat is lost/transferred.....
C2by convection or escape of heat through top or by loss of acid spray or by conduction or escape through sides/bottom

C3 Use a lid on cup or use thicker plastic/ dewar flask/ lagging with insulation
C4 If both conduction and convection are specifically named, this mark can be awarded for the second corresponding accuracy precaution stated.

D1 Temperature difference between successive [maximum] readings is small or thermometer only reads to $0.5 / 1.0^{\circ} \mathrm{C}$
No mark for human errors in reading - parallax etc.
D2 Use a thermometer reading to $0.1 / 0.2^{\circ} \mathrm{C}$ or to more decimal places or use a more accurately calibrated instrument
Do not allow "digital thermometer" or similar without reference to calibration
D3 Calculation of the percentage error for any reading or rise in temperature [1]
eg $\%$ error in temp $=0.5{ }_{25} \times 100=2.0 \%$. (Allow answer $=4 \%$)
D4 An extra mark for correctly calculating \% error for a rise in temperature [1]
E1 Volumes of acid added are too small to be accurate or large percentage error in reading burette volumes [1]
E2 Calculated \% error for $2 \mathrm{~cm}^{3}$ addition $=0.05 / 2.0 \times 100=2.5 \%$. (Allow $=5 \%$) [1]
E3 Use larger additions of acid from burette and a larger volume of alkali or Use a burette with a narrower bore or use a more accurately calibrated burette [1] or Carry out a series of separate experiments with different volumes of acid
Note - The following alternative answers in the "burette strand" E are also valid (2 marks).
E4 Volumes of acid added near maximum/end point are too large [1]
E5 Add smaller volumes so that end point may be determined with more precision [1]
(d) Page 11-2 marks
Student should repeat each reading to get consistent results or procedure is unreliable since only one set of readings was taken [1]
All points on graph are close to the best fit curve/lines, so they are reliable (ora) [1]
Explicit link between correlation and reliability is needed for this mark

Grade Thresholds

Advanced GCE Chemistry (3882/7882)
June 2008 Examination Series
Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2811	Raw	60	48	42	36	31	26	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	47	40	33	26	19	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	93	84	75	66	57	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	93	84	75	66	57	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	87	76	65	55	45	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	66	58	50	42	34	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	74	65	57	49	41	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	73	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	74	67	60	53	46	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	72	64	56	49	42	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	99	89	80	71	62	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	99	89	80	71	62	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	92	82	73	64	55	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	\mathbf{U}
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 2}$	20.0	38.9	57.1	73.2	86.5	100	15165
$\mathbf{7 8 8 2}$	30.9	56.9	75.8	88.5	96.4	100	11473

26638 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

