

Chemistry

Advanced GCE A2 7882

Advanced Subsidiary GCE AS 3882

Mark Schemes for the Units

June 2008

3882/7882/MS/R/08

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
2811 Foundation Chemistry	1
2812 Chains and Rings	8
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper	21
2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination	27
2814 Chains, Rings and Spectroscopy	33
2815/01 Trends and Patterns	40
2815/02 Biochemistry	45
2815/03 Environmental Chemistry	51
2815/04 Methods of Analysis and Detection	55
2815/06 Transition Elements	59
2816/01 Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper	67
2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination	74
Grade Thresholds	80

2811 Foundation Chemistry

Qı	uestion	Expected Answers				Marks	Additional Guidance
1	а				2		
		¹¹³ In	protons	neutrons	electrons		mark by row
		¹¹⁵ In	49	64	49		mark by row
			49	66	49		
		¹¹³ In line cor ¹¹⁵ In line cor					
	b	$A_{\rm r} = 113 {\rm x} 4$.23/100 + 115	x 95.77/100 /		2	Allow one mark for $A_r = 114.9154$ with no working out
			(calculator val				Allow two marks for $A_r = 114.9$ with no working out
		= 114.9 ✓ to	o 1 decimal pla	ce			
							If a candidate uses incorrect values in 1st line, then the
							2nd mark can still be awarded if the calculated value is
							from 113.1 to 114.9 expressed to one decimal place. ie
							if %s are the wrong way round in 1st line, then an answer of 113.1 gets the 2nd mark.
	с					2	
				with	labels:		
		scattering of	f labelled electi	rons between ot			1st mark is for any symbol that is labelled an electron that is between something else: ie: between + ions, atoms, protons, nuclei, +, p, circles, etc.
							Allow: e or e⁻ with no label
							Do not allow '' with no label
			arrangement o how electrons	f labelled + ions ✓	s with some		2nd mark for labelled + ions, positive ions, cations that can be touching and must be 2-D (ie not just a row). Allow In^+ or $In+$ with charge from 1+ to 7+ NOT protons (commonest mistake)

Mark Scheme

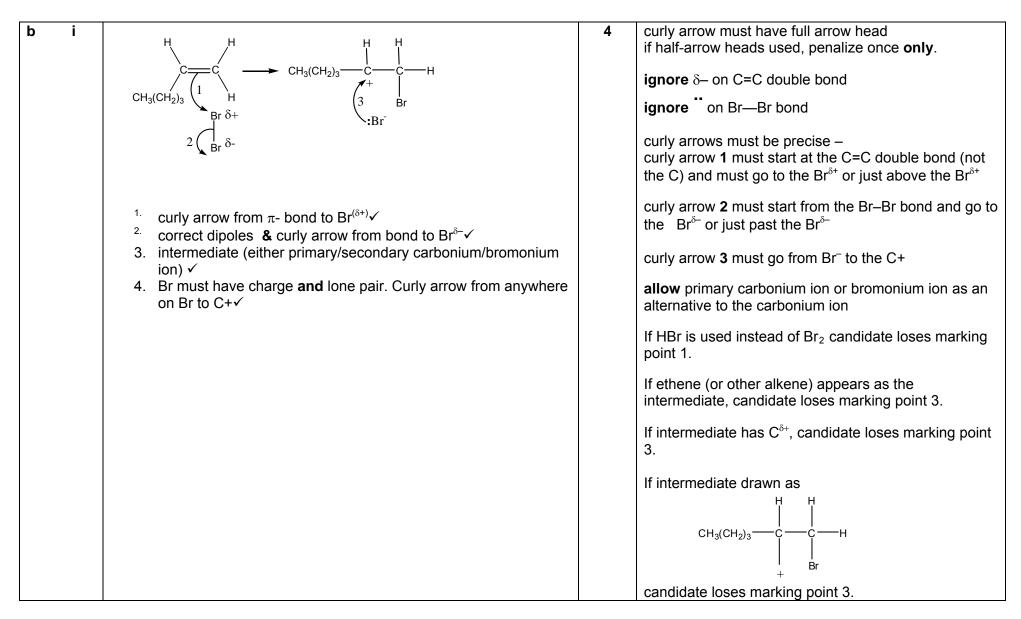
Question	Expected Answers	Marks	Additional Guidance
d i	$M_{\rm r}$ = weighted mean/average mass of a molecule \checkmark compared with carbon-12 \checkmark	3	1st mark : reference to molecule is essential Allow just 'average mass of molecule' or 'mean mass of molecule'
	1/12th (of mass) of carbon-12/ on a scale where carbon-12 is $12 \checkmark$ (but not 12 g)		alternative allowable definitions: mass of one mole of molecules \checkmark compared to $1/12^{\text{th}} \checkmark$ (the mass of) one mole/12 g of carbon-12 \checkmark <u>mass of one mole of molecules \checkmark</u> $1/12^{\text{th}} \checkmark$ the mass of one mole/12 g of carbon-12 \checkmark
ii	ratio: In : I = 23.19/115 : 76.81/127	3	Allow use of 114.9 for In (ie from answer to 1(b)) If a candidate uses atomic numbers, the ratio is still 1:3. The 2nd and 3rd marks can still be awarded by error carried forwards.
	Empirical formula: InI ₃ ✓		
	Molecular formula = $\ln_2 l_6 \checkmark$		Although unlikely, an correct answer of In ₂ I ₆ with no working should be awarded all three marks.
	OR mass In = 23.19 x 992/100 OR 230 (g) AND mass I = 76.81 x 992/100 OR 762 (g) ✓		If candidate shows inverse for ratios: ie In : I = $115/23.19 : 127/76.81$ then the candidate can be awarded the 2nd mark only for In ₃ I by error carried forwards.
	moles In = 230/115 OR 2 AND moles I = 762/127 OR 6 \checkmark Molecular formula = In ₂ I ₆ \checkmark		
	Total	12	

ຊີນes	stion	Expected Answers	Marks	Additional Guidance	
2 a	a i	Ca√	1	Allow names throughout (i)–(vi)	
	ii	N✓	1		
	iii	Cl✓	1		
	iv	B√	1	Allow Al	
	v	K√	1		
	vi	C/Si/B✓	1		
k) i	cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots for example chosen \checkmark Correct charges on both ions \checkmark e.g. $2Na^{+} \left[\underbrace{\checkmark 0}_{0} _{0} \right]^{2-}$	2	An ionic compound must be chosen and it must have correct formula to score at allFor 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. Circles not required + Ignore inner shell electrons 2Allow: 2[Na ⁺] 2[Na] ⁺ [Na ⁺]2 (brackets not required) Do not allow: for Na2O, [Na2] ²⁺ [Na2] ⁺ [2Na] ²⁺ [Na]	
	ii	electron pair(s) in covalent bond shown correctly using dots and crosses in a molecule of a compound ✓ correct number of outer shell electrons in example chosen ✓ e.g. 2 'x o' between O and H for 1st mark correct outer shell electrons for O and H for 2nd mark	2	 A covalent compound must be chosen and it must have correct formula to score at all For 'dot-and-cross' diagram, accept different symbols for electrons from each atom. ie X and / If example chosen is molecule of an element, then 2nd mark can be awarded if candidate has used dots and crosses for all outer shell electrons around each atom. <i>Circles not required</i> 	

Mark Scheme

Question	Expected Answers	Marks	Additional Guidance
С		4	USE annotations with ticks, crosses, con, ecf, etc for this part.
	(across a period) atomic radius decreases/ outer electrons closer to nucleus ✓ electrons are (pulled in) closer		Ignore 'down a period', 'across a group' If candidate responds with 'electrons are same distance from the nucleus' anywhere is a CON. but ignore ' about the same distance'
	nuclear charge increases/ protons increase ✓		Ignore 'atomic number increases' Ignore 'nucleus gets bigger' 'charge increases' is not sufficient
	greater attraction/ greater pull ✓		 Allow 'effective nuclear charge increases' OR 'shielded nuclear charge increases' A comparison must be included: ie 'greater pull', 'more pull', 'held more tightly'; so 'pulled in closer' would score the 1st marking point but not the 3rd marking point here
	electrons added to the same shell <i>OR</i> screening / shielding remains the same or similar ✓		Allow 'very small increase' for 'similar'
	Total	14	

Qu	estic	on	Expected Answers	Marks	Additional Guidance		
3	а	i	moles = $55/24,000 = 2.3 \times 10^{-3} / 0.0023 \text{ (mol)} \checkmark$		Allow calc 2.291666667 x 10^{-3} and correct rounding to a minimum of 2 sig fig, ie 0.0023 (ie rounding is being assessed here)		
		i	[bleach] = 1000 x 2.3 x 10 ⁻³ / 3 = 0.77 (mol dm ⁻³) ✓	1	From (a)(i), allow use of calc value = 0.7638888888 For any rounded value of 2.2916666667 x 10^{-3} down to a minimum of 2 sig fig, ie 0.0023, allow any value in range 0.76 to 0.77 mol dm ⁻³ (ie rounding has been assessed above) For ECF , = 1000 x ans to (i) / 3		
		i i i	moles HCl at start = $1.0 \times 6.0/1000 = 6 \times 10^{-3} \checkmark$ moles HCl that reacted = $2 \times 2.3 \times 10^{-3}$ = $4.6 \times 10^{-3} / 0.0046$ mol \checkmark	3	Marking screen shows parts (i) and (iii) ECF = ans to (i) x 2		
			excess HCI = $6 \times 10^{-3} - 4.6 \times 10^{-3}$ = 1.4×10^{-3} mol / 0.0014 mol \checkmark (mark is for answer)		ECF : moles HCI at start – moles HCI that reacted Common mistake: If a candidate does not multiply ans to (i) by 2, then ECF answer will be 0.00371 (from 0.00229) or 0.0037 (from 0.0023) Both answers would gain 2 marks for this part.		
	b	i	iodine / I_2 produced \checkmark correct balanced equation: $CI_2 + 2I^- \longrightarrow I_2 + 2CI^-$ / $CI_2 + 2NaI \longrightarrow I_2 + 2NaCI$ \checkmark	2	I ₂ as a product in an attempted equation would score 1st mark		
		i i	chlorine reacts with water forming Cl ⁻ OR chloride / Cl ₂ + H ₂ O \longrightarrow ClO ⁻ + 2H ⁺ + Cl ⁻ \checkmark	4	Allow: $Cl_2 + H_2O \longrightarrow HCIO + HCI$		
			AgCl(s) / precipitate is silver chloride OR AgCl(s) \checkmark		can be credited for this marking point in equation as AgCl(s)		
			chloride $OR \ Cl^-$ reacts with silver nitrate $OR \ Ag^+ \checkmark$		can be credited for this marking point in equation as CI^-		
			$\begin{array}{c} Ag^{*} + CI^{-} \longrightarrow AgCI & / & AgNO_{3} + HCI \longrightarrow AgCI + HNO_{3} \\ \checkmark \end{array}$		State symbols not required Ag ⁺ + Cl ⁻ \longrightarrow AgCl(s) would get last three marks!		

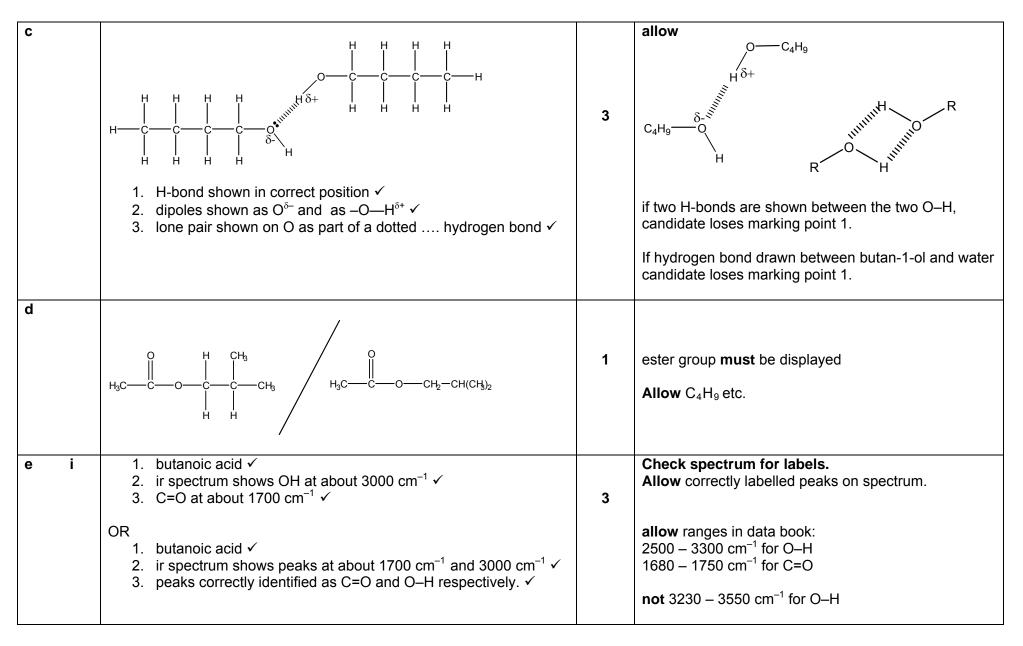

Question	Expected Answers	Marks	Additional Guidance
c i	attraction of an atom/nucleus for electrons ✓ attraction for electrons in a (covalent) bond ✓	2	For 1st mark , atom/nucleus is essential Commonest correct answer: 'Attraction of an atom for the electrons in a covalent bond'
i	four bonds shown with at least 2 wedges, one in; one out \checkmark CI CI CI CI CI CI CI CI CI CI CI CI CI	2	For bond into paper, accept:
ii	Cl is more electronegative (than H or C) \checkmark CCl ₄ is symmetrical \checkmark	3	USE annotations with ticks, crosses, con, ecf, etc for this part. Allow: Cl is δ - /slightly negative <i>OR</i> shown as dipole: H ^{δ^+} -Cl ^{δ^-} <i>OR</i> C ^{δ^+} -Cl ^{δ^-} Do not allow 'negative' OR Cl ⁻ <i>OR</i> chloride ion <i>OR</i> chlorine ion Allow CCl ₄ is tetrahedral
	In CCI₄ dipoles cancel ✓ Total	18	

Mark Scheme

Question	Expected Answers	Marks	Additional Guidance
4 a	A: $CaO \checkmark$ B: $CO_2 \checkmark$ C: $Ca(OH)_2 \checkmark$ D: $CaCl_2 \checkmark$ E: $H_2O \checkmark$ F: $Ca(HCO_3)_2 / CaH_2C_2O_6 \checkmark$	6	Brackets essential Allow any order of atoms in a correct formula
b	$\begin{array}{l} 2\text{Ca(s)} + \text{O}_2(\text{g}) \longrightarrow 2\text{CaO(s)} / \\ \text{Ca(s)} + \frac{1}{2} \text{O}_2(\text{g}) \longrightarrow \text{CaO(s)} \\ \text{state symbols for Ca, O_2 and CaO} \checkmark \\ \text{correct balanced equation} \checkmark \\ \text{Oxidation is loss of electrons} \\ \text{AND reduction is gain of electrons} \checkmark \\ \text{Ca loses 2 electrons AND O gains 2 electrons OR} \\ \text{Ca loses 2 electrons AND O_2 gains 4 electrons} \checkmark \\ \text{reactivity increases (down the group)} \checkmark \end{array}$	4	USE annotations with ticks, crosses, con, ecf, etc for this part. Allow 'multiples', ie $4Ca(s) + 2O_2(g) \longrightarrow 4CaO(s)$ Allow balanced equation with a species on both sides, ie $Ca(s) + O_2(g) \longrightarrow CaO(s) + \frac{1}{2}O_2(g)$ Must be in terms of electrons Ignore any reference to oxidation number Allow equations (accept 'e' without '-' sign): $Ca \longrightarrow Ca^{2+} + 2e^{-}/Ca - 2e^{-} \longrightarrow Ca^{2+}$ $O_2 + 4e^{-} \longrightarrow 2O^{2-}/O + 2e^{-} \longrightarrow O^{2-}$ USE annotations with ticks, crosses, con, ecf, etc for this part.
	atomic radii increases/ there are more shells ✓ there is more shielding/ more screening ✓ Increased shielding and distance outweigh the increased nuclear charge / the nuclear attraction decreases ✓ easier to remove outer electrons/ ionisation energy decreases/ ✓		 'down the group' not required 'more' is essential allow 'more electron repulsion from inner shells' Allow 'nuclear pull' ignore any reference to 'effective nuclear charge'
	QWC – At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. ✓	1	QWC mark must be indicated with a tick or cross through the Quality of Written Communication prompt at the bottom of page 9. Then scroll up to start of (b), counting ticks.
	Total	16	

2812 Chains and Rings

Question	Expected Answers	Marks	Additional Guidance
1a i	C ₆ H ₁₄ ✓	1	there is no other acceptable response
ii	C ₃ H ₆ Br ✓	1	there is no other acceptable response
iii	hexan-2-ol ✓	1	Allow hexanol-2 do not allow e.g. 2-hexanol, hex-2-ol, hexa-2-ol
iv	HBr ✓	1	Allow NaBr + H ₂ SO ₄ / HBr + H ₂ SO ₄ Do not allow dil. H ₂ SO ₄ / H ₂ SO ₄ (aq)


Question	Expected Answers	Marks	Additional Guidance
ii	(electrophilic) addition ✓	1	nucleophilic addition loses the mark ignore bromination.
iii	decolourises/(red/orange/brown/yellow) to colourless ✓	1	not goes clear not discolours
C İ	 n → CH₃(CH₂)₃ → → → → → → → → → → → → → → → → → → →	2	Ignore bond linkage to $(CH_2)_3CH_3$ unless the bond clearly goes to the CH_3 . $n C_6H_{12} \longrightarrow (C_6H_{12})_n$ also gets both marks Allow if end bonds are within brackets. If end bonds are not shown, candidate loses marking point 1. If equation is not balanced, candidate loses marking point 2. If they draw 2(monomers) \longrightarrow 2 repeat units candidate loses marking point 2.
ii	poly(hex-1-ene)/polyhex-1-ene ✓	1	Allow poly(hexene-1) / polyhexene-1
	Total	13	

Mark Scheme

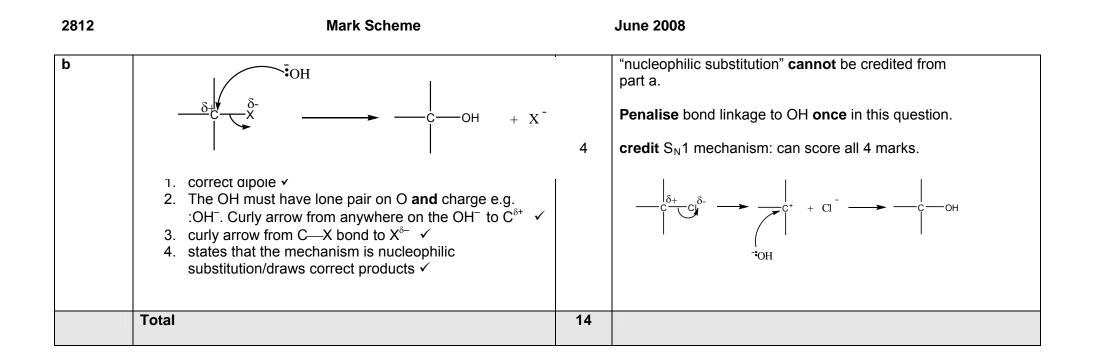
Question No.	Expected Answers			Marks	Additional Guidance
2a	same molecular formula, d	ifferent structure/arran	gement of atoms ✓	1	not same formula Allow different displayed/skeletal formulae
b	$ \begin{array}{c} H & OH & H & H \\ H & -C & -C & -C &H \\ H & -H & H & H \\ H & H & H & H \end{array} $	methylpropan-1-ol ✓ methylpropan-2-ol ✓	secondary ✓ primary ✓	6	Penalise bond linkage to OH once in this question. Do not penalise bond linkage to CH ₃ . If names written as methylprop-1-ol and methylprop-2-ol, penalise once in this question. allow CH ₃ CH(OH)CH ₂ CH ₃ / CH ₃ CH(OH)C ₂ H ₅ allow 2-methylpropan-1-ol allow 2-methylpropan-2-ol allow (CH ₃) ₃ COH penalise "sticks" once only in this question. e.g Image: Unit of the sticks
					DO NOT penalise "sticks" elsewhere on the paper.

Mark Scheme

2812	Mark Scheme	June 20	08
ii	$C_{4}H_{9}OH + 2[O] \longrightarrow C_{3}H_{7}COOH + H_{2}O \checkmark \checkmark$ Allow ecf to e(i) as aldehyde/butanal. $C_{4}H_{9}OH + [O] \rightarrow CH_{3}CH_{2}CH_{2}CHO + H_{2}O \checkmark \checkmark$ Total	2	If candidate identifies e(i) as carboxylic acid but writes equation for aldehyde. No marks. allow $C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O \checkmark\checkmark$ correct product $C_3H_7COOH / C_3H_7CO_2H$ scores $1\checkmark$ Allow as ecf $C_4H_{10}O + [O] \rightarrow C_4H_8O + H_2O \checkmark\checkmark$ but as ecf $C_4H_{10}O + [O] \rightarrow CH_3 CH_2CH_2COH + H_2O /$ scores 1 mark. If the equation is not balanced, 1 mark available for unambiguous formula of the correct / ecf organic product. e.g $C_4H_8O_2$ or C_4H_8O would not score the mark
		10	

Question No.	Expected Answers	Marks	Additional Guidance
3a i	working to show C : H ratio 1 : 2 \checkmark CH ₂ \checkmark	2	must see working as C_4H_8 is given as the molecular formula in part (ii)If calculation of C : H ratio is incorrect allow ecf for empirical formula.
ii	working (56/14 = 4) to show molecular formula is C ₄ H ₈ / $4 \times 12 + 8 = 56 \checkmark$	1	Allow 85.7% of 56 = 48 therefore 4 C
b	 cis trans 1. skeletal formulae ✓ 2. correct structure in correct box ✓ 	2	allow 1 mark if <i>cis-trans</i> correctly drawn as structural/displayed formulae and correctly labeled. $ \begin{array}{ccccccccc} H & H & H & H & H \\ H_{3C} & H_{3C} & H_{3C} & H_{3C} & H \\ H_{3C} & H & H_{3C} & H_{3C} & H_{3C} & H_{3C} & H_{3C} \\ \end{array} $ or $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	Total	5	

Question	Expected Answers	Marks	Additional Guidance
4a i	any two from 2-methylhexane 2,2-dimethylpentane 2,2-dimethylpentane 2,3-dimethylpentane 2,2,3-trimethylbutane 3-ethylpentane	2	allow 1 mark if two correct isomers are drawn using either displayed or structural formula e.g. any two from: (CH ₃) ₂ CH(CH ₂) ₃ CH ₃ , (CH ₃) ₃ C (CH ₂) ₂ CH ₃ , (CH ₃) ₂ CHCH(CH ₃)CH ₂ CH ₃ , (CH ₃) ₂ CHC(CH ₃) ₃ , (C ₂ H ₅) ₃ CH award 1 mark for correct isomers but deduct one mark for not drawing skeletal formulae.
ii	3,3-dimethylpentane ✓	1	Ignore comma and hyphen Not bimethyl/bismethyl
iii	F ✓	1	Allow 3-methylhexane.


2812	2	Mark Scheme	June 2008	
b		heptane correct formula or structure $(H_2 \subset H_2 \cap H_2 \cap H_2 \cap H_2 \cap H_1 \cap H_3) + H_2$ 1. Unambiguous organic product \checkmark 2. Balanced equation \checkmark	2	heptane correct formula \longrightarrow C ₇ H ₁₄ + H ₂ scores only 1 \checkmark Do not allow 2H / 2[H].
C	i	$M_r = 88$ \checkmark % O = ${}^{16}/_{88}$ * 100 = 18.2 (%) \checkmark	2	 18.2(%) with no working scores 2 marks 18.18 (%) with no working scores 1 mark Allow ecf on incorrect <i>M_r</i>
	ii	$C_{5}H_{12}O + 7\frac{1}{2}O_{2} \longrightarrow 5CO_{2} + 6H_{2}O \checkmark \checkmark$	2	correct formula for MTBE – allow $C_5H_{12}O/C_4H_9OCH_3/displayed formula as shown in question allow 1 mark if formula for MTBE and mole ratio are correct such that 1MTBE :5CO2 + 6H2O gets 1 mark \checkmarkIf formula of MTBE is incorrect allow ecf for balanced equation. Max 1 mark.$
d	i	low boiling point/easily vapourised/evaporates quickly/turns to a gas eas ✓	sily 1	Ignore reference to flammability.
	ii	loss of petrol by evaporation/fuel-air mixture might be incorrect/not enou liquid petrol getting to the engine/carburettor/causes knocking/ causes p ignition/ causes auto-ignition/more difficult to store or transport/more difficult to fill-up ✓		Ignore vague answers such as more chance of catching fire/explosion/dangerous

Mark Scheme

Expected Answers	Marks	Additional Guidance
Ticks ✓ must be used for this of	questior	n. Use √or × for QWC
1. reagent – OH⁻/NaOH/KOH	3	need all three for 2 marks, any 2 scores 1 mark
 solvent – water/aqueous (ignore reference to ethanol) conditions- hot/warm/reflux/heat √√ 		allow general equation using R or any correct equation
$RX + OH^{-}/H_2O \longrightarrow ROH + X^{-}/HX \checkmark$		allow reagent, conditions & solvent mark from the equation such that
		$CH_3Cl + OH(aq)$ hot $CH_3OH + Cl(aq)$ reagent mark solvent conditions
		scores all 3 marks if acid catalyst usedit cancels the OH [–] reagent
	Ticks ✓ must be used for this of 1. reagent – OH ⁻ /NaOH/KOH 2. solvent – water/aqueous (ignore reference to ethanol) 3. conditions- hot/warm/reflux/heat	Ticks ✓ must be used for this question 1. reagent – OH⁻/NaOH/KOH 3 2. solvent – water/aqueous (ignore reference to ethanol) 3 3. conditions- hot/warm/reflux/heat √√

2812	Mark Scheme	June 2008
	1. reagent – OHT/NaOH/KOH 2. solvent – ethanol/alcohol/ethanolic 3. conditions- hot/warm/reflux/heat $\checkmark \checkmark$ e.g. C ₂ H ₅ X + OHT \longrightarrow C ₂ H ₄ + X ⁻ + H ₂ O \checkmark	3 need all three for 2 marks, any 2 scores 1 mark if acid catalyst usedit cancels the OH ⁻ reagent any mention of water/(aq) candidate loses marking point 2. allow any correct equation If HBr is a product, candidate loses equation mark. allow reagent, conditions & solvent mark from the equation such that $CH_3CH_2Cl + OH(ethanol) \longrightarrow CH_2=CH_2 + H_2O + CI(aq)$ reagent mark solvent conditions scores all 3 marks If ethanoic is used instead of ethanolic penalise only once.

2812	Mark Scheme		June 2008
	reagent – NH ₃ ✓ solvent – ethanol/alcohol/ethanolic ✓ RX + 2NH ₃ \longrightarrow RNH ₂ + NH ₄ X/ RX + NH ₃ \longrightarrow RNH ₂ + HX ✓ using an acid (catalyst) loses the NH ₃ mark.	3	ignore any reference to temperature and pressure ignore any reference to heating in a sealed tube any mention of water/(aq) candidate loses marking point 2. allow general equation using R or any correct equation allow reagent, conditions & solvent mark from the equation such that CH ₃ Cl + NH ₃ (alcohol) CH ₃ OH + Cl (aq) reagent mark solvent scores all 3 marks If ethanoic is used instead of ethanolic penalise only once.
QWC	correct use of at least two specific terms such as solvent, reflux, mechanism, hydrolysis, elimination, nucleophilic, substitution, nucleophile, dipole, base, aqueous, (aq), ethanol, ethanolic, alcohol, alcoholic, (alc),	1	Put tick or cross through "quality of written communication" at bottom of page 10.

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Q	uestic	on	Expected Answers	Marks	Additional Guidance
1	(a)	i	enthalpy/energy change to break 1 mole of a (covalent) bond ✓ in the gaseous state ✓	2	do not allow first mark: • if energy released • if break and make • if ionic • if heat 2 nd mark stand alone ignore 'under standard conditions'
		ii	bonds broken = 1 (C–C) + 5(C–H) + 1(C–O) + 1(O–H) + 3 (O=O) = 4728 (kJ) \checkmark bonds formed = 4(C=O) + 6(O–H) = 6004 (kJ) \checkmark $\Delta H_c = 1276 (kJmol^{-1}) \checkmark$ Alternative if 1(O–H) cancelled on both sides the values are bonds broken = 4264 (kJ) \checkmark bonds formed = 5540 (kJ) \checkmark	3	no working necessary -allow one mark for each value allow ecf on values for final answer but sign must be consistent with their values no working necessary -allow one mark for each value allow ecf on values for final answer but sign must be
			$\Delta H_{\rm c} = -1276 \ (\text{kJmol}^{-1}) \checkmark$		consistent with their values
	(b)	i	cycle/ $\Delta H_r = \Sigma \Delta H$ (products) – $\Sigma \Delta H$ (reactants) \checkmark $\tilde{1}273 + \Delta H_c = \tilde{6}394$) + $\tilde{6}(286) \checkmark$ $\Delta H_c = 2807$ (kJ mol ⁻¹) \checkmark	3	cycle need not be drawn correctly/drawn at all 2807 scores 3 common errors and their effect –5353, –1377, –837, 181, 625, 1921, 2807 score 2
					–3923, –3637, –3383, –2989, –1921, –625, –181, 593, 837 score 1

28 ⁻	13/01		Mark Scheme		June 2008
					–1953, –593 score 0 if these answers are seen, score appropriately any other answers must be checked one error scores 2 , two errors scores 1
		ii	respiration	1	no other answer is acceptable
			Total	9	ignore qualification eg exothermic, aerobic, anaerobic

Qu	estic	on	Expected Answers	Marks	Additional Guidance
2	(a)	i	(becomes paler because equilibrium) moves to RHS /towards products /towards HI ✓	2	becomes paler is in the question, first mark is for direction of equilibrium movement
			(because) the (forward) reaction is endothermic/ reverse reaction is exothermic \checkmark		Ignore any discussion on number of moles/rates
					both marks stand alone
		ii	(becomes darker because) the molecules are pushed closer together/ space between particles decreases/ their concentration increases/ density increases/ ✓	3	becomes darker is in the question, first mark is for comment on effect on particles
			equilibrium position does not alter \checkmark		
			because there are the same number of moles (of gas) on each side \checkmark		
					all three marks are stand alone
	(b)	i	because there are <u>more</u> collisions ✓	2	
			and more of the collisions have $\underline{E}_{\rm a}/$ exceed $\underline{E}_{\rm a}$ /have the required energy to react \checkmark		activation energy/ E_a / required energy to react must be mentioned for the 2 nd mark
		ii	because the particles collide more (frequently) \checkmark	1	any mention of energy or E _a negates the mark any idea of more particles are added negates the mark
	(C)	i	hydrogen was added/used√	1	not 'concentration of hydrogen increases'
		ii	amount of HI/products goes up/ amount of $I_2/H_{2/}$ reactants goes down/ as equilibrium moves to RHS \checkmark	2	
			(new) equilibrium established/reaches equilibrium again/ concentrations become constant / rate forward = rate back ✓		do not allow 2 nd mark if restore to original equilibrium or if the reason given is invalid eg increase in temperature
			Total	11	

Qı	Question		Expected Answers	Marks	Additional Guidance
3	(a)	i	x axis energy ✓	2	not activation energy/E _a
					allow kinetic energy/KE/speed/velocity/enthalpy
			y axis number/fraction of particles/molecules/atoms ✓		allow 1 mark if labels both correct but on reversed axes
		ii		2	E_a must be labelled on one line (lines must be drawn and meet the curve) lines must be to RHS of hump if two graphs are drawn, first mark not awarded
			explanation – more particles/collisions have energy greater or equal to $\underline{E}_{\underline{a}}$ / required energy to react, with catalyst \checkmark		activation energy/ E_a /required energy to react must be mentioned for the 2 nd mark
	(b)	i	gas/ hydrogen is given off/produced/formed/released \checkmark	1	
		ii	sketch to show line falling more steeply \checkmark	2	graph must start at the same point as the original
			finishing at same horizontal level \checkmark		the line need not continue very far as long as it is clearly at the same horizontal
	(c)	i	diagram to show products below reactants \checkmark	2	products must be labelled
			energy 'hump' between reactants and products \checkmark		hump can be rectangular or curved AW
		ii		2	accept double headed arrows or lines
			$E_{\rm a}$ labelled/250 \checkmark		single headed arrows must have arrow in correct direction
		iii	$E_{\rm a} = 370 \; (\text{kJ mol}^{-1}) \; \checkmark$	1	If answer = 130, refer back to Q3(c)i ecf if endothermic drawn
			Total	12	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
4	(a)	i	 use ticks from annotation box– place as close to marking point as possible high pressure would give good rate ✓ 2. and move equilibrium to RHS or towards products/ give good yield of ammonia ✓ 3. too high is expensive/ safety considerations ✓ 	7	no credit for specified conditions of temperature and pressure
			 high temperature 4. would give good rate ✓ 5. but moves equilibrium to LHS or towards reactants/ gives poor yield of ammonia ✓ 6. temperature is a compromise ✓ catalyst 7. iron used ✓ 		<pre>low temperature would give a slow rate ✓ but moves equilibrium to RHS or towards products/ gives good yield of ammonia ✓ temperature is a compromise ✓ 'compromise' is a stand alone mark</pre>
		ii	cooling to/below –33°C ✓ to liquefy/condense ammonia ✓	2	actual temperature need to be quoted (–196 to –33 °C) or cool to below boiling point of ammonia any mention of (fractional) distillation/evaporation/heating negates 2 nd mark
		iii	(unreacted) nitrogen and hydrogen are recycled \checkmark	1	must be nitrogen and hydrogen or reactants

2813/	01	Mark Scheme		June 2008
(b)) i	$NH_3 + H^{\dagger} \rightarrow NH_4^{\dagger} \checkmark$	1	$\begin{array}{rcl} NH_{3} \ + \ H_{3}Q^{\dagger} \rightarrow \ NH_{4}^{+} + H_{2}Q\checkmark\\ \text{multiples allowed}\\ \text{accept any acid } \mathbf{NOT} \text{ water}\\ \text{eg} & NH_{3} \ + \ H_{3}PO_{4} \rightarrow \ NH_{4}^{+} + \ H_{2}PO_{4}\checkmark\\ & NH_{3} \ + \ H_{2}SO_{4} \rightarrow \ NH_{4}^{+} + \ HSO_{4}\checkmark\\ & 2NH_{3} \ + \ H_{2}SO_{4} \rightarrow \ 2NH_{4}^{+} + \ SO_{4}^{2}\checkmark\\ & NH_{3} \ + \ H_{2}SO_{4} \rightarrow \ 2NH_{4}^{+} + \ CI\checkmark\end{array}$
	ii	$3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$ formula of ammonium phosphate \checkmark balancing \checkmark	2	balancing only for correct species
		Total	13	

2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination

AS Practical Test 2813/03: May 2008 Mark Scheme

<u>PLAN</u> (Skill P)

[16 marks (out of 19 available)]

T Titration procedure – 7 marks

T1	Accurate dilution of the sulphuric acid provided: Acid measured with a pipette, use of <u>distilled</u> water and a volumetric flask <i>Dilution factor does not need to be justified, but should be between 5 and 25</i>	[1]
Т2	Correct equation for suitably selected neutralisation reaction <i>(not ionic)</i> The alkaline reagent chosen must be water-soluble No T2 for incorrect sub-scripts or letter cases (eg H ² So4)	[1]
Т3	Uses equation to justify concentration or mass of alkali used in titration T3 can only be awarded if acid was diluted and this is allowed for in calculation.	[1]
T4	Outline description of use of burette and pipette in procedure	[1]
T5	At least two consistent titres (or within 0.1 cm ³ – unit needed) obtained	[1]
Т6	Suitable indicator chosen and correct end-point/final colour stated eg Phenolphthalein goes colourless – not 'clear' (acid in burette) or pink (alkali in burette)	[1]
Τ7	Gives clear specimen calculation or explains showing how the titre gives evidence for the dibasic nature of the acid, related to a chemical equation. An explained comparison with results for equimolar HCI can score the mark	he [1]
G	Gas collection procedure - 8 marks	
	Use of a suitable metal (Mg or Zn) or any metal carbonate is acceptable. Use of Na, Ca, Al, Fe (or other less reactive metal) can score G2, G3, G4, G5 and G6 c	only
G1	Equation for a suitable reaction (for which the produced gas can be measured)	[1]
G2	Diagram showing gas collection in a syringe or inverted burette or measuring cylinder <i>Do not penalise minor inaccuracies in diagram – but will it work as drawn?</i>	[1]
G3	Ignition tube inside flask or inner container or divided flask used	

 and this keeps reagents apart/stops them reacting while apparatus is assembled
 or this prevents gas being lost before bung is inserted
 or [when apparatus assembled] tilt the ignition tube [to mix reagents/ start the reaction][1]
 Two points required for G3 – the precaution and a reason/description

Calculates the [maximum] volume of acid so that all the gas fits into the collector. G5 Calculation must be explicitly based on the volume of the syringe/collecting vessel G6 Excess metal/metal carbonate is used to ensure that all of the sulphuric acid reacts G7 Calculates [minimum] mass of metal or metal carbonate [so that it is in excess] G8 One accuracy precaution *Either* repeat whole experiment and take mean of readings or until volume of gas is consistent Or use of gas syringe reduces loss of carbon dioxide caused by its solubility in water S Safety, Sources and QWC – 4 marks **S**1 Sulphuric acid (1M) is irritant/corrosive and one of the following precautions if spilt rinse spill with plenty of water dilute before use [in titration] to reduce hazard level • wear gloves No S1 if the hazard is over stated – eq "sulphuric acid is very corrosive" S2 References to **two** secondary sources quoted as footnotes **or** at end of Plan. Book references must have page numbers Internet references must go beyond the first slash of web address • Accept one specific reference to "Hazcards" (number **or** title required) • S3 **QWC**: text is legible and spelling, punctuation and grammar are accurate Allow not more than five <u>different</u> errors in legibility, spelling, punctuation or grammar. S4 **QWC**: information is organised clearly and accurately

Mark Scheme

There must be some visual indication of completed reaction before reading is taken.

Measure volume of gas when fizzing stops or syringe stops moving

- Is the answer "yes" to all three of the following questions?
- Is a word count given and within the limits 450 1050 words? •
- Is scientific language used correctly? (Allow **one** error without penalty.)
- Are the descriptions logical and without lots of irrelevant or repeated material?

Practical Test (B)

Page 3 Part 1 (Skill I)

Mass readings

Check the following five points.

- Both mass readings must be listed
- Labelling of masses must have minimum of the words "bottle"/"container" (aw)
- Unit (g) must be shown with one (or both) of the weighings •
- All three masses should be recorded to two (or, consistently, to three) decimal places.
- Subtraction to give mass of Z must be correct

Five bullets correct = 2 marks: Four bullets correct = 1 mark

If only the mass of **Z** is shown award 0.

2813/03

G4

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

- 16 marks]
 - [2]

Mark Scheme

[2]

Presentation of titration data

Check the following six points.

- Table grid <u>drawn</u> (at least three lines) **and** all burette data is shown in the table, including first/trial.
- Correctly labelled table (initial, final and difference aw) for burette data
- Three (or more) titres are shown
- All "accurate" burette data are quoted to two decimal places, ending in .00 or .05
- No readings recorded above 50 cm³
- All subtractions are correct
- Six bullets correct = 2 marks: Five bullets correct = 1 mark

A table giving **only** the titre differences scores 0 in this sub-section.

Self-consistency of titres

Check the following four points

- The titres for two accurate experiments are within 0.20 cm³.
- The ticked titres (or the titres used to calculate the mean) are within 0.10 cm³
- Two titres are ticked
- Units, cm³ or ml, must be given somewhere (**once** in or alongside the table is sufficient).

Four bullets correct = 2 marks: Three bullets correct = 1 mark

Mean titre correctly calculated

• The mean should normally be calculated using the **closest** two accurate titres. However, a candidate may use the trial/first reading if appropriate, without penalty.

<u>Accuracy</u> – 7 marks

• If a Centre worked in two or more different sessions using different solutions, each candidate must be matched to the appropriate set of supervisor's data.

Write down the supervisor's mass and mean titre, rounded to nearest 0.05 cm³, in a ring next to the candidate's table.

Calculate what the <u>adjusted candidate's titre</u> (T) would have been if the candidate had used the same mass of Z as the supervisor.

Adjusted titre, T = candidate's mean titre x ^{supervisor's mass}/_{candidate's mass}

Use the conversion chart below to award the mark out of 7 for accuracy.

[7 marks]	
[6]	
[5]	
[4]	
[3]	
[2]	
[1 mark]	
	[6] [5] [4] [3] [2]

2]

1]

[14 marks]

Spread penalty

("Spread" is defined by the titres actually used by the candidate to calculate the mean)
If the titres used have a spread > 0.40 cm ³ , deduct 1 mark from accuracy.
Increase the deduction by 1 mark for every 0.20 cm^3 of spread

Safety – 2 marks Diluting the alkali/ making a solution/ adding water	
reduces the [level of] hazard /makes it less corrosive A comparison is required for this mark	[1]

Pages 4 – 6: Part 2 (Skill A)

Answers should be quoted to 3 significant figures. Use of wrong sig. fig. in an otherwise correct answer loses one mark on the **first** occasion only.

Allow "error carried forward" between sections of this Part

(a) 1 mark

Mass of pure KOH = $5.50 \times 0.86 = 4.73 \text{ g}$ [1]

(b) 2 marks

M_r of KOH = 56.1 [1]

Concentration = ${}^{4.73}/{}_{56.1}$ = 0.0843 mol dm⁻³ [1] Correct answer only = 1 mark

(c) 2 marks

 $n(KOH) = answer (b) x^{mean titre}/_{1000}$ [1] This is a method mark

Correct answer obtained from candidate's own data (approximately 0.00230 mol) [1]

(d) 2 marks

M_r of sulphamic acid = 97.1	[1]
n (sulphamic acid) = ^{mass used} / _{97.1} (see table below)	[1]

(e) 1 mark

Candidate multiplies answer (d) by ${}^{25}/_{250}$ (or divides by 10)	[1]
---	-----

(f) 2 marks

Ratio = ^(c) / _(e) = ^{mol KOH} / _{mol acid}	[1]
Correct working is essential for this mark.	

[1]
[1

(g) 3	marks
-------	-------

	(i)	2H ₂ O, 3H ₂ O	[1]
	(ii)	First of three equations ticked	[1]
		The equation shows I mole KOH reacting with 1 mole sulphamic acid The justification must include the word "mole" (or molar).	[1]
(h)	1 ma	ark	
	1 n	nole of H^+	[1]
Page	es 7 -	<u>- 9</u> : Part 3 (Skill E) (14 marks max but 18 availab	le)
(a)	4 ma	arks available (but 3 on question paper)	
	Only	two marks can be awarded if the second equation (1:1 mole ratio) is used.	
	Valio	d explanation of choice of the balanced equation, first or third, chosen	[1]
	n(H ₃	NSO ₃) = 0.010 (0.00999)	[1]
	n(H ₂) = 0.0050 [or 0.010] or 0.015 (depending on the equation/mole ratio selected)	[1]
	Volu	time (H ₂) = 120 cm ³ or 240 cm ³ or 360 cm ³ , which is too much for the syringe	[1]
(b)	1 ma	ark	
	[Mg	is in excess] to ensure that <u>all</u> sulphamic acid, Z, reacts	[1]
(c)	9 ma	arks available (but 6 on question paper)	
	The	candidate's best three strands are counted	
C1		e gas escapes while bung is being inserted eaction begins before stopper is put in	[1]
C2	Use	an inner ignition tube to hold a reagent or divided flask to hold one of the reagents	[1]
C3		p reagents apart before inserting the stopper revent collisions between reagents while apparatus is being assembled	[1]
D1	Erro	r in measuring the mass of [sulphamic] acid <i>or</i> mass of acid used is very small	[1]
D2		culates correctly the % error in measurement of mass $w^{0.01}/_{0.97} \times 100 = 1.03\%$ or $^{0.02}/_{0.97} \times 100 = 2.06\%$	[1]
D3	Use	balance reading to 3 (or more) decimal places	[1]

E1 Syringe only is less accurately calibrated/ reads to nearest cm³ [1]

2813	S/03 Mark Scheme Jui	ne 2008
E2	Use an inverted burette instead of a syringe	[1]
F1	Friction/ stiffness in gas syringe	[1]
F2	Rotate the syringe gently while gas is being collected <i>or</i> lubricate the syringe	[1]
G1	Reaction is exothermic, so volume of gas expands or gas is not collected at RTP	[1]
G2	Wait until gas cools to room temperature before measuring the volume or carry out reaction in water bath	[1]
H1	Corrosion/ oxide layer on the surface of magnesium	[1]
H2	MgO/ oxide layer reacts with acid without producing any gas/hydrogen	[1]
H3	Clean surface of Mg by a specified method (eg rub with sand paper)	[1]
J1	A small volume of air is displaced when the bung is inserted	[1]
J2	Record initial volume from syringe after this displacement has occurred	[1]
K1	Magnesium will react <u>slowly</u> with water Award one mark only for this strand, since this effect is insignificant	[1]
(d)	4 marks	
(i)	Logical attempt to use the ratios ($^{80}/_{0.64}$ and $^{50}/_{0.45}$) or inverted or attempts to calculate mole ratios of gas:acid for both experiments	[1]
	Use calculated ratios to show clearly that readings aren't consistent, so repeat nee	ded [1]
(ii)	Titres obtained in titration agreed within 0.1 cm ³ or were consistent	[1]
	Student's readings are not consistent and these results are not reliable	[1]

2814 Chains, Rings and Spectroscopy

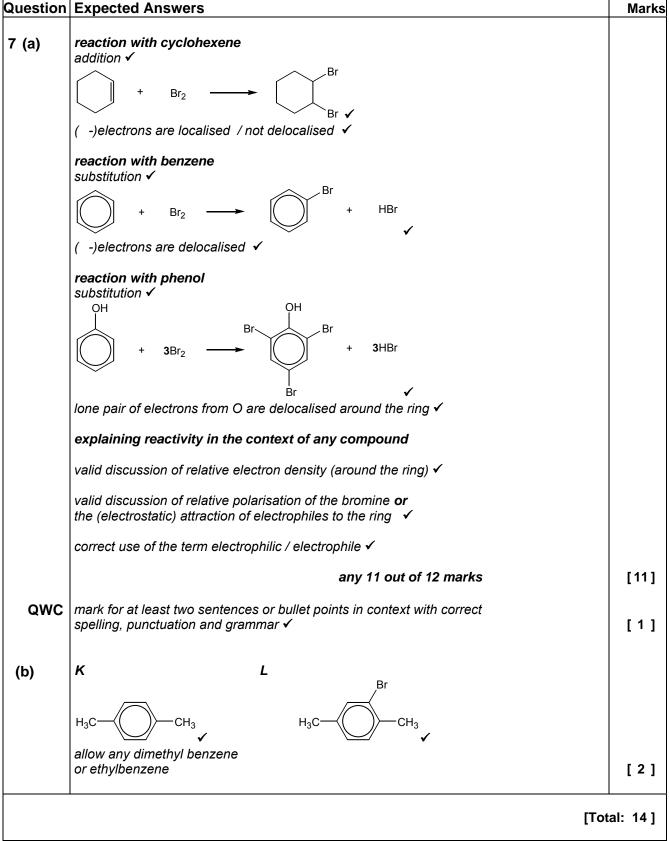
Question	Expected Answers	Marks
1 (a) (i)	silver mirror	[2]
(ii)	carboxylic acid / COOH / COO⁻etç ✔	[1]
(b)	yellow/red/orange solid ✓ with 2,4-dintitrophenylhydrazine / 2,4-DNPH / Brady's Reagent ✓	
	compare m.p. (of the product /solid / ppt) with known values 🗸	[3]
(c)	86 ✔	[1]
(d) (i)		[1]
(ii)	$\begin{array}{ccccccccc} H & CH_3 & O & H & CH_3H & O & (displayed formulae \\ H - C - C - C & H - C - C - C & not essential) \\ H & CH_3 & H \checkmark & H & H & H \checkmark \end{array}$	[2]
(e)	indentity \checkmark – e.g. H CH ₃ O (allow any H-C-C-C unambiguous way to H CH ₃ H (allow any Unambiguous way to identify the correct isomer)	
	reasoning 🖌	
	either	
	two types of proton / two peaks / all CH_3 protons are the same type AW	
	or no splitting / no protons on the neighbouring C AW ✓	[2]
	[Total	: 12 1

Question | Expected Answers Marks C_6H_6 + $HNO_3 \longrightarrow C_6H_5NO_2$ + $H_2O \checkmark$ 2 (a) (i) [1] conc H_2 SO₄ \checkmark (ii) [1] (b) mechanism $NO_2^+ \checkmark$ curly arrow from bond to electrophile ✓ NO₂ intermediate 🗸 (the 'smile' must end at Н NO₂ C2 and C5 and the + curly arrow from charge must not be at C–H bond to the tetrahedral carbon) bond ✓ involvement of catalyst equation to show formation of $NO_2^+/H_2NO_3^+$ e.g. $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_2O + HSO_4^$ regeneration of $H_2SO_4 \checkmark e.g. HSO_4$ shown accepting H^+ or equation: $HSO_4^- + H^+ \longrightarrow H_2SO_4$ [6] (c) NO2 accept any dinitrobenzene isomer - eg ✓ NO₂ [1] (d) Sn and (conc) HCl ✓ (allow any other to give $C_6H_5NH_2$ / phenylamine \checkmark suitable reducing agents) equation ✓ $C_6H_5NO_2 + 6[H] \longrightarrow C_6H_5NH_2 + 2H_2O$ NaNO₂ /HNO₂ and HCl and <10°C \checkmark to give C₆H₅N₂⁺ / diazonium \checkmark equation ✓ e.g. $C_6H_5NH_2 + H^+ + HNO_2 \longrightarrow C_6H_5N_2^+ + 2H_2O$ phenol and alkali 🗸 formula of an azo dye 🖌 e.g. -N=N OH [8] [Total: 17]

January 2008

Question	Expected Answers		Marks
3 (a)	$H_{3}N - C - C - C - C - C - C - C - C - C - $	(allow any unambiguous structures)	[1]
(b)	peptide bond correct on at least one structure \checkmark alanine as N-terminal and C-terminal H ₂ N-C-C-C H \checkmark H \checkmark H	(ignore the attempted structure of valine as the formula given is not easy to interpret)	[3]
(c)	correct ionisation of –NH₂ and –COO [−] /–COONa groups \checkmark	(do not allow a covalent O–Na bond)	[1]
(d)	$ \begin{array}{c} H \\ H \\ H \\ C \\ H		[2]
(e)	$\begin{array}{ccccccc} CH_3 & O & CH_3 & O & CH_3 & O \\ H_2N - C - C & H_2N - C - C & H_2N - C - C \\ H & CI \checkmark & H & O - CH_3 \checkmark & H & NH_2 \checkmark \end{array}$		[3]
(f)	any valid isomers which are 2-amino carboxylic acids – e.g. $\begin{array}{ccc} C & D \\ & & \\ $	(i.e. $H_2N - C - C$ OH plus any isomers of C_2H_6O and $C_4H_{11}N$	[2]

Mark Scheme


[Total: 12]

Question	Expected Answers	Marks
4 (a)	fumaric acid and malic acid identified 🗸	
	one correct explanation ✓ - e.g.	
	the C=C bond does not rotate /has restricted rotation / has different groups on both C=C carbons AW √	
	has a chiral centre / four different groups around a C \checkmark	[2]
(b)	use of NaOH / Na / Na ₂ CO ₃ NaHCO ₃ \checkmark rest of the equation and balancing \checkmark - e.g.	
	$\begin{array}{ccc} \text{COO}^{-} \text{Na}^{+} \\ \text{I} \\ \text{CH}_{2} \\ \text{I} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{COOH} \end{array} + 2NaOH \longrightarrow \begin{array}{c} \text{COO}^{-} \text{Na}^{+} \\ \text{I} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{COO}^{-} \text{Na}^{+} \end{array}$	[2]
(c)	$H_2C \xrightarrow{C} O \\ H_2C \xrightarrow{C} O \\ H_2C \xrightarrow{C} O \\ O \checkmark$	[1]
(d) (i)	<i>in presence of D</i> ₂ <i>O</i> <i>two peaks</i> ✓ <i>relative peak areas 2:1</i> ✓ (<i>splitting of peak with area 2</i>) <i>is a doublet /1:1</i> ✓ (<i>splitting of peak with area 1</i>) <i>is a triplet/1:2:1</i> ✓	
	<i>without D₂O</i> five / three more peaks ✓	
	due to the OH protons (not shown in $D_2O) \checkmark AW$	[6]
QWC	mark for good communication of how the adjacent /neighbouring hydrogens affect the splitting (e.g. use of the n + 1 rule)	[1]
(ii)	shifts peak at δ = 11.0–11.7 ppm and peak at δ = 2.0 – 2.9 ppm \checkmark	
	explanation: either (only) two environments / molecule is symmetrical AW ✓	
	or (mark at S = 11.0, 11.7 mm is due to) COOH and	
	(peak at δ = 11.0–11.7 ppm is due to) COOH and (peak at δ = 2.0–2.9 ppm is due to) CH ₂ \checkmark	[2]
		[Total: 14]

Question	Expected Answers		Marks
5 (a) (b)	Соосн ₃ соосн ₃ Н Н Н	(structure must show end bonds) (do not allow connection errors or 'sticks' here)	[1]
	C=C H COOH one COOH group ✓ other COOH group and the rest of the structure ✓	(allow CONH₂ from the partial hydrolysis of the CN group)	[2]
(c) (i)	CH₃OH ✓		
	(heat) with conc $H_2SO_4 \checkmark$		[2]
(ii)		(allow any mixtures that would create HCN in situ)	[1]
(iii)	nucleophilic addition \checkmark		[1]
(iv)	H₂O ✓		[1]
(d)	$M_r CH_3 COCOOH = 88$ and $M_r CH_2 C(CN) COOCH_3 = 111$ theoretical yield = 12.6 (kg) / 113.6 (moles) \checkmark	1 ✔ (allow ecf throughout)	
	@30% = 3.78 kg ✓		
	answer rounded to 2 sig figs ✓		[4]
	1	[Tota	ıl: 12]

Mark Scheme

Question	Expected Answers	Marks
6 (a)	ester bond \checkmark a correct repeat unit \checkmark either: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
	$-\ddot{C} - (CH_{2})_{4} - O - (CH_{2})_{4} - O - C - (CH_{2})_{4} - O - (CH_{2})_{4} - O - (CH_{2})_{4} - O - O - O - O - O - O - O - O - O - $	[2]
(b)	condensation ✓	[1]
(c)	any sequence with H every second position and at least one F and one G – eg	
	_F_H_F_H_G_H_F_H_G_H_ ✓	[1]
(d) (i)	NaBH₄ / LiAlH₄ ✓	[1]
(ii)	any unambiguous name or structure – eg (do not allow –COH for the aldehyde group)	
	о́н́н́о	[1]
(iii)	$OHC(CH_2)_2CHO + 4[H] \longrightarrow HO(CH_2)_4OH \checkmark$	[1]
(iv)	peak at 1680–1750 (cm ⁻¹) for $\mathbf{J} \checkmark$ (allow any named value in between the ranges)	
	peak at 3230–3550 (cm ⁻¹) for H ✓ (ignore reference to the C–O peak)	[2]
	[Tot	al: 9]

2815/01 Trends and Patterns

Mark Scheme Page 1 of 5	Unit Code	Session	Year		Version
Tage T 015	2815/01	June	2008	Final	Mark Scheme
Question	Expected Answers			Marks Additional Guidance	
1 (a)	Any three from 3 Strontium ion smaller than barium ion / strontium 3 ion has a higher charge density / ora (1); 3			3	No mark for just writing decomposition temp is higher for BaCO ₃ If SrCO ₃ with higher temp award 0 marks
					Must use correct particle but only penalise once in part (a)
			' ora (1); ate ion more than		Allow Sr^{2+} is more polarising and distorts the carbonate ion (2) / Sr^{2+} polarises the carbonate ion causing more distortion (2)
	So carbon–oxyg carbonate) is we	en or covalent be eaker (1)	ond (in		Allow marks from a labeled diagram
(b) (i)	2Mg(NO ₃) ₂ →	2MgO + 4NO ₂	+ O ₂ (1)	1	Allow any correct multiple Ignore state symbols
(ii)	has a higher cha	ller than nitrate (i arge density than a higher charge tl	nitrate (ion) /	2	Allow ora Must use correct particle but only penalise once
	magnesium ion attraction to pos	as a stronger attr / nitrate (ion) has itive ion / MgO ha stronger attraction	a weaker as stronger ionic		 'It' refers to oxide (ion) or MgO Allow MgO has stronger bond between charged particles

Mark Scheme Page 2 of 5	Unit Code	Session	Year	Version	
1 age 2 01 5	2815/01	June	2008	Fina	Mark Scheme
Question	Expected Answ	vers		Marks	Additional
1 (c) (i)	-	2 to +3 which is o to +4 which is rec		2	Guidance If no other marks awarded allow one mark for correct identification of all oxidation numbers or ecf from wrong oxidation numbers if both
(c) (ii)	Idea of use of	(2 ×) +929 -82	6 – 297 – 396 /	2	oxidation and reduction identified Allow full marks
	correct use of m = (+)339 (1)				for correct answer with no working out Allow one mark for –590 / –339 / 3377 / –3377 Unit not needed
(iii)	(Moles of SC FeSO ₄ .7H ₂ O = $M_{\rm r}$ of FeSO ₄ .7H	0.00771 (1);	so) moles of	3	Allow (Moles of SO ₂ = 0.004 so) moles of FeSO ₄ .7H ₂ O = 0.008 (1)
	Or M_r of FeSO ₄ .7H (Moles of FeSO 0.005 (1);		b) moles of $SO_2 =$		Allow ecf from wrong moles and/or M_r of FeSO ₄ .7H ₂ O Allow ecf from wrong M_r Allow ecf from wrong moles of SO ₂ Percentage must be quoted to 3 sig figs
				Total = 13	to 3 sig figs

Mark Scheme	Unit Code	Session	Year	Version	
Page 3 of 5	2815/01	June	2008	Final Mark Scheme	
Question	Expected Ansv	vers		Marks	Additional Guidance
2 (a)	MoO₃ + 2AI →	• Al ₂ O ₃ + Mo (1)	1	Ignore state symbols Allow correct multiples
(b)	[Kr] 4d ³ and (Mo ³⁺) has an incomplete filled d- subshell (1)		^{3⁺}) has an incomplete filled d-		Allow has incomplete 4d sub-shell / incomplete d orbital Ignore errors in [Kr]
(c) Correct molar ratio of Mo and Cr species 2 $3MoO_2 + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 3MoO_4^{2-}$ (1); But $3MoO_2 + Cr_2O_7^{2-} + 2H^+ \rightarrow 2Cr^{3+} + H_2O + 3MoO_4^{2-}$ (2)		2	Ignore H^+ , H_2O and e^- in equation For the second mark the H^+ and H_2O must be cancelled down to 2 and 1		
(d) (i)	K ₂ FeO ₄ (1)			1	
(ii) (ii)	Moles of Fe_2O_3 Moles of $OH^- =$			3	
		s since there nee evidence of worki ss (1)			Allow reverse argument e.g. 0.0400 moles of OH ⁻ can only react with 0.004 moles of Fe ₂ O ₃ Allow ecf from wrong moles
				Total = 8	

Mark Scheme	Unit Code	Session	Year		Version	
Page 4 of 5	2815/01	June	2008	Fina	I Mark Scheme	
Question	Expected Answ	vers		Marks Additional Guidance		
3 (a)		oxygen) / ∆H _{at} (1) affinity (of oxyge		4 State symbols needed		
(b)	attraction betwee		ectrostatic mporary dipole –	3	Allow giant ionic / giant intermediate	
	temporary dipole		- induced dipole		Allow simple molecular	
	intermediate bor (1)	t comparison of strength of forces e.g. ediate bonds stronger than van der Waals			Comparison of forces dependent on forces being correct	
(c)	AI_2O_3 does not dissolve / does not react (1); AICI ₃ reacts / AICI ₃ is hydrolysed / polarisation of water molecules by aluminium ion (1)			3	Allow mark from an appropriate equation	
	$AICI_3$ – gives a colourless solution / misty fumes / steamy fumes / pH 1 to 6 (1)				Allow acidic solution / gets hot / exothermic	
(d) (i)	Correct dot and	XX CI X XX)	1	Ignore lack of charge Ignore inner shells	
(ii)			etrahedral (1); etween four bond	2	Allow ecf from wrong dot and cross diagram for a PCl ₄ ⁺ species	
				Total 13		

Mark Scheme	Unit Code	Session	Year		Version	
Page 5 of 5	2815/01	June	2008	Fina	I Mark Scheme	
Question	Expected Answ			Marks	Additional Guidance	
4	electron pair (1);	an electron pair	/ copper accepts	2 Allow even if not a copper complex Allow marks from a diagram		
	Correct shape o or clear drawing (1); Correct bond an • e.g. [Cu(H • e.g. [CuCl. bond angle	formula of copper f a copper compl with indication of gle (1) ${}_{2}O)_{6}]^{2^{+}}$ is octahed ${}_{4}]^{2^{-}}$ is (flattened) for between 90° an	tetrahedral and	3	Allow last two marking points if not a copper complex	
	involving a copp Correct equatior	e of ligand substitu er complex (1); n (1);	ution reaction d with another one	3	Allow all marks from an equation Allow last two marking points if not a copper complex	
	Colour Correct colour o mark for each co	f two copper com prrect colour	plex ions one	2	If one colour given is wrong max 1 If two colours wrong score 0	
	Answer must ad	the following tern lone pair e l al	n set and include	1		
				Total = 11		

2815/02 Biochemistry

Qu	estion	Expected Answers	Marks
1	(a)(i) (ii)	 (α)–Helix in the spiral region ✓ (β)–Sheets where there are parallel strands of amino acids ✓ Hydrogen bonds ✓ Diagram using NH and CO of amide/peptide groups : COHN✓. The link must be dotted or dashed. 	[2]
	(b)	 Two of: Ionic/electrostatic attraction using the N+/ positive charge ✓. Van der Waals (Instantaneous dipole/induced dipole) using the (flat/ aryl/ imidazole) ring or CH₂ or C=C√. Hydrogen bonding using either NH ✓. 	[2]
	(c)(i) (ii)	 Heat energy causes weak/ R–group/sidechain interactions to break ✓. Accept a specific example eg hydrogen bonding. Heavy metal ions react with SH groups/ interfere with disulphide bridges/disrupt van der Waals (Instantaneous dipole/induced dipole) forces/ react with COO⁻ groups ✓ 	[2]
2	(a)	OHCCHOHCHOHCHOHCHOHCH ₂ OH ✓ for the aldehyde/CHO ✓ for the rest. Allow the rest mark if –COOH or a midchain ketone are used instead of aldehyde. Do not allow missing H atoms. Vertical versions acceptable, as are displayed structures. Do not expect stereochemistry.	[2]

(b)	ÇH₂OH	[2]
	н с́—о он сµ₂он \/н \/	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	́н ́с́—́с́н 	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \begin{vmatrix} \checkmark & \bigcirc & \bigcirc & \lor & \land	
	✓ for correct –CH–O–CH– link, ignoring stereochem of CH s. ✓ for the rest including all stereochemistry. The orientation of the OH on the free C1 can be either α or β .	
	They may have either glucose or galactose on the left, and flipped versions, such as the lower one above , are correct. Allow up to two missing H atoms attached to C (slips).	
(c)(i)	Filtration/centrifugation/decant ✓. Not simply tapped off or removed.	[1]
(ii)	Any two points from: • stability (to heat) increased	[2]
()	optimum temperature of enzyme may be increased	L-J
	end product inhibition can be avoidedcontinuous process	
	 can be reused purification of product easier <u>because</u> enzyme will not be present 	

(d)(i)	Increasing concentration gives more chance of/frequent collisions(accept 'more collisions') /First order kinetics operating ✓ Plenty of vacant <u>active/binding sites</u> available. ✓AW	[2]			
(ii)	Inhibitor competes (with substrate) for the <u>active/binding site.</u> Or: The inhibitor binds to the <u>active site</u> reversibly/ because it has a similar shape to substrate/blocking or preventing substrate from binding. AW ✓				
(iii)	Initial inhibition (increase in initial rate is at a shallower angle) and returning to uninhibited V _{max} at high lactose concentrations. ✓	[1]			

3			[7]
		Find six of the following points:	
		Structure(max 4) V V V	
		• $①$ Cellulose molecules have 1 β -4 glycosidic link, amylose	
		1α -4.(Ignore any reference to 1–6.)	
		©Both are polymers of glucose	
		• ③Cellulose molecules are linear/have <u>straight</u> chains.	
		•	
		SIntermolecular hydrogen bonding holds cellulose	
		together/ hydrogen bonding holds cellulose molecules	
		close together. A diagram can help.	
		⑥Hydrogen bonding holds amylase helix together A	
		diagram can help. Function(max 2)✓✓	
		⑦ For amylose accept one of the following:	
		Easily hydrolysed to glucose when needed for energy	
		Compact- does not take up much space (in cell)	
		Insoluble- cannot leave cell	
		Stores much glucose with minimum osmotic effect	
		Not involved in immediate cell metabolism	
		⑧ Cellulose molecules form <u>strong</u> fibres	
		The QWC mark should be awarded to a well organised	
		answer which shows understanding of three of the	
		following : hydrogen bonding, helix, linear, glycosidic link ,	
		$\alpha \beta$, link between structure and function.	
		The answer may be presented as a table.	
4	(a)		[3]
		CH ₂ OCO(CH ₂) ₁₆ CH ₃	
		CHOCO(CH ₂) ₁₆ CH ₃	
		CH ₂ OPOCH ₂ CH(NH ₃ ⁺⁾ COO ⁻	
		A link between stearic acid and glycerol \checkmark	
		Link between phosphate and glycerol \checkmark	
		Link between serine and phosphate.	
		Accept OOC.	
		Allow up to two missing H atoms attached to C on glycerol but	
		not extra OH groups.	
	/h)		[4]
	(b)	van der Waals /instantaneous dipole-induced dipole forces	[1]
		Do not accept' hydrophobic'.	

	(c)(i)		[2]
	(ii)	$\begin{array}{c} H_{2}C \longrightarrow \bigcirc & 0 \\ H_{2}C \longrightarrow \bigcirc & C_{17}H_{33} \\ H_{C} \longrightarrow \bigcirc & C_{17}H_{33} \\ H_{2}C \longrightarrow & OH \\$	[1]
	(d)	 Triglycerides contain a higher proportion of carbon and hydrogen than carbohydrates/ carbohydrates are already partally oxidised/ more C to O or O to H bonds present in carbohydrates √. Energy comes from formation of CO₂ and H₂O/ CO and HO bonds √.(accept oxidation of C and H releases energy) 	[2]
5	(a) (i) (ii)	They should identify: <i>Phosphate attached to</i> C3 <u>and</u> C5 ✓ <i>Base attached to</i> C1 ✓	[2]
	(b)(i)	Chain of nucleotides/chain of sugar- phosphate units ✓ Formed by elimination of water between nucleotide units/sugar– phosphate units/molecules/monomers. ✓	[2]
	(ii)	Hydrogen bonding ✓ between bases AT <u>and</u> CG ✓.This may be given as a diagram. or for second mark NHN or NH O Alternatively accept: van der Waals' forces ✓ between the (non- polar aromatic) rings on the bases ✓	[2]

(c)	Four marks from:	[4]
	 Four points from the following. I A A A. Double helix unwinds with breaking of hydrogen bonds/ van der Waals/mention of enzyme helicase. The <u>complementary</u> base pairs are CG and AT. 3 Exposed bases become hydrogen bonded to bases on free nucleotides/ mention of nucleotide triphosphates/ both strands act as templates for replication Incoming nucleotides attached to growing chain by a (phosphate) ester link / the joining of each nucleotide is catalysed by DNA polymerase Semi-conservative replication/ each of the two resulting double helices contains one original strand and one newly synthesised strand No credit for pyrophosphate formation and hydrolysis. If candidates include RNA in their answer, award a maximum of 3 marks. 	

2815/03 Environmental Chemistry

Que	stion	Expected Answers	Marks
1	(a)(i)	Methane/CH₄. ✓	[1]
	(ii)	Anaerobic/without oxygen ✓	[1]
	(b)(i)	Any two of the following @ ✓✓each.: Plastics: PVC/polythene/polypropylene/ etc Textiles: nylon/terylene/etc.Or cellulose in cotton/protein in wool/ Paper/cardboard: cellulose Plant material: cellulose/starch/etc AW throughout. Allow sensible alternatives	[4]
	(ii)	Reduces bulk of waste/need for landfill sites ✓	[1]
	(iii)	To minimise formation of dioxins, or of HCI from PVC. \checkmark	[1]
	(c)	Batteries. Other sensible alternatives. Not pencils. 🗸	[1]
2	(a)(i)	SiO₄ ✓ Their diagram should show four oxygens attached to the central Si. The correct shape of the unit is tetrahedral ✓ Units share ✓ three of their four oxygen atoms ✓ (with neighbouring units on the sheet.)	[4]

(ii)	$AlO_{6} \checkmark Allow two of the O atoms to have H attached.$ The correct shape of the unit is octahedral \checkmark Their diagram should show six oxygens attached to the central Al with 90° angles	[2]
(iii)	Links between sheets within the layer are due to the sharing of the free O atoms \checkmark / Si–O–Al / comment on covalent bonds \checkmark .	[2]
(b)(i)	Any one e.g. $K^{+,\cdot}$ Must show the correct charge. Accept NH_4^+ , Mg^{2+}	[1]

(ii)	They have a larger available (internal) surface area \checkmark .	[1]
3 (a)	 Five marks from: √√√√√ ① Dissolved CO₂ produces carbonic acid ② Equation H₂O + CO₂ = H₂CO₃ ③ Sulphur dioxide reacts with water and oxygen ✓ ④ to make sulphuric acid .(Allow 1 mark only here for making sulphurous acid instead.) ⑤ Equation SO₂ + H₂O + 0.5O₂ = H₂SO₄ (Allow H₂SO₃ one.) ⑥ Equation for dissociation, partial or complete of carbonic, sulphuric or sulphurous acids ⑦ Carbonic acid weak, sulphuric/ous acid stronger 	[5]
(b)(i)	QWC Well organised response which includes at least one balanced equation and correct use of two of the following terms: dissolved/solution, oxidation/oxidised,	[1]
	weak acid.	[3]
(ii)	Boiling temporary hard water precipitates/ makes insoluble \checkmark CaCO ₃ \checkmark . Symbol equation \checkmark .(Equation + state symbols $\checkmark \checkmark \checkmark$) Ca(HCO ₃) ₂ = CaCO ₃ + H ₂ O + CO ₂ Ion exchange \checkmark . Calcium ions exchanged for sodium/hydrogen ions. \checkmark or equation, eg Ca ²⁺ (aq) + Na ₂ R(s) = CaR(s) + 2Na ⁺ (aq) Accept use of sodium carbonate \checkmark with equation \checkmark . Na ₂ CO ₃ + CaSO ₄ = CaCO ₃ (s) + Na ₂ SO ₄ Or ionic Ca ²⁺ (aq) + CO ₃ ²⁻ (aq) = CaCO ₃ (s)	[2]
(c)	It forms HOCI /chlorate(I)ion/equation ✓ CI ₂ + H ₂ O = HCI + HOCI This is an oxidising agent ✓ which kills bacteria 'Kills bacteria' with an attempt at a chemical explanation ✓ 'Kills bacteria' without such an attempt earns no marks).	[2]
4 (a)	 Accept any three of √√√ Increased by respiration Decreased by photosynthesis Varied by equilibrium(dissolving/evaporation) at water surface Combustion (of fossil fuels/forests/wood/coal etc). Emission from volcanoes 	[3]

(b)(i)	They absorb infrared radiation ✓ which causes the bonds in the molecule to vibrate (more) ✓. IR then radiated back to Earth ✓.	[3]
(ii)	 Any two of: Concentration ✓ Residence time ✓ Ability to absorb IR (in the water window) ✓. 	[2]
(c)	 Any five marks from: VVVV UV radiation Causes CFCI₃ to break down producing CI radical CFCI₃ = CFCI₂ + CI CI radical reacts with ozone CI + O₃ = CIO + O₂ CIO reacts with O atom CIO + O = CI + O₂ Mention of chain reaction or regeneration of CI O produced by photolysis/decomposition of O₃/NO₂/O₂ Accept a description in words instead of one only of the above equations. Termination reactions are not required. 	[5]

2815/04 Methods of Analysis and Detection

Question		Expected Answers	Marks
1a	i	$C_{3}H_{7}^{35}Cl^{+} \checkmark$	
		$C_{3}H_{7}^{37}CI^{+}\checkmark$ (penalise lack of + charge only once on the paper)	
	ii	3:1 ✓	1
b		$CH_3CH_2^+/CH_3CH_2CH_2^+/CH_2CI^+/C_2H_5^+/C_2H_4CI^+\checkmark$ Do not allow $C_3H_7^+$	1
C	i	CO_2 –calculation \checkmark C_3H_8 –calculation \checkmark	2
	ii	Exactly the same M_r / the same number of atoms of each element	1
			7

Question		Expected Answers	
2a i		mobile phase = solvent/water <pre> </pre>	2
		stationary phase = solid/SiO ₂ /Al ₂ O ₃ \checkmark	
	ii	mark consequentially to (a) (i)	2
		If stationary phase = SiO_2/AI_2O_3 - adsorption in stationary phase \checkmark	
		separation depends on attraction of solutes for the	
		stationary phase. / relative solubility in solvent ✓ or	
		If stationary phase = solvent trapped in cellulose – partition \checkmark separation depends on relative solubility	
		between the mobile and the stationary phases. \checkmark	
	iii	Ninhydrin / iodine ✓ allow appropriate locating agent e.g. uv	1
b		run in one solvent \checkmark rotate through 90° and run in a different solvent \checkmark	
		More effective as it is highly unlikely that any two solutes will have the same $R_{\rm f}$ values in two different solvents \checkmark	3
С	i	3 √	1
	ii	(1.1/3.9 = 0.28) range of 0.23 – 0.33 ✓	1
d		pH = 2	1
		H ✓	
		ССООН	
		H_3N' H	
е		order from left to right is $\mathbf{C} - \mathbf{D} - \mathbf{B} - \mathbf{E}$	
		correct order scores all 3	3
		B remains at starting point scores 1	
		E moves towards negative scores 1	
		C & D correct scores 1	
			14

Question	Expected Answers	Marks
3a	electron falls from high level to a lower levels & emits (electromagnetic) radiation ✓	1
b i	electrons fall from higher levels back to same lower level√	1
ii	electrons fall back to different lower levels√	1
c i	5.08 x 10^{14} \checkmark s ⁻¹ /Hz \checkmark	2
ii	ecf on (i) E = hfL \checkmark E = 203000/ 2.03 x 10 ⁵ J mol ⁻¹ \checkmark 3 Significant figures \checkmark	3
d	uses graph to obtain Na ⁺ content = 550 μ g \checkmark x 100 = 55000 μ g \checkmark ecf 5.5% \checkmark ecf	3
		11

Question	Expected Answers	Marks
4a	Calculates empirical to be $C_2H_4O - must$ see working (%/Ar) \checkmark empirical mass = 44 \checkmark M_r = 88 hence molecular formula is $C_4H_8O_2 \checkmark$	3
b	infra-red: identifies C=O at about 1700 cm ⁻¹ /1680–1750 \checkmark identifies C=O at about 1100 cm ⁻¹ /1000–1300 \checkmark identifies O-H at about 3500 cm ⁻¹ /3230–3550 \checkmark nmr: Four different H environments \checkmark $\delta = 1.4 \text{ CH}_3$ split into a doublet showing it to be next to a CH \checkmark $\delta = 2.2 \text{ CH}_3$ next to a C=O singlet – no Hs on the adjacent C \checkmark $\delta = 3.7$ due to OH \checkmark $\delta = 4.2$ due to H next to CH ₃ because it is split into a quartet \checkmark identifies compound F as 3-hydroxybutanone/ \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	9
QWC	Uses three correct scientific terms such as: fingerprint region, wavenumber, abundance, chemical shift, splitting patterns, environment, doublet, singlet, quartet, , absorptions, peak or correct units such as cm^{-1} , δ , ppm,	1
		13

2815/06 Transition Elements

Mark Scheme	Unit Code	Session	Year	Version
Page 1 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates ma NOT = answers which () = words which	arking points ch are not worthy of cre are not essential to gai key words which <u>must</u> forward ording	n credit	l ioint
Question	Expected Answers	5		Marks
1 (a) (i)	Pink to blue			1
(ii)	Tetrahedral			1
(iii)	Ligand substitution			1
	Accept ligand excha	ange		
(b)	H 100 H	$ \begin{array}{c} H \\ C \\ - \\ - \\ - \\ H \end{array} $,н	
	-	n both nitrogens one pair shown on nit ligand is shown as a	-	1
(c) (i)	Optical			1
(ii)	(en) Cor	en e	n Cor	2
	Accept three loops Accept other correct Ignore charges or la	t ways of showing 3-c	d structure	Total: 7

Mark Scheme	Unit Code	Session	Year	Version
Page 2 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates ma NOT = answers whic () = words which a	h are not worthy of cred are not essential to gain key words which <u>must</u> b orward ording	it credit	nt
Question	Expected Answers			Marks
2 (a)	Fe ³⁺ / Fe ²⁺ half cell Combined with a (sta	otential difference of a andard) hydrogen half m ⁻³ (accept equimolar	cell	1 1
	and Pressure of gas 1 atr (all three needed)	m / 100 / 101 kPa		1
(b)	-	uding voltmeter and sa	-	1
		or Fe ³⁺ / Fe ²⁺ half cell	labelled	1
H₂(g)	Fe ³⁺ / Fe ²⁺		Salt bridge	
H⁺		Fe ³⁺ / Fe ²⁺	Pt	

(c) (i)	Emf = (+) 0.23 V	1
(ii)	$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$	1
	Electrons must be cancelled	
	Accept multiples	
		Total: 8

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates n NOT = answers wh () = words which	narking points lich are not worthy of o n are not essential to o) key words which <u>mu</u> d forward wording	rs for the same marking po credit gain credit I <u>st</u> be used to gain credit	j bint
Question	Expected Answer	S		Marks
3 (a)			$d_{x}^{2} - y^{2}$ d_{z}^{2}	
	Split 2 higher, 3 lov Correct labels If reversed award 1		d _{xz} d _{yz}] 1 1
(b)	Correct d_{xy} with lat Correct $d_{x^2-y^2}$ with			1

(c)	In octahedral complexes d-electrons are repelled/made less stable by ligand lone pairs or, ligands approach along x , y and z axes AW Repulsion/interaction between ligand 'lone pair' and axial orbitals is greater than for inter-axial orbitals	1
(d)	Idea of different energy gaps Idea of different frequency / wavelength / colour of visible light absorbed or transmitted	1 1
(e)	Complex A is red-blue / violet-red / purple / magenta Complex B is violet / violet-blue / mauve / blue	1 1 Total: 10

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates n NOT = answers wh () = words which	hich are not worthy of on are not essential to g b) key words which <u>mu</u> d forward wording	credit gain credit	
Question	Expected Answer	S		Marks
4 (a)	Standard cell potential is + 0.37 V Standard cell potential is positive therefore the reaction is feasible Alternative: Second equilibrium is less positive and will move from right to left supplying electrons First equilibrium will accept electrons and move from left to right so that equation as written is likely to occur.			1
(b)	Oxidation <u>and</u> redu Of the same specie			1 1
(c)	As solid / in non ac aqueous solution	jueous solvents / wh	nen <i>not</i> in	1 Total: 5

Mark Scheme	Unit Code	Session	Year	Version
Page 5 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates n NOT = answers wh () = words which	hich are not worthy of on are not essential to g b) key words which <u>mu</u> d forward wording	credit gain credit	
Question	Expected Answer	S		Marks
5 (a)	Zinc (Accept Zn)			1
(b)	to straw coloured accept colour <u>starts</u> Starch indicator ad coloured End point is when 'off white' precipita $2Cu^{2^+} + 4I^- \rightarrow 20$ mark for balanced) $I_2 + 2S_2O_3^{2^-} \rightarrow 3$ species 1 mark for Quality of Written 0 One mark awarded	blue/black colour dist te / solid Cul + I_2 (1 mark fo $2I^- + S_4O_6^{2-}$ (1 ma balanced)	rraw coloured / int / when straw sappears to leave r correct species 1 rk for correct	1 1 1 2 2 1

(c)	Moles $S_2O_3^{2-}$ used = 0.00378 moles	1
	$25 \text{ cm}^3 \text{ Cu}^{2+} = 0.00378 \text{ moles}$	1
	$500 \text{ cm}^3 \text{Cu}^{2+} = 0.0756 \text{ moles } \text{Cu}^{2+}$	1
	Mass of Cu = 0.0756 x 63.5 = 4.80 g	1
	% Cu = (4.80/6.00) x 100 = 80.0%	1
	Allow ecf on the calculation.	
		Total: 15

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question	Expected Answers					Marks
1 (a)	$K_c = \frac{[CH_3COOH]}{[CH_3COOC_2H]}$ Square brackets req	uired.				[1]
(b)(i)	Do not award if <i>p</i> us componentCH ₃ COO		ere H ₂ O	CH ₃ COOH		[2]
(b)(i)				-		[2]
	initial amount /mol	8.0	5.0	0.0	0.0	
	⇒ amount /mol	6.0	3.0	2.0	2.0	
(ii)	Allow 6, 3, 2 and 2 (i	✓e without	'.0')	\checkmark		[0]
	moles of component total number of mo	v				[2]
	For 'component', all	ow a spec	cific exam	ple or 'substa	nce'	
	moles of a compone number of moles	nt relative	to OR co	mpared with	total	
	credit 'amount' in pla	ace of 'mo	oles'			
	2/total moles in (i) = ie answer depends c		. ,			
	allow 0.153846153 a figs	-		-	2 sig	
	If 2/13 is shown, the	n ignore a	inything th	at follows.		
	$K_c = \frac{2.0 \times 2.0}{6.0 \times 3.0} = 4.$					[3]
	Credit units if shown	no unit		ÖR 'none' ✓		
	For ECF, the values from (b)(i).	used sho	uld be the	e candidate va	alues	
	If K_c expression is in response is from an				e ECF	
(c)	equilibrium/reaction products ✓	n has shi	fted to the	e right/in favo	ur of	[3]
	forward reaction is e allow 'it is endotherr			n is endother	mic'	
	K_c has increased \checkmark					
	<u> </u>					11

2 (a)(i)	Expt 2: initial rate = $4.6 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	[3]
	Expt 3: initial rate = 2.3×10^{-6} mol dm ⁻³ s ⁻¹ \checkmark	
	Expt 4: initial rate = $5.75 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	
	If powers of ten are not shown, then do not credit on the first occasion. Then treat as <i>ECF</i> .	
(ii)	$k = \frac{\text{rate}}{[H_2O_2] [I^-]} OR \frac{2.30 \times 10^{-6}}{0.020 \times 0.010} \checkmark$	[3]
	 = 1.15 x 10⁻² / 0.0115 / 0.012 ✓ units: dm³ mol⁻¹ s⁻¹ ✓ allow: mol⁻¹ dm³ s⁻¹ Correct numerical value automatically gets the 1st mark also, even if values from a different experiment have been used. 	
	If an incorrect rate value is used from (a)(i), then mark 2nd mark and units mark are available (ie <i>ECF</i>)	
(iii)	Overall reaction: 1 mol H_2O_2 reacts with 2 mol I ⁻ and 2 mol H ⁺ / shows stoichiometry/shows mole ratio \checkmark	4 marking points
	2nd order (overall) OR 1st order wrt H_2O_2 and 1st order wrt I^- / rate determining step involves H_2O_2 and $I^- \checkmark$	giving 3 max
	rate is not affected by H^+ / the reaction is zero order wrt H^+ / the rate determining step does not involve $H^+ \checkmark$ Note that '[H^+] is a catalyst' will <i>CON</i> this marking point.	
	reaction must proceed via more than one step \checkmark	
(b)		[1]
	rate of reaction	
	straight line increasing through 0,0 ✓	
	0 [I ⁻ (aq))] /mol dm ⁻³	
	Allow 2 mm tolerance on 0,0	

(c)	H : O : N : C = 6.38/1 : 51.06/16 : 29.79/14 : 12.77/12 OR = 6.38 : 3.19 : 2.13 : 1.06 ✓ empirical/molecular formula = H ₆ O ₃ N ₂ C ✓ Correct empirical formula automatically gets 1st mark $M_r = 6 + 48 + 28 + 12 = 94 \checkmark$ 150 cm ³ of solution needs 2.30 x 150/1000 = 0.345 mol ✓ mass required = 94 x 0.345 = 32.43 g ✓ 	[5]
	150 cm ³ of solution needs 2.30 x 150/1000 = 0.345 mol \checkmark	15

3	(a)	partly dissociates/ionises ✓ proton/H ⁺ donor ✓	[2]
	(b)	(K _w =) [H ⁺ (aq)] [OH ⁻ (aq)] ✓ state symbols not needed	[1]
		$[H^{+}(aq)] = 10^{-pH} = 10^{-12.72} = 1.91/1.9 \times 10^{-13} \text{ mol dm}^{-3} \checkmark$ $[KOH] / [OH^{-}(aq)] = \frac{K_{w}}{[H^{+}(aq)]} = \frac{1.0 \times 10^{-14}}{1.91 \times 10^{-13}}$ $= 0.0524 \text{ mol dm}^{-3} \checkmark (\text{calculator: } 0.052480746)$ Accept any value between 0.052 and 0.053 (answer depends on degree of rounding for H ⁺ but 2 sig fig minimum.)	[2]
		Alternatively via pOH pOH = 14 - 12.72 = 1.28 \checkmark [KOH] / [OH ⁻ (aq)] = 10 ^{-pOH} = 0.0524 mol dm ⁻³ \checkmark (calculator: 0.052480746)	
	(c)	<i>n</i> (vitamin C) = 0.500/176 = 2.84 x $10^{-3} \checkmark$ [vitamin C] = 1000/125 x 2.84 x 10^{-3} = 0.0227(2) mol dm ⁻³ \checkmark	[6]
		$K_{a} = \frac{[H^{+}] [C_{6}H_{7}O_{6}^{-}]}{[C_{6}H_{8}O_{6}]} \checkmark = \frac{[H^{+}]^{2}}{[C_{6}H_{8}O_{6}]}$	
		$[H^+] = \sqrt{(K_a \times [C_6 H_8 O_6])} OR \sqrt{(6.76 \times 10^{-5} \times 0.0227)} \checkmark$	
		 = 1.24 x 10⁻³ mol dm⁻³ ✓ (must involve a square root of two numbers multiplied together) 	
		pH = $-\log(1.24 \times 10^{-3}) = 2.91 \checkmark$ Accept a calculated value between 2.90 to 2.91	
		Common incorrect responses: 4.41 would score 5 marks (uses cm ³ instead of dm ³) 5.91 would score 5 marks (conversion multiplies by 1000 instead of dividing by 1000) 5.81 would score 5 marks (no square root)	
		2.1 would score 1 mark in isolation ([H ⁺] = $\sqrt{K_a}$)	
			13

4	Buffer A buffer solution minimises/resists/opposes pH changes ✓ Do not allow 'keeps pH constant'.	[1]
	How a buffer works Mark this part for any of the possible buffer systems above. equilibrium: HA $H^+ + A^- \checkmark$	[5]
	HA reacts with added alkali / HA + $OH^- \rightarrow /$ added alkali reacts with $H^+ / H^+ + OH^- \rightarrow \checkmark$	
	$\rightarrow A^-$ / Equil \rightarrow right \checkmark	
	A [–] reacts with added acid / [H ⁺] increases \checkmark	
	\rightarrow HA / Equil \rightarrow left \checkmark	[2]
	Components methanoic acid / HCOOH ✓ sodium methanoate / HCOONa ✓ <i>ECF</i> : salt of weak acid chosen above. Do not allow a carboxylate ion	[1]
	Quality of Written Communication A correct equation and a correct chemistry sentence related to buffers ✓ Write Q by equation and tick through QWC prompt	
		9

5 (a)	stage 1 $CaCO_3 \longrightarrow CaO + CO_2 \checkmark$	[3]
	stage 2 $2CaO + 5C \longrightarrow 2CaC_2 + CO_2 / CaO + 3C \longrightarrow CaC_2 + CO \checkmark$	
	stage 3 $CaC_2 + N_2 \longrightarrow CaCN_2 + C \checkmark$ ignore state symbols. These are the only acceptable equations. For stage 2, O_2 is not an acceptable product.	
(b)		[2]
	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & $	
(c)	$\begin{array}{l} \mbox{CaCN}_2 + 3H_2O \longrightarrow CaCO_3 + 2NH_3 / \\ \mbox{CaCN}_2 + 3H_2O \longrightarrow CaO + CO_2 + 2NH_3 / \\ \mbox{CaCN}_2 + 4H_2O \longrightarrow Ca(OH)_2 + CO_2 + 2NH_3 / \\ \mbox{CaCN}_2 + 2H_2O \longrightarrow CaO + CO(NH_2)_2 / \\ \mbox{CaCN}_2 + 3H_2O \longrightarrow Ca(OH)_2 + CO(NH_2)_2 / \\ \mbox{CaCN}_2 + 4H_2O \longrightarrow CaO + (NH_4)_2CO_3 / \\ \mbox{CaCN}_2 + 5H_2O \longrightarrow Ca(OH)_2 + (NH_4)_2CO_3 \\ \mbox{or other correct alternative.} \\ \mbox{Products must be compounds, not elements such as N_2 and } \\ \mbox{H}_2, O_2, Ca and C. \\ \mbox{Equation that forms a sensible calcium compound, eg} \\ \mbox{CaCO}_3, CaO, Ca(OH)_2, Ca(HCO_3)_2, Ca(NO_3)_2 \checkmark \\ \mbox{caCO}_3/CaO/Ca(OH)_2/Ca(HCO_3)_2/NH_3 react with acid soils } \end{array}$	[4]
	\checkmark	
	$NH_3 / (NH_4)_2CO_3 / CO(NH_2)_2$ acts as fertiliser \checkmark	
(d)	$\begin{array}{l} \text{CaC}_{2} + 2\text{H}_{2}\text{O} \longrightarrow \text{C}_{2}\text{H}_{2} + \text{Ca}(\text{OH})_{2} / \\ \text{CaC}_{2} + \text{H}_{2}\text{O} \longrightarrow \text{C}_{2}\text{H}_{2} + \text{CaO}:\checkmark \\ \hline M(\text{CaCO}_{3}) = 100.1 \text{ (g mol}^{-1}) \checkmark \text{ Not } 100 \\ n(\text{CaCO}_{3}) = 20 \times 10^{3} / 100.1 = 199.8 \text{ mol }\checkmark \text{ allow } 200 \text{ mol} \\ \hline \text{Same number of moles } \text{C}_{2}\text{H}_{2} \text{ formed,} \\ \text{volume } \text{C}_{2}\text{H}_{2} = 199.8 \times 24 = 4795.2 \text{ dm}^{3} \checkmark \text{ allow } 4800 \text{ dm}^{3} \\ \hline \text{Calc value } = 4795.204795 \text{ dm}^{3} \\ 2\text{C}_{2}\text{H}_{2} + 5\text{O}_{2} \longrightarrow 4\text{CO}_{2} + 2\text{H}_{2}\text{O} / \\ \hline \text{C}_{2}\text{H}_{2} + 2^{1}/_{2}\text{O}_{2} \longrightarrow 2\text{CO}_{2} + \text{H}_{2}\text{O} / \\ 2\text{C}_{2}\text{H}_{2} + 3\text{O}_{2} \longrightarrow 4\text{CO} + 2\text{H}_{2}\text{O} / \\ \hline \text{C}_{2}\text{H}_{2} + 1^{1}/_{2}\text{O}_{2} \longrightarrow 2\text{CO} + \text{H}_{2}\text{O} / \\ \hline \end{array}$	[5]
		1 1 1

2816/03 Unifying Concepts in Chemistry/ Experimental Skills 2 Practical Examination

Skill P 16 marks maximum (out of 19 available)

A titration (T) must be used as one method.

For the second method, several alternatives are available, including:

- P (Precipitation)
- G (Gas Measurement
- *N* (Enthalpy of neutralisation)

A number of other methods, such as a "thermometric titration" and neutralisation followed by evaporation, were also credited

Titration method (T) – 7 marks

T1	Controlled dilution of concentrated NaOH provided Use of pipette, distilled water and [any] volumetric flask are required for this.	[1]
T2	Uses dilution volumes that produce [NaOH] between 0.020 and 0.20 mol dm ⁻³ and states correct concentration when diluted and simple justification (eg by ratio of volumes) or related safety comment Do not allow a volume less than 5.0 cm ³ (or "awkward to measure" volumes)	[1]
Т3	Titrate with specified acid of suitable stated concentration <i>and</i> the chemical equation for the reaction selected	[1]
T4	Statement of use of pipette and burette in titration procedure Acid and alkali may be used either way round in the apparatus	[1]
Т5	Obtain two consistent/ concordant titres (<i>or</i> within 0.1 cm ³)	[1]
Т6	Named indicator and correct final colour Phenolphthalein is colourless (if acid in burette) or pink (not purple) (alkali in bure Many other indicators are acceptable if a strong acid is used.	[1] ette)
Τ7	Sketched pH curve to justify choice of indicator. Sketch must show indicator "change range" within sudden pH change.	
Prec	cipitation method (P) – 8 marks	
P1	Pipette a known/specified volume of the NaOH provided	[1]
P2	Add <u>excess</u> of a solution of a suitable reagent for the precipitation reaction and this ensures that all of NaOH reacts Any soluble salt of Mg, Cu, Ni or Fe (etc) is suitable.	[1]
P3	Equation/ionic equation for reaction, with state symbols eg CuSO₄(aq) + 2NaOH(aq) → Na₂SO₄(aq) + Cu(OH)₂(s)	[1]
P4	Calculate [minimum] <u>mass</u> of salt to be added to NaOH Calculation does not need to allow for mass of water of crystallisation	[1]

2816	5/03	Mark Scheme	June 2008
P5	Filter mixture using pre-weighed fil	ter paper	[1]
P6		ons [to ensure complete reaction] all traces of precipitate [from beaker] into fi chner filtration per (or multiple thickness) paper] with distilled water	lter paper [1]
P7	Dry residue in an oven/ hot cupboa	ard/ desiccator <i>and</i> re-weigh to constant ma	ss [1]
P8	Specimen calculation of [NaOH] fr Calculation must include con eg Cu(OH) ₂ = 97.5	om mass of precipitate/residue obtained crect <i>M_r value</i>	[1]
Gas	s collection method (G) – 8	marks	
G1	Use powdered zinc/aluminium with	n <u>undiluted/2M</u> NaOH	[1]
G2	Valid equation for the reaction cho 2AI + 2NaOH + $6H_2O \rightarrow 2NaAI(O)$ or 2AI + 2NaOH + $2H_2O \rightarrow 2NaAI$ or Zn +2NaOH + $2H_2O \rightarrow Na_2ZnO$ or 2AI + $6NaOH \rightarrow 2Na_3AIO_3 + 3H$ or 2AI + $6NaOH + 3H_2O \rightarrow 2Na_3AI$	$(H)_4 + 3H_2$ or Zn +2NaOH + 2H ₂ O → Na ₂ O ₂ + 3H ₂ O ₂ + H ₂ H ₂	[1] Zn(OH) ₄ + H ₂
G3	Justify volume of NaOH by calcula	tion, so that collecting vessel is not over-fille	ed [1]
G4	Calculate mass of Al or Zn needed	and states that it is used in excess.	[1]
G5	Diagram showing apparatus used flask with gas collection in a gas	: syringe/measuring cylinder/inverted burette	[1]
G6	 Description includes the three requires the volume of NaOH using a the mass of Al or Zn the volume of gas collected volume 		[1]
G7	An "inner tube" (<i>or</i> equivalent prec reagents apart <i>or</i> prevent prematu	aution) containing one reagent is needed to re reaction/gas loss.	keep
G8	Calculation of [NaOH] from volume	e of gas collected	[1]
Enth	alpy of neutralisation method (N)	– 8 marks	
N1	Measure 2M NaOH solution with a	pipette/burette	[1]
N2	Add measured <u>excess</u> (+ reason) <i>Reason: to ensure that all Na</i>	of specified acid from burette/ pipette aOH reacts/ is neutralised	[1]
N3	Calculation to justify [minimum] vo	lume (or concentration) of acid selected	[1]
N4	Measure initial temperatures of bo	th solutions	

281	6/03 Mark Scheme	June 2008
	and measure maximum temperature reached when mixed/ after reaction	[1]
N5	Precautions: stir mixture <i>and</i> use a plastic cup, calorimeter <i>or</i> a vacuum flask	[1]
N6	Repeat whole experiment <i>and</i> take mean of temperature rise <i>or</i> until consistent temperature rise obtaine	ed [1]
N7	Calculation of the heat change (with unit) The sum of the volumes of the two solutions must be used in $m \times s \times \delta T$	[1]
N8	Comparison with enthalpy change of neutralisation for 1 mole (ΔH_{neut}) and calculation of the concentration of NaOH Candidate must refer to use of data source for value of ΔH_{neut} = -57kJ m	[1]
Safe	ety, sources and qwc (S) – 4 marks	
S1	Risk assessment for sodium hydroxide in the procedure chosen NaOH is corrosive: wear gloves <i>or</i> face shield when handling/pouring. <i>or</i> NaOH is corrosive: wash spillages with plenty of water	[1]
S2	 Two sources quoted in the text or at end of Plan. Book references must have chapter or page numbers Internet reference must go beyond the first slash of web address Accept one reference to a specific "Hazcard" 	[1]
S3	QWC : text is legible and spelling, punctuation and grammar are accurate <i>Candidate makes no more than 5 different types of error in legibility, spe</i> <i>punctuation or grammar.</i>	[1] Illing,
S4	 QWC: information is organised clearly and coherently Is a word count given and within the limits 450 – 1050 words? Is scientific language, including units, used correctly? Are the descriptions logical and without lots of irrelevant or repeated mate 	[1] terial?
Prac	ctical Test (B)	
Part	1 (page 3) – 5 marks	
Fou	r mass readings, listed and clearly labelled	[1]
All r	eadings quoted to 2 dp (or 3 dp consistently) and unit (g) given for each	[1]
Two	accuracy marks for mass loss are awarded relative to Supervisor's results. Mass loss (CO_2) = readings $(1 + 2 - 3 - 4)$ Candidate's mass loss is within 0.10 g (incl) of supervisor award 2 marks Candidate's mass loss is within 0.25 g (incl) of supervisoraward 1 mark	

Acid <u>spray</u> is harmful to eyes *or* acid <u>spray</u> is irritant

[1]

Part 2 (page 4) - 7 marks

13 readings of maximum temperature shown in table All readings must be recorded to nearest 0.0 or 0.5oC, as instructed on paper.	[1]
Initial reading shown (V = 0) at a "sensible" room temperature (within 2.0oC of supervisor) and readings show a continuous increase to a max temperature then a continuous fall	[1]
There are 5 accuracy marks awarded from the results table (not from the graph)	
Volume of acid added for highest temp recorded is same as supervisor → 2 marks Award 1 mark if volume of acid added for maximum is within 2.0 cm3 of supervisor Maximum temperature rise recorded is within 0.5oC of supervisor's → 3 marks Maximum temperature rise is within 1.0oC of supervisor's → 2 marks Maximum temperature rise is within 2.0oC of supervisor's → 1 mark	[2] [3]
Part 3 – 10 marks	
[Page 5 - 5 marks]	

(a)	Graph axes labelled with names/symbols and units and temp as y-axis	[1]
	Sensible <u>uniform</u> scales for both axes Plotted points must use at least half of the large squares (7 x 5)	[1]
	Points plotted correctly (within half of a small square) Two best fit lines/curves plotted The LHS will be a curve – allow curve or line for RHS, if it is the best fit.	[1] [1]
	Two lines/curves show a distinct intersection (not rounded at maximum)	[1]
[Pag	e 6 – 5 marks]	
(b)	Maximum temperature reached, read from graph to 1 d.p. Answer must be given to 3 sig fig and be correct to nearest 0.5oC (or closer)	[1]
(c)	Suitable volume of sulphuric acid, G , for neutralisation volume chosen For a plateau graph, the middle of the plateau must be selected	[1]
(d)	LHS: as more acid is added and more reacts, more heat is produced	[1]
	MAX: all alkali neutralised/reacted [so maximum amount of heat produced]	[1]
	RHS: cold acid added cools the solution down	[1]

Part 4 – 8 marks

[Page 7 – 5 marks]

All answers are required to 3 significant figures.

- (a) Mass loss correctly calculated (readings 1 + 2 3 4) [1]
- (b) Number of moles calculated correctly from data = mass $loss/_{44}$ [1]

Mark Scheme

June 2008

(C)	2 NaHCO ₃ + H ₂ SO ₄ \rightarrow	Na ₂ SO ₄ + 2CO₂ + 2H₂O	[1]
• •	ě 1		

(d) n(sulphuric acid) used = 0.5 x (b) [= 0.030 mol approx] [1] *This is a method* mark for correct use of the 2:1 mole ratio

Answer: concentration of acid correctly calculated = $["b" \times 0.5 \times 1000/_{25}]$ [1]

[Page 8 – 3 marks]

(a)(i) $2N_{2}O_{1} + H_{2}O_{2} \rightarrow N_{2}O_{2} + 2H_{2}O_{2}$	[1]
(e)(i) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$	[1]

(ii) No of moles of sulphuric acid used = $1/_{1000} x$ "4d" x "3c" (= volume at max) [1]

Concentration of NaOH correctly calculated from candidate's answer to 4(d) [1] Concentration of NaOH = $[2 \times 1000/_{25} \times moles of acid G] = 0.080 \times "4d" \times "3c"$

Part 5 – 14 marks maximum (but 15 marks possible)

[Page 9 – 5 marks available]

(a) 2 marks

(b)

(C)

C1

C2

C3

C4

D1

	<i>n</i> (NaHCO ₃) = 1.25 x 0.025 x 2 [= 0.0625 mol]	[1]
	mass of NaHCO ₃ = 2 x 0.03125 x 84 = 5.25 g … so 6g is excess Answer allowed to 2, 3 or 4 sig fig	[1]
)	3 marks available (but only 2 on the question paper)	
	Gives time for the reaction to finish	[1]
	Gives time for CO ₂ (not "gas") to escape from/ diffuse out of flask	[1]
	Carbon dioxide is denser than air so it diffuses slowly or CO ₂ is denser than air, so mass of flask and contents would be too high	[1]
)	Page 10 - 8 marks maximum (but 11 marking points)	
,	Page 10 - 8 marks maximum (but 11 marking points) Heat is lost/transferred	[1]
		[1] [1]
	Heat is lost/transferred by convection or escape of heat through top or by loss of acid spray	
) ? !	Heat is lost/transferred by convection or escape of heat through top or by loss of acid spray or by conduction or escape through sides/bottom	[1]
	Heat is lost/transferred by convection or escape of heat through top or by loss of acid spray or by conduction or escape through sides/bottom Use a lid on cup or use thicker plastic/ dewar flask/ lagging with insulation If <u>both</u> conduction and convection are <u>specifically</u> named, this mark can	[1] [1]

D2	Use a thermometer reading to 0.1/0.2°C or to more decimal places or use a more accurately <u>calibrated</u> instrument Do not allow "digital thermometer" or similar without reference to calibration	
D3	Calculation of the percentage error for any reading or rise in temperature eg % error in temp = ${}^{0.5}/_{25} \times 100 = 2.0\%$. (Allow answer = 4%)	[1]
D4	An extra mark for correctly calculating % error for a rise in temperature	[1]
E1	Volumes of acid added are too small to be accurate or large <u>percentage</u> error in reading burette volumes	[1]
E2	Calculated % error for 2 cm ³ addition = ${}^{0.05}/_{2.0} \times 100 = 2.5\%$. (Allow = 5%)	[1]
E3	Use larger additions of acid from burette and a larger volume of alkali or Use a burette with a narrower bore or use a more accurately calibrated burette or Carry out a series of separate experiments with different volumes of acid	[1]
Note	- The following alternative answers in the "burette strand" E are also valid (2 marks).	
E4	Volumes of acid added near maximum/end point are too large	[1]
E5	Add smaller volumes so that end point may be determined with more precision	[1]
(d)	Page 11 – 2 marks	
	Student should repeat each reading to get consistent results or procedure is unreliable since only one set of readings was taken	[1]
	All points on graph are close to the best fit curve/lines, so they are reliable (ora) Explicit link between correlation and reliability is needed for this mark	[1]

Grade Thresholds

Advanced GCE Chemistry (3882/7882) June 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
2811	Raw	60	48	42	36	31	26	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	47	40	33	26	19	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	93	84	75	66	57	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	93	84	75	66	57	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	87	76	65	55	45	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	66	58	50	42	34	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	74	65	57	49	41	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	73	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	74	67	60	53	46	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	72	64	56	49	42	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	99	89	80	71	62	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	99	89	80	71	62	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	92	82	73	64	55	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	C	D	E	U
3882	300	240	210	180	150	120	0
7882	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3882	20.0	38.9	57.1	73.2	86.5	100	15165
7882	30.9	56.9	75.8	88.5	96.4	100	11473

26638 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

