Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

June 2007

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME FOR THE UNITS

Unit Content Page
2811 Foundation Chemistry 1Chains and Rings9
How Far? How Fast? / Experimental Skills 1 15
Written Paper
2813/03 How Far? How Fast? / Experimental Skills 1 21
Practical Examination
2814 2815/01
Chain, Rings and Spectroscopy 29 45
Trend and Patterns
Trend and Patterns2815/02
2815/03 Environmental Chemistry 57Biochemistry49
2815/04 Methods of Analysis and Detection 63
2815/05
2815/06 Transition Elements 75Gases, Liquids and Solids69
Unifying Concepts in Chemistry/Experimental Skills 83
2 Written Paper
2816/03 Unifying Concepts in Chemistry/Experimental Skills 93
2 Practical Examination
Grade Thresholds 100

Mark Scheme 2811

 June 2007
ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $\quad=$ contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme		= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected answers	Marks
1 (a)	1, 2 or 3 p orbitals are OK	[2]
(b)	d orbital $2 \checkmark$ p sub-shell $6 \checkmark$ 3rd shell $18 \checkmark$	[3]
(c) (i) (ii)	2s and $2 p$ labels \checkmark Ignore any superscripted numbers. 8 electrons in correct levels with arrows correctly shown \checkmark	[2]
(d) (i) (ii) (iii)	Energy change when each atom in 1 mole of gaseous atoms \checkmark loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions). $\mathrm{O}^{2+}(\mathrm{g}) \longrightarrow \mathrm{O}^{3+}(\mathrm{g})+\mathrm{e}^{-} \checkmark \checkmark$ 1 mark for correct species; 1 mark for state symbols No charge required on electron. Ignore (g) on e Large difference between 6th and 7th IEs \checkmark marking a different shell (closer to nucleus) \checkmark allow 'inner shells'/new shellfull shell/first shell marking points independent. not sub-shell or orbital	[3] [2] [2]
		Total: 14

Abbreviations, annotations and conventions used in the Mark Scheme		= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected answers	Marks
(ii) (iii)	```mass \(=0.0500 \times 23.0=1.15 \mathrm{~g} \checkmark\) moles \(\mathrm{H}_{2}=0.0250 \checkmark\) volume \(\mathrm{H}_{2}=0.0250 \times 24=0.600 \mathrm{dm}^{3} \checkmark\) ecf from calculated moles \(\mathrm{H}_{2}\) 0.0500 mol in \(50.0 \mathrm{~cm}^{3}\) concentration \(=0.0500 \times 20=1.00 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark\)```	[1] [2] [1]
(b)	Also accept Na with full shell as long as it contains ' x 's (as in example above) Ignore any inner shells correct dot and cross \checkmark correct charges	[2]
(c) (i) (ii) (iii)	$\begin{aligned} & 2 \mathrm{Na}+\mathrm{O}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{O}_{2} \checkmark \\ & \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{NaOH} \end{aligned}$ correct covalent bonds shown \checkmark electron count (14) for rest of molecule correct	[1] [1] [2]
		Total: 10

Abbreviations, annotations and conventions used in the Mark Scheme		= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected answers	Marks
3 (a)	add $\mathrm{AgNO}_{3} /$ add $\mathrm{Ag}^{+} \checkmark$ ignore ammonia white (precipitate)/goes white/precipitate that dissolves in dilute $\mathrm{NH}_{3}(\mathrm{aq}) \checkmark$ $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \checkmark$ (ignore state symbols)	[3]
(b)	add $\mathrm{NaOH} \checkmark$ $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ or partial or completely ionic equation: $\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$	[2]
(c)	number of electrons /electron shells increases down group \checkmark van der Waals' forces /induced dipole-dipole interactions \checkmark $\text { forces greater } \mathrm{Cl}_{2}<\mathrm{Br}_{2}<\mathrm{I}_{2} \text { v }$	[3]
(d) (i) (ii)	(trigonal) pyramidal electron pairs repel/bonds repel /electron pairs get as far apart as possible Ione pairs repel more/forces 'them' closer 4 electron pairs surround central atom or N /diagram with 3 bonds and a lone pair \checkmark	[1] [3]
		Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme		= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected answers	Marks
(ii) (iii) (iv)	They have different numbers of protons/ Ba has one more proton/Ba has $56 \mathrm{p}^{+}$; Cs has $55 \mathrm{p}^{+} \checkmark$ (ignore electrons: any mention of 'neutrons' is wrong) $s \checkmark$ Cs to Ba: nuclear charge increases/more protons \checkmark electrons are in: the same shell/sub-shell/orbital /similar shielding/same shielding \checkmark attraction increases/pull increases \checkmark smaller \checkmark shell has been lost/less shielding/less electron repulsion/proton : electron ratio larger \checkmark mark separately	[1] [1] [3] [2]
(b) (i) (ii) (iii)	```loss (of electrons) Ba} 0->(+)2\checkmark (accept 2+)``` Original solution contains ions/there are mobile ions Charge carriers removed as reaction takes place /as solid forms/ as BaSO_{4} forms/as water forms \checkmark	[1] [2] [2]
(c)	```\(\mathrm{M}(\mathrm{BaO})=137+16=153 \checkmark\) moles \(\mathrm{BaO}=500 / 153\) or 3.268 mol moles \(\mathrm{Ba}=3.268 / 2\) or \(1.634 \checkmark\) mass Ba formed \(=1.634 \times 137=224 \mathrm{~g} \checkmark\) accept 223.856209/223.86/223.9 g. if 6 mol BaO forms 3 mol Ba , award 3rd mark Alternative method mass \(6 \mathrm{BaO}=918 \mathrm{~g} \checkmark\) mass \(3 \mathrm{Ba}=411 \mathrm{~g} \checkmark\) 1 g BaO forms 411/918 g Ba \(\checkmark\) 500 g BaO forms 223.856209/223.86/223.9 g Ba \(\checkmark\)```	[4]
		Total: 16

Abbreviations,	1	= alternative and acceptable answers for the same marking point
annotations and	NOT	= separates marking points = answers which are not worthy of credit
conventions	()	= words which are not essential to gain credit
Mark Scheme		= (underlining) key words which must be used to gain credit = error carried forward
	AW	= alternative wording

Question	Expected answers	Marks
5	general NaCl : ionic/has ionic bonds \checkmark Beware of contradictions for this mark, especially reference to intermolecular forces. Ignore 'atoms'. graphite: covalent/giant molecular/macromolecular \checkmark Ignore van der Waals', intermolecular, molecules conductivity NaCl : ions cannot move/ no free ions (or electrons) / mobile ions only in solution or when molten \checkmark graphite: delocalised electrons/ free electrons (between layers)/ electrons conduct Ignore lone pair	[2]
	melting point both graphite and NaCl : bonds are strong/ bonds difficult to break / large amount of energy is needed to break bonds	[1]
	solubility NaCl: Water is polar/water has a dipole/ ions interacts with water molecules \checkmark Graphite: no interaction with water/ no intermolecular forces with water/ graphite is non-polar \checkmark	[2]
	QWC:At least 2 complete sentences in which the meaning is clear. \checkmark	[1]
	Total	8

Mark Scheme 2812 June 2007

Question		Expected answers	Marks
1 (a)	(i)	$\mathrm{Br}_{2} \longrightarrow \mathrm{Br} \bullet+\mathrm{Br} \bullet$	\checkmark
	(ii)	$\mathrm{Br}_{2} \longrightarrow \mathrm{Br}^{+}+\mathrm{Br}^{-}$	\checkmark
	(iii)	$\mathrm{Br} \bullet$ (penalise lack of dot only once)	\checkmark
		$\mathrm{Br}^{-} \quad$ (give Br : as ecf if in (ii))	\checkmark
1 (b)	(i)	(free radical) substitution	\checkmark
	(ii)	1-bromohexane, 2-bromohexane and 3-bromohexane	$\checkmark \checkmark \checkmark$
1 (c)		cur , dipoles shown correctly on the $\mathrm{Br}-\mathrm{Br}$ and curly arrow from the $\mathrm{Br}-\mathrm{Br}$ bond towards the $\mathrm{Br}^{\delta-}$ correct intermediate shown curly arrow from the lone pair or the negative charge on the Br^{-}to the C+	
1 (d)	(i)	Hs are diagonal to each other in the trans/ difference clearly shown in a diagram	\checkmark
	(ii)	(the product is saturated hence) there is no restricted rotation/single bonds allow rotation/because $\mathrm{C}=\mathrm{C}$ prevents rotation	\checkmark
		Total	14

Question		Expected answers	Marks
2 (a)	(i)		$\checkmark \checkmark$
	(ii)	either (2-)methylpropan-1-ol or (2-)methylpropan-2-ol	\checkmark
2 (b)		 Minimum - must display/show $\mathrm{C}=\mathrm{C}$	$\checkmark \checkmark \checkmark$
2 (c)	(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Na} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ONa}+1 / 2 \mathrm{H}_{2} \\ & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} / \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \end{aligned}$	\checkmark
	(ii)	fizzes/effervescence/bubbles/gas evolved/ $/ \mathrm{H}_{2}(\mathrm{~g}) /$ sodium dissolves/ disappears/sinks not just H_{2} formed	\checkmark
2 (d)	(i)	$\begin{aligned} & \mathrm{H}^{+} \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
	(ii)	Orange to green/black/blue	\checkmark
2 (e)	(i)	contains a C=O/aldehyde, ketone, carboxylic acid and ester/ carbonyl/carbonyl in an aldehyde	\checkmark
	(ii)	does not contain a O-H/ (hydrogen bonded in a) carboxylic acid	\checkmark
	(iii)	distillation (no mark) because distillation allows loss of volatile components/removes butanal from oxidising mixture prevents formation of $\mathrm{RCOOH} /$ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed	$\checkmark \checkmark$
		Total	15

Question		Expected answers	Marks					
$\mathbf{3}$ (a)	(i)	water/aqueous	\checkmark					
	(ii)	(nucleophilic) substitution/ hydrolysis	\checkmark					
	(iii)	ethanol/ ethanolic/alcohol/methanol	\checkmark					
	(iv)	elimination	\checkmark					
(b)	(i)	lone/electron pair donor	\checkmark					
	(ii)	rate increases C-Br/bromine (not Br_{2}) bond weaker/longer or -Cl bond is stronger/shorter 1 ecf markIf they conclude the rate is slower (no mark) because C-Cl bond is more polar/Cl more electronegative (1 mark)	\checkmark					
		Total						$\mathbf{7}$

	Expected answers	Marks
4	Recognises that either a catalyst or high temperature (heat is not sufficient) is required	\checkmark
	crackingsuitable balanced equation reforming compound suitable balanced equation with H_{2} (balanced equation showing formation of a ring scores both marks) equation or statement indicating formation of a ring/cyclic	\checkmark \checkmark \checkmark
	isomerisation suitable balanced equation The processed products are: - used in fuels/used in petrol - better /more efficient fuels/increase octane number/rating - alkenes (from cracking) produce polymers/alcohols - H_{2} used for Haber process/fuels/hydrogenation of oils	\checkmark
	QWC SPAG - look for two complete sentence that present a coherent argument	$\checkmark \checkmark \checkmark$
		\checkmark
	Total	9

Question		Expected answers	Marks
5 (a)	(i)	$\mathrm{C}_{6} \mathrm{H}_{10}$	\checkmark
	(ii)	$\mathrm{C}_{3} \mathrm{H}_{5} /$ ecf to (i)	\checkmark
	(iii)	$\begin{aligned} & M_{\mathrm{r}} \text { of cyclohexene }=82 \\ & \% \mathrm{C}=(72 / 82) \times 100=88 \% \end{aligned}$ 87.8\% gets 1 mark ecf to (i) and (ii) for both marks Alternative calculation based on empirical formula: Mass of empirical unit $=41, \% C=(36 / 41) \times 100=88 \%$	
(b)		H_{2} Ni/Pt/Pd (catalyst)	
(c)	(i)		\checkmark
	(ii)	$\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /($ hot $)$ pumice $/ \mathrm{H}_{3} \mathrm{PO}_{4}$ ($\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ or dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ loses the mark)	\checkmark
	(iii)		\checkmark

Q (d) (i)

Mark Scheme 2813/01 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.

```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same
    response)
sf = error in the number of significant figures
```

4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

1 (a) $F \checkmark$
(b) $E \checkmark$
(c) $G \checkmark$
(d) A and F \checkmark
(e) temperature in range 200 to $600^{\circ} \mathrm{C} / 473$ to 873 K
ressure in range 25 to $1000 \mathrm{~atm} / 2500$ to $100000 \mathrm{kPa} / 2.5$ to $100 \mathrm{MPa} \checkmark$
[Total: 6]

2 (a) (i) (enthalpy change) when 1 mole of compound is formed \checkmark from the constituent elements \checkmark
[2]
(ii) $6 \mathrm{C}(\mathrm{s})+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})$
correct formulae and balancing \checkmark tate symbols
(iii) temperature $25^{\circ} \mathrm{C} / 298 \mathrm{~K} /$ a stated temperature (if justified) pressure 1 atm/ $100 \mathrm{kPa} / 101 \mathrm{kPa} \checkmark$
(b) diagram to show
lines to show energy level at start above that at end of reaction \checkmark ΔH labelled between reactants and products \checkmark
E_{a} labelled from reactants to top of energy 'hump' \checkmark
(c) correct Hess' cycle \checkmark
$x-890=-572-394$
$x=-76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$
(d) (i) $1652 / 4=413\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$
(ii) $(\tilde{\mathrm{C}} \mathrm{C})+6(\mathrm{C} \mathrm{H})=2825 \checkmark$

$$
(\tilde{\mathrm{C} C})=2825-6(413)=347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

3 (a) when the conditions on a reaction in equilibrium are changed/ disturbed the (equilibrium) moves in the direction to minimise the effects of the change \checkmark
(b) (i) equilibrium moves to the LHS/ more X_{2} and Y_{2} are produced \checkmark more moles (of gas)/ particles on LHS \checkmark
(ii) rate becomes less as there are less particles in a unit volume/ concentration less/ more space between particles
therefore there are less (frequent) collisions \checkmark
(c) (i) 16-17 \% \checkmark
(ii) as the temperature increases the conversion decreases \checkmark (equilibrium) has moved to LHS/ has moved in endothermic direction \checkmark
(d) (i) increases \checkmark
because more collisions exceed (lowered) $\mathrm{E}_{\mathrm{a}} /$ because the catalyst provides an alternative route with a lower activation energy
(ii) no change \checkmark
forwards and reverse rates increased by same amount
[Total: 13]

4 (a) an acid is a proton donor/ H^{+}donor/ electron pair acceptor \checkmark a weak acid is partially dissociated and a strong acid is completely dissociated \checkmark
$\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \checkmark$

allow \rightarrow or \rightleftharpoons in both cases
(b) observations
bubbles seen/ fizzing/ effervescence/ gas evolved \checkmark magnesium dissolves/ disappears \checkmark
slower/ longer reaction time for the weak acid \checkmark ora
equations
equation for example with hydrochloric acid/ other suitable strong acid \checkmark
equation for example with propanoic acid/ other suitable weak acid
accept correct ionic equation for 2 marks
explanation
due to lower concentration of $\mathrm{H} \checkmark$
(c) $\mathrm{CO}_{3}^{\tilde{2}}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
water and carbon dioxide as products \checkmark fully correct equation \checkmark

Mark Scheme 2813/03 June 2007

Plan
Equations must be written correctly in terms of subscripts and upper/lower case.
However, each type of error is penalised only once in the Plan (if equation is otherwise correct).
Accept any valid type of organic formula (or "hybrids") provided that functional group is shown.
Ambiguous tests, or tests that use the same reagent twice, score a maximum of one mark (out of 2).
Each bullet point scored is indicated by a dot.
There are 18 marks available for the Plan, but a maximum of $\mathbf{1 6}$ can be awarded.
A Bromoethane - $\mathbf{2}$ marks
Two bullet points scored = 1 mark (A1)
Four bullet points scored (out of five available) $=2$ marks (A1 and A2)

- add silver nitrate (full name or correct formula required)
- reagent or substrate is dissolved in [aqueous] ethanol or add NaOH
- cream/off-white precipitate [slowly] formed
- equation for reaction: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$
- equation (ionic or "molecular") for precipitation reaction: $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{AgBr}$

B Cyclohexene - 2 marks
Two bullet points scored = 1 mark (B1)
Four bullet points scored (out of five available) $=2$ marks (B1 and B2)

- add bromine (ignore any reference to a solvent) or acidified KMnO_{4}
- mixture goes colourless/decolourised (but not "clear")
- equation: $\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{10}+[\mathrm{O}]+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10}(\mathrm{OH})_{2}$
- this is an addition reaction or double bond opens up to become single bond
- this reaction is a test for an alkene or for $\mathrm{C}=\mathrm{C}$

C Ethanoic acid-2 marks

Two bullet points scored = 1 mark (C1).
Four bullet points $=2$ marks (C1 and C2)

- name of suitable test reagent (e.g. magnesium)
- observation made (e.g. fizzing)
- equation for reaction (e.g. $\left.\mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}\right)$
- identity of observed product (e.g. hydrogen)

Other alternative reagents, such as use of sodium hydrogencarbonate, sodium carbonate or ethanol (for esterification) were awarded full credit.

D Butan-1-ol - 2 marks
Two bullet points scored = 1 mark (D1)
Four bullet points (out of five available) $=2$ marks (D1 and D2)

- identity of reagent (e.g. potassium dichromate(VI) - oxidation state is not required)
- \quad conditions for test(e.g. heat/reflux and acidify)
- observation made (e.g. goes green)
- explanation of test (e.g. [named] aldehyde/ carboxylic acid formed)
- equation for reaction chosen
e.g. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ or $+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$

E Methylpropan-2-ol-3 marks
Two bullet points scored = 1 mark (E1)
Four bullet points $=2$ marks (E1 and E2)
Six bullet points $=3$ marks (E1, E2 and E3)

- identity of suitable test reagent
e.g. concentrated hydrochloric acid (This is the Lucas test)
- conditions for test
e.g. zinc chloride [used as catalyst]
- observation made
e.g. cloudiness formed (allow "precipitate")
- simple explanation (etc)
e.g. rapid reaction [in Lucas test] indicates a tertiary alcohol
- correct equation
e.g. $\quad \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
- correct structural or displayed formula of methyl propan-2-ol given
e.g. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ or $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{CH}_{3}$

Other reagents are suitable for identifying both of the alcohols, depending on the sequence in which the unknowns were identified

F Water-2 marks
F1 Add white/anhydrous copper sulphate \rightarrow blue
or add blue/anhydrous cobalt chloride \rightarrow pink
F2 Equation for reaction

$$
\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} \text { or } \mathrm{CoCl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

G Flow chart - 1 mark
G1 A clear accurate flow chart is given for the whole sequence
Award mark G1 only if the chart validly identifies at least 5 compounds.

S Safety, Sources and QWC - 4 marks

S1 Safety: One significant relevant hazard and a specific safety procedure described.
Hazard quoted must be related to the reaction described
(e.g. no credit for "Mg is flammable" since it is not heated)

Safety procedure must be specifically linked to stated hazard

- alcohols are flammable so use a water bath/reflux apparatus to heat
- dichromate(VI) is toxic/carcinogenic so wear gloves

These are only examples of correct ideas which would earn S1
S2 Two sources quoted in the text or at end of Plan.

- Book references must have chapter or page numbers
- Internet reference must go beyond the first slash of web address S3

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Awarded if there are fewer than six errors in legibility, spelling, punctuation or grammar.

S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly?
- Is the written material submitted relevant to the task set?

Practical Test

Page 3 Skill I-16 marks

Mass readings

- Both mass readings must be listed with unit (g) shown
- Subtraction to give mass of E must be correct.
- Mass of E used must be greater than 1.20 g
- All three masses should be recorded to two (or three/four, consistently) decimal places
- Labelling of masses must have minimum of the words "bottle"/"container" (aw)

Five bullets correct = 2 marks
Four bullets correct = 1 mark

Presentation of titration data

- Correctly labelled table (initial, final and difference - aw) used to record burette data
- A table grid must be drawn (two lines minimum) and all data must be presented in the table.
- All "accurate" burette data are quoted to two decimal places (ending in . 00 or .05)
- All subtractions are correct

Four bullets correct $\mathbf{=} \mathbf{2}$ marks \quad Three bullets correct $=\mathbf{1}$ mark

Self-consistency of titres

- Two or three titres are ticked
- The [ticked] titres are within $0.20 \mathrm{~cm}^{3}$
- The [ticked] titres are within $0.10 \mathrm{~cm}^{3}$
- Units, cm^{3} or ml, must given somewhere (once in or alongside the table is sufficient).

Four bullets correct = 2 marks
Three bullets correct = 1 mark
Mean titre correctly calculated

Accuracy - 7 marks

Use the conversion chart below to award the mark out of 7 for accuracy.
Adjusted candidate's titre, $T=$ mean titre $\mathrm{x}^{\text {supervisor's mass } / \text { candidate's mass }}$
T is within $0.25 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $0.40 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $\mathbf{0 . 8 0} \mathbf{c m}^{\mathbf{3}}$ of mean supervisor's value
\boldsymbol{T} is within $\mathbf{0 . 6 0} \mathrm{cm}^{3}$ of mean supervisor's value
T is within $1.00 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $1.20 \mathbf{~ c m}^{3}$ of mean supervisor's value
T is within $\mathbf{1 . 5 0} \mathbf{~ c m}^{3}$ of mean supervisor's value

Note: if the supervisor's mean titre was less than $20.0 \mathrm{~cm}^{3}$, a stricter scale was adopted.

Safety - $\mathbf{2}$ marks

E is corrosive or causes burns
Diluting the acid/ making less concentrated/ adding water [reduces the level of hazard] [1]

Page 4 (Part 2) - $\mathbf{6}$ marks

Penalise incorrect sig fig on the first occasion only, if the answer is otherwise correct.

2
(a) M_{r} of $\mathrm{NaOH}=40$
$[\mathrm{NaOH}]=0.105 \mathrm{~mol} \mathrm{dm}^{-3}$
2
(b) $n(\mathrm{NaOH})={ }^{\mathrm{cV}} / 1000$ [$=0.002 \mathrm{~mol}$ (approx)]

This is a method mark (for correct use of answer (a) and the mean titre volume).
2 (c) $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{H}_{2} \mathrm{O}$ shown and no balancing figures (or all "1")
State symbols:aq, aq, aq, I
If the products of reaction are incorrect, the state symbols mark is not available
2 (d) $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=$ same answer as "b"

Page 5 (Part 2) - 8 marks

2 (e) $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=10 \mathrm{x}$ "d"
This mark is for the method, not for the answer obtained
2 (f) M_{r} of ethanoic acid $=60$
mass of [pure] ethanoic acid $=$ calculated $M_{r} \times(e)$
2 (g) \% purity $=(f)$ actual mass of E used $\times 100$
This is a method mark for using the appropriate figures
Answer correctly calculated
2 (h) (i) The impurity is not acidic or impurity is not alkaline or impurity is neutral/inert

$$
\begin{aligned}
& \text { If the impurity were acidic, it would increase the titre/react with } \mathrm{NaOH} \\
& \text { or an alkaline impurity would react with the ethanoic acid/reducing the } \\
& \text { titre } \\
& \text { or If impurity is neutral it would not react with } \mathrm{NaOH}
\end{aligned}
$$

(ii) Water or carbon dioxide

Page 6: Part 3: Evaluation

Award maximum 14 marks in the section (17 marks available)

3 a) 2 marks

Titration was repeated or the gas collection experiment was not repeated
Readings are reliable if they are consistent or within $0.1 \mathrm{~cm}^{3}$
(b) 3 marks
$n($ ethanoic acid $)=0.005(0) \mathrm{mol}$
M_{r} of $\mathrm{NaHCO}_{3}=84$
Mass of NaHCO_{3} used was not sufficient and explanation including use of $1: 1$ mole ratio
(c) 12 marks available (but 9 shown on question paper)

Award marks for the candidate's best three strands
C1 Mass of ethanoic acid used was very/too small or use more ethanoic acid

C2 The percentage error in this measurement is therefore high
C3 \% error in measurement of the mass of acid correctly calculated
Accept ${ }^{100 \times 0.01} / 0.30=3.3 \%$ or ${ }^{100 \times 0.02 / 0.30}=6.7 \%$

$$
\begin{aligned}
& \text { C4 Increase masses of both reagents used or use a balance reading to } 3 \\
& \text { decimal places }
\end{aligned}
$$

D1 Gas will escape while the bung is being fitted to the flask
or insertion of bung displaces some air

D3 This keeps reagents separate/ stops reaction commencing too soon
D4 Shake/invert flask in order to mix reagents [and start reaction]
E1 $250 \mathrm{~cm}^{3}$ measuring cylinder is inaccurate for measurement of small volume $/ 40 \mathrm{~cm}^{3}$ of gas
E2 Reasonable attempt to show calculation of \% error in volume of gas measured
e.g. $\%$ error $={ }^{2} / 40 \times 100=5 \%$ or $\%$ error $=5 / 40 \times 100=12.5 \%$

E3 Replace with an [inverted] burette /gas syringe/ smaller measuring cylinder [1]
E4 Reason for choice of alternative collection

Allow narrower bore or more accurate graduations or greater \% accuracy
F1 Carbon dioxide is [slightly] soluble in water [1]
F2 Use a smaller volume / less than $10 \mathrm{~cm}^{3}$ of water in the reaction flask [1]
F3 Collect in a gas syringe [instead of over water] or use a liquid for collection in which CO_{2} is less soluble or pre-saturate the [collection] water with CO_{2} [1]
Accept use of hot water for collection
G1 Reaction is very slow or will not be complete after one minute [1]
G2 Use a smaller volume of water in the reaction flask or shake/swirl/stir flask during reaction or add catalyst [1]
G3 This change speeds up reaction or measure final volume only when fizzing stops/volume stops increasing [1] An observation is required, not merely "allow reaction to finish"
H 1 Temperature of the gas collected is not exactly $20^{\circ} \mathrm{C} / 25^{\circ} \mathrm{C} /$ room temperature [1]
One mark only is awarded for this strand

Mark Scheme 2814 June 2007

INSTRUCTIONS ON MARKING SCRIPTS

For many question papers there will also be subject or paper specific instructions which supplement these general instructions. The paper specific instructions follow these generic ones.

All scripts must be marked in accordance with the version of the final mark scheme agreed at the standardisation meeting.

Annotation of scripts

The purpose of annotation is to enable examiners to indicate clearly where a mark is earned or why it has not been awarded. Annotation can, therefore, help examiners, checkers, and those remarking scripts to understand how the script has been marked.

Annotation consists of:

- the use of ticks and crosses against responses to show where marks have been earned or not earned;
- the use of standard abbreviations as follows;

\times	=	incorrect response (errors may also b
\wedge		omission of the correct response
bod		"benefit of the doubt" (where professional judgement has been used in deciding a response is worthy of a mark)
ecf	=	"error carried forward" (in consequential marking)
con	=	contradiction (in cases where candidates contradict themselves in the same response). No mark awarded, even if one response was correct.
sf	=	error in the number of significant figures (only penalised once on the paper).

Any other comments should be kept to a minimum and should always be specifically related to the award of a mark or marks and be taken (if appropriate) from statements in the mark scheme.

Where annotations are put onto the candidates' script evidence, they should normally be recorded in the body of the answer or in the margin immediately adjacent to the point where the decision is made to award or not award the mark.

Recording of marking: the scripts

i) Marked scripts must give a clear indication of how marks have been awarded as instructed in the mark scheme.
ii) All numerical marks for responses to part questions should be recorded unringed in the right-hand margin. The total for each question (or, in specified cases, for each page or section) should be shown as a single ringed mark in the right-hand marking at the end of the question.
iii) The ringed totals should be transferred to the front page of the script, where they should be totalled.
iv) Every page of a script on which the candidate has made a response should show evidence that the work has been seen.
v) Every blank page should be crossed through to indicate that it has been seen.

[^0]
Handling of unexpected answers

The standardisation meeting will include a discussion of marking issues, including:

- a full consideration of the mark scheme with the objective of achieving a clear and common understanding of the range of acceptable responses and the marks appropriate to them;
- the handling of unexpected, yet acceptable answers.

There will be times when you may not be clear how the mark scheme should be applied to a particular response. In these situations an element of professional judgement is required. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in any doubt, a telephone call to the Team Leader should produce a speedy resolution to the problem.

Particular instructions relating to marking organic chemistry papers

i) Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated on the mark scheme. (An instruction to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
ii) If a candidate lists more than one possible answer in questions requiring reagent(s) and/or condition(s) for a reaction, the wrong answers are marked first up to the maximum marks available for reagents/conditions.
iii) When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$, $\mathrm{OH}, \mathrm{COOH}, \mathrm{COOCH}_{3}$) to unambiguously define the arrangement of the atoms. (e.g. $\mathrm{C}_{3} \mathrm{H}_{7}$ would not be sufficient).

If not specified by the question, this may be given as either:

- a structural formula - e.g. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$;
- a skeletal formula - e.g.

- a displayed formula - e.g.

or as a hybrid of these - e.g

Benzene rings in any of the types of formula above may be represented
as
 as well as

iv) The following errors should be penalised - although each one only loses a maximum of one mark on the paper:

- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms -

Abbreviations, annotations and conventions used in the mark scheme
/ alternative and acceptable answers for the same marking point
; separates marking points
NOT answers not worthy of credit
() words that are not essential to gain credit, but should not be contradicted
(underlining) key words which must be used for the mark
$\overline{\text { ecf }} \quad$ allow error carried forward in consequential marking
AW alternative wording with the same meaning gains credit
ora or reverse argument

1 (a) (i) is an amine and a carboxylic acid/ contains both NH_{2} and COOH functional groups \checkmark AW
(ii) $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} \checkmark$

Does not fit the formula because NH_{2} and COOH are not attached to the same carbon \checkmark AW
(b) (i) $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{HCl} \checkmark$
(ii) (electrophilic) substitution / Friedel-Crafts \checkmark
(iii) $\mathrm{FeCl}_{3} / \mathrm{AlCl}_{3} \checkmark$
(c) (i)

(ii) - COO becomes $-\mathrm{COOH} \checkmark$ (rest of structure unaffected)
(allow ecf on rest of the structure)
(d)

displayed peptide bond rest of the structure also correct \checkmark
(allow full marks for a correct anhydride structure)
[Total: 10]

2 (a) (i)

(ii) dye / colouring / indicator
(iii) phenylamine \checkmark
$\mathrm{NaNO}_{2} / \mathrm{HNO}_{2} \checkmark+\mathrm{HCl} \checkmark$ $<10^{\circ} \mathrm{C}$
add to alkaline phenol
(b) bonding in benzene
overlap of p-orbitals / π bonds/electrons (or labelled)
 above and below the ring (or shown in a diagram) \checkmark
electrons are delocalised (or labelled)
$\mathrm{C}-\mathrm{C}$ bonds are: same length/strength / in between single and double / σ-bonded AW \checkmark
greater reactivity of phenol
(the ring is activated because ...)
lone pair from O is delocalised into the ring
so electron density (of the ring) is increased \checkmark
so electrophiles are more attracted (to the ring) / dipole in
electrophile more easiy induced
Quality of written communication mark for at least two complete sentences in which the meaning is clear with correct spelling, punctuation and grammar \checkmark
(NOT just more easily
"attacked" or
"susceptible")
[Total: 17]

3 (a) (i)

(allow ecf on

the carbon skeleton of the diamine)
peptide bond displayed correct repeat \checkmark
(b) (i)

(ii) any valid suggestion to explain or describe stronger intermolecular forces - e.g. Nomex is planar so packs together more easily / greater H-bonding / Van der Waals' / forces between molecules \checkmark AW (ignore arguments based on M_{r})
[Total: 7]

Question Expected answers

Marks
4 (a) (i)

at least one correct skeletal formula \checkmark correct cis and trans isomers of but-2-enal \checkmark
(b) (i) heat with:

Tollens' reagent / ammoniacal silver nitrate \checkmark
to give: silver mirror / precipitate \checkmark
(ii) aldehydes can be oxidised to a carboxylic acid ora / aldehydes can reduce Ag^{+}to $\mathrm{Ag} \checkmark$
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH} \checkmark$
(either stereoisomer)
(ii) reduction / redox / addition
(NOT hydrogenation)
(d) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark$
(e) (i)

(ii) random (3-d) arrangement of side chains / functional groups (along the chain) AW

5 (a) (chloral hydrate because) peak at ~ 3300 / in range $3230-3550\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H} \checkmark$
no peak at $1680-1750\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{C}=\mathrm{O}$
peak at ~ 1050 / in range $1000-1300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{C}-\mathrm{O} \checkmark$
(b)

curly arrow from O of OH to $\mathrm{C} \checkmark$
dipole on $\mathrm{C}=\mathrm{O}$ and curly arrow breaking $\mathrm{C}=\mathrm{O} \checkmark$
structure of the intermediate \checkmark
curly arrow from Ọ̃ (of the correct intermediate)
\ldots to H of $\mathrm{H}_{2} \mathrm{O} \checkmark \quad$ (allow O to H^{+}ion here)
curly arrow breaking the $\mathrm{H}-\mathrm{O}$ bond in $\mathrm{H}_{2} \mathrm{O} \checkmark$
(c) one mark for the correct answer to each step below with ecf throughout steps may come in any order
one week's supply $=21 x$ dose $\checkmark \quad 5.25 \mathrm{~g} / 0.0317 \mathrm{~mol}$
mass of trichloroethanal $=$ $0.891 \times$ mass of chloral hydrate
4.68 g (223mg if done first)
60% yield $=$ mass/moles $\times 100 / 60 \checkmark$
7.8(0 g)
common errors for two marks are: 9.82 g (mass ratio upside down) 8.75 g (mass ratio not done)
2.60 g (3 x not done), 1.11 g (7 x not done), 0.371 g (21 x not done) 7798 g (mg to g not done) etc.
(d) $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}+[\mathrm{O}] \longrightarrow \mathrm{CCl}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$
[Total: 12]

6 (a) (i) $22 \checkmark$
(ii)

(iii) ester \checkmark
(iv) $\mathrm{HCN}(+\mathrm{KCN}) /$ strong acid +KCN
(allow HCN + alkali)
(v) (nucleophilic) addition
(b) (cypermethrin has) a chiral centre / is chiral
enzyme / natural synthesis will make only one (optical) isomer \checkmark AW ora
either
only one (stereo)isomer is active / has the right shape AW
the natural product is 100% active / synthetic is 50% active AW \checkmark
(c) (i) (heat under) reflux \checkmark
with a suitable aqueous strong acid \checkmark
(ii)

$\mathrm{COOH} \checkmark$ rest of the structure

7 (a)

propanoate and ester group
2-methyl propyl
(b) propanoic acid \checkmark
(2-)methylpropan-1-ol \checkmark
heat $\checkmark \quad$ (allow ecf from part (a) for
conc. $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$ the equation)
$\underset{\text { reactants } \checkmark}{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
(c) mass spectrum / spectrometry
molecular ion peak /
m / e or mass of the peak furthest right \checkmark AW
(d) (i) δ value / chemical shift gives the 'type' of proton / chemical environment \checkmark AW example quoted from data sheet \checkmark
number of peaks gives the number of different types of proton / chemical environments
relative / ratio of \checkmark
peak areas gives the number of protons (of each type) \checkmark
splitting gives number of neighbouring / adjacent protons \checkmark
description of $n+1$ rule / example of doublet, triplet or quadruplet showing 1,2 and 3 protons neighbouring (carbon) atom \checkmark AW
$\mathrm{D}_{2} \mathrm{O}$ can be used to identify OH groups $\checkmark \quad$ ANY 7 marks out of 8
Quality of written communication mark for correct use and organisation of at least two of the following technical terms:
proton, environment, singlet (doublet etc.), ppm, equivalent, chemical shift, splitting, labile, integration
(ii)

Mark Scheme 2815/01 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$		Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument				
Question	Expected answers			Marks	Additional guidance
2 (a) (i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}(1)$			1	
(ii)	Has an incomplete set of d electrons / partially filled d sub-shell / partially filled d orbital (1)			1	Allow partially filled d shell
(b) (i)	Has a (lone) pair of electrons that can be donated / lone pair that can form a dative bond / pair of electrons that can form a coordinate bond (1)			1	
(ii)	3D diagram of octahedral structure (1); Bond angle 90° (1)			2	Name octahedral must be present to score two marks Allow use of wedges and dotted lines to indicate three dimensions Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond angle mark
(c) (i)	Ligand substitution / ligand replacement (1)			1	
(ii)	Blood-red / red (1)			1	
(d) (i)	Brown / red-brown / foxy-red / rusty / orange ppt (1)			1	Allow solid instead of precipitate Allow state symbol (s) for precipitate
(ii)	$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ Correct equation (1) State symbols for the correct formulae even if spectator ions are present (1)			2	Allow equations using the hydrated iron(III) ion
				$\begin{aligned} & \text { Total } \\ & =10 \end{aligned}$	

Mark Scheme	$\begin{gathered} \hline \text { Unit Code } \\ 2815 / 01 \end{gathered}$	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$		Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	I $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument				
Question	Expected answers			Marks	Additional guidance
3 (a) (i)	Ionisation energy refers to removing electrons that are attracted to the nucleus / energy needed to overcome the force of attraction between outer electrons and nucleus (1)			1	
(ii)	Electron affinity involves an electron(being gained) experiencing attraction to the nucleus (1)			1	
(b) (i)	Correct formula (1); Correct cycle with labelling or energy values (1)			3	Allow 1 error or omission in state symbols. Providing formula has correct state symbols once in cycle this is sufficient
(ii)	$\begin{aligned} & =+178+249+798+(-141)+1150+590+(- \\ & 3459)(1) \\ & =-635 \mathrm{~kJ} \mathrm{~mol}^{-1}(1) \end{aligned}$			2	Final answer must have correct units $+635 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 0
(iii)	Ionic radius of iron(II) less (than that of calcium ion) / charge density of Fe^{2+} greater (than that of Ca^{2+}) /. ora (1)			1	
				$\begin{gathered} \text { Total } \\ =8 \end{gathered}$	

Mark Scheme	Unit Code 2815/01	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$		Version Final
Abbreviations, annotations and conventions used in the Mark Scheme					
Question	Expected answers			Marks	Additional guidance
4 (a)	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}+ \\ & 6 \mathrm{Cl}^{-}(2) \end{aligned}$			2	Allow one mark if electrons shown Allow one mark if correct reactants and products but not balanced
(b)	Correct M_{r} for $\mathrm{Fe}_{2} \mathrm{O}_{3}, 159.6$, and of $\mathrm{Na}_{2} \mathrm{FeO}_{4}, 165.8$ (1) Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=0.00627$ (1); Mass of $\mathrm{Na}_{2} \mathrm{FeO}_{4}=2.08$ (1); Percentage $=21.6$ or 21.7 (\%) (1)			4	Allow full marks for correct answer with some working Answer must have 3 sig figs Allow ecf from wrong moles or wrong mass
(c)	Oxidation state of iron changes from +6 to +3 so is reduction (1) Oxidation state of oxygen changes from -2 to 0 so is oxidation (1) OR Oxidation state of iron changes from +6 to +3 and oxidation state of oxygen changes from -2 to 0 (1) Iron is reduced and oxygen is oxidised (1)			2	To get the two marks for oxidation states marks any other oxidation state quoted must be correct. Maximum one mark if any other oxidation number given is wrong Allow ecf from wrong oxidation states
(d) (i)	(Oxidised to) iodine so a brown (solution) formed / Fe^{3+} formed which is yellow or orange / Fe^{2+} formed which is green (1)			1	Allow red/brown or orange
(ii)	Nitrogen / $\mathrm{N}_{2}(1)$			1	Allow any correctly named oxide of nitrogen / correct formulae / HNO_{3} etc.
				$\begin{aligned} & \text { Total } \\ & =\mathbf{1 0} \end{aligned}$	

Mark Scheme	Unit Code 2815/01	$\begin{gathered} \text { Session } \\ \text { June } \end{gathered}$	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$		Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}1 & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { = answers which are not worthy of credit }\end{array}\right\}$= words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument				
Question	Expected answers			Marks	Additional guidance
5	Acid-base - maximum 3 marks Acid-base reaction involves proton transfer / acids donate protons and bases accept protons (1); Equation (1) e.g. $\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$; Observation (1) e.g. oxide forms a colourless solution Hydrolysis - maximum 3 marks Reaction with water / aw (1); Equation (1) e.g. $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$ Observation (1) e.g. white precipitate formed / steamy fumes formed / highly acidic solution formed Thermal decomposition - maximum 3 marks Reaction in which a compound is broken down (into at least two substances when heated) (1); Equation (1) e.g. $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$; Observation (1) e.g. white solid formed / colourless gas formed And One mark for three correct examples (even if equations are wrong or is a description or involves elements not in Period 3)) (1) And QWC One mark for correct spelling, punctuation and grammar in at least two sentences (1)			10	Examples must come from an element in Period 3. Ignore bond breaking on adding water / adding water
				Total $=11$	

Mark Scheme 2815/02 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Unit Code 2815/02	Session June	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$	Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit _ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument```			
Question	Expected answers			Marks
1 (a)(i)	Circle round central O/round -O-/round C-O-C \checkmark α (in both) \checkmark. Numbering not required. Not $1 \alpha-4$, nọt β anywhere Use of enzyme/trehalase/ α-glucosidase \checkmark Allow use of acid (although it does not work well) including plain HCl but not conc. sulphuric acid.			1
(ii)				1
(b)(i)				1
(ii)	Glucose \checkmark. Accept D-glucose. Ignore any reference here to α or β.			1
(c)	Any two marks from: $\checkmark \checkmark$ - An H on water hydrogen bonded to - $\underline{\mathrm{O}}-\mathrm{H}$ - An H on water hydrogen bonded to ring/glycosidic O - An O on water hydrogen bonded to - $\mathrm{O}-\underline{\mathrm{H}}$ Max 1 mark if they hydrogen bond to $\mathrm{C}-\underline{\mathrm{H}}$. Ignore partial charges, but full charges would be a CON.			2
(d)	No branches/ mention of lack of 1-6 links \checkmark AW Accept repeating unit is a disaccharide rather than monosaccharide. AW			1
				Total 7

\begin{tabular}{|c|c|c|}
\hline Question \& Expected answers \& Marks \\
\hline 2.(a)(i) \& \& 2 \\
\hline (ii) \& 6. Ecf from (i). \(\checkmark\) \& 1 \\
\hline (b) \& \begin{tabular}{l}
Three of following points: \\
- 1. There is van der Waals (IDID) between triglycerides. \\
- 2. There is van der Waals between triglycerides and (non-polar) solvent. \\
- 3.Triglycerides cannot hydrogen bond (to water)(enough). \\
- Because there are not enough suitable sites/oxygen atoms \\
Or long hydrocarbon chains do not hydrogen bond/would interfere with hydrogen bonding in water \\
AW
\end{tabular} \& 3 \\
\hline (c) (i) \& Instead of one fatty acid/ carboxylic acid/acyl group \(\checkmark\) there is a phosphate \(\checkmark\) Not hydrocarbon alone. \& 2 \\
\hline (ii) \& Hydrocarbon chains must be labelled. Not a micelle. \& 1

Total 9

\hline
\end{tabular}

Question	Expected answers	Marks
3.(a)(i)	$\mathrm{HOH}_{2} \mathrm{CCHOHCHOHCHOHCHOHCHO}$ Aldehyde \checkmark the rest \checkmark Or vertical/displayed. If displayed all bonds must be shown correctly. Ignore stereochemistry. Accept a reversed OH group.	2
(ii)	Ester/lactone \checkmark Not carbonyl.	1
(iii)	Allows enzyme to be stored for long periods/ ease of use (compared with test-tubes etc.\}/ more stable (to higher temperatures/pH changes). AW \checkmark. Their advantage must be relevant to this example, so ignore references to reuse and separation. Not increased optimum temperature.	1
(iv)	Only glucose fits the active site or active site is correct shape to bind glucose/complementary shape to glucose or vice versa. AW \checkmark	1
(b)(i)	Allow 1 mark for COOH and NH_{2} version \checkmark. Two marks for version with both COO^{-}and $\mathrm{NH}_{3}{ }^{+} \checkmark \checkmark$.	2
(ii)	To remove/dissolve/hydrolyse protein stains (such as egg/blood). Accept good example alone but not simply 'stains'.	1
		Total 8

Question	Expected answers	Marks
4. (a)	Two of the following: Disulphide bridge/ covalent $\checkmark-\mathrm{S}-\mathrm{S}-\checkmark$ Must have bond not lonic $\checkmark \quad-\mathrm{COO}^{-}{ }^{+} \mathrm{H}_{3} \mathrm{~N}-\checkmark$ van der Waals/instantaneous dipole-induced dipole \checkmark Diagram \checkmark should show two non-polar groups with/without dotted attraction - the CH_{2} in glycine would be acceptable. $-\mathrm{CH}_{2}-\ldots-\mathrm{CH}_{2}-$ or $-\mathrm{CH}_{2}-\ldots-\mathrm{CH}_{2}-$	4
(b)	Quaternary \checkmark	1
(c)	- 1. Increased pH increases $\left[\mathrm{OH}^{-}\right]$or decreases $\left[\mathrm{H}^{+}\right]$. Accept amount. \checkmark - 2. converts $-\mathrm{NH}_{3}{ }^{+}$to $-\mathrm{NH}_{2} \checkmark$. Accept removal of charge/ hydrogen ion etc from H^{+}. \checkmark - 3. This reduces ionic attractions/bonding $\quad \checkmark$ (in tertiary structure). - 4. This changes shape of enzyme//tertiary structure	4
	If they use COOH becoming COO^{-}they lose point 2 . but max of three marks. Point 3 should then be an increase or change in ionic attractions/bonding by ecf. AW throughout	
(d) (i)	Their curve should show lower rate at low [S], increasing at high [S] but not getting back to original $V_{\text {max }} \downarrow$. Must show some levelling off.	1
(ii)	The inhibitor binds to the enzyme away from the active site \checkmark, changing the (tertiary structure and) shape of active site/ES complex $\sqrt{ }$, reducing rate.	2
		Total 12

Question	Expected answers	Marks
5.(a)	In writing or on their diagram find four marks from - 1. The condensation involves loss of water (between ribose and phosphate). This may be shown as $\mathrm{H}_{2} \mathrm{O}$ in appropriate place in their diagram. Do not award mark if it refers to disaccharide formation. \checkmark - 2. Idea of a sugar-phosphate backbone. \checkmark This can be for $\mathrm{P}-\mathrm{S}-\mathrm{P}$ or $\mathrm{S}-\mathrm{P}-\mathrm{S}$ as a minimum. - Correct positions for attachment of phosphates to deoxyribose either by numbering 3,5 or on diagram of nucleotide structure. \checkmark If the numbers and diagram do not match give the mark if correct in the diagram. Simple furan version OK if C5 is clearly shown but not cyclopentane - Base attached to correct carbon on deoxyribose \checkmark. (Either number 1 or diagram. If the number and diagram do not match give the mark if correct in the diagram). Accept simple furan. Accept simple cyclopentane version as long as the sidechain C is visible. QWC for at least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. \checkmark Deoxyribose instead of ribose. \checkmark The position is not required, but if given must be correct. Accept one more O in RNA sugar/ one less O in DNA sugar. Not reference to double/single strands.	4 1

Mark Scheme 2815/03 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same
response)
sf = error in the number of significant figures
```

4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point ; \(\quad=\) separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit __ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument```	
Question	Expected answers	Marks
1.(a)	Increased use of plastics for packaging. \checkmark AW	1
(b)(i)	Paper and card, plastics, textiles, organic waste. Any three. \checkmark	1
(ii)	Reduces bulk of waste going into landfill \checkmark. Heat can be used to heat local housing/generate electricity \checkmark.	2
(iii)	Too low a temperature \checkmark results in formation of dioxins/toxins \checkmark from PVC/organochlorine compounds in the waste \checkmark. Any two marks.	2
(c)(i)	Dissolved oxygen is needed by aquatic organisms for respiration \checkmark.	1
(ii)	It allows aerobic decay of organic matter, or decay with oxygen / minimises formation of hydrogen/methane \checkmark.AW	1
	Total	8

3. (a) (i)	Correct terms for the shapes are not necessary for the marks. Accept clear geometric solids without atoms. Silicate/aluminate/silicate sandwich	2 1
(b)	- 1:1 clays have hydrogen bonding between layers - Using OH from aluminate and O from silicate \checkmark which prevents entry of water. - 2:1 clays have van der Waals/ no hydrogen bonding between layers \checkmark - Water can enter easily, hydrogen bonding to the silicate $O \checkmark$. - 2:1 clays can expand as they absorb water \checkmark. AW	5
(c)	QWC mark is for at least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. $\begin{aligned} & \mathrm{ClayK}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{ClayH}(\mathrm{~s})+ \\ & \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \end{aligned}$	1
	For this or similar equation or for statement that K^{+} is attracted to anions/negative charge on the clay. \checkmark. When $\mathrm{K}^{+}(\mathrm{aq})$ is removed by plant, either equilibrium moves to right to replace it or ion exchange can replace it \checkmark. Total	2 11

Mark Scheme 2815/04 June 2007

\begin{tabular}{|c|c|c|}
\hline Question \& Expected answers \& Marks \\
\hline \[
\text { 1) } \quad \text { (a) }
\] \& Distribution of solute between stationary and mobile phases. \(\checkmark\) \& [1] \\
\hline (ii) \& Mobile phase = carrier/inert gas (Allow named inert gas) \(\checkmark\) Stationary phase \(=(\) non-volatile \()\) solvent (on solid support). \& [2] \\
\hline b) (i) \& (iii) \& \begin{tabular}{l}
 \\
Fig. 1.1
\end{tabular} \& [2] \\
\hline (ii) \& \(4 \checkmark\) (only 4 amino acids are separated - the \(5^{\text {th }}\) is a mixture of 2 amino acids) \& [1] \\
\hline (iv) \& \(6 \checkmark\) \& [1] \\
\hline c) \& Quantitative data/amount/\% of each amino acid/ \(\checkmark\) allow retention time/ allow could be attached to mass spectrometer to determine \(M_{r}\) values \& [1] \\
\hline d) \& \begin{tabular}{l}
Electrophoresis involves movement of ions in an electric field/ \\
use of voltage/potential difference \(\checkmark\) NOT electric current \\
separates by mass/size \(\checkmark\) \\
separates by charge \(\checkmark\) \\
pH control is essential because charge on the amino acid ion \\
changes with a change in \(\mathrm{pH} /\) e.g.of protonation/deprotonation \(\checkmark\) \\
pH controlled by use of a buffer \(\checkmark\) \\
QWC for two sentences linked together that clearly explain the process with correct spelling, punctuation and grammar.
\end{tabular} \& [5]

[1]

\hline
\end{tabular}

Question	Expected answers	Marks
2a) (i)	${ }^{79} \mathrm{BrCH}_{2} \mathrm{CH}_{2}{ }^{79} \mathrm{Br}^{+} / \mathrm{C}_{2} \mathrm{H}_{4}{ }^{79} \mathrm{Br}_{2}{ }^{+} \checkmark$ (if + is missing penalize only once on paper)	[1]
(ii)	${ }^{79} \mathrm{BrCH}_{2} \mathrm{CH}_{2}{ }^{81} \mathrm{Br}^{+} / \mathrm{C}_{2} \mathrm{H}_{4}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{+} \checkmark$	[1]
(iii)	$\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{81} \mathrm{Br}^{+} / \mathrm{C}_{2} \mathrm{H}_{4}{ }^{81} \mathrm{Br}^{+} \checkmark$	[1]
(b)	${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$ are in $1: 1$ ratio \checkmark	[1]
(c)	```Makes use of the equation n= height of (m+1) peak x 100 height of m peak x }1. recognizes and uses n=2 height of (m+1) peak = (2 x 8.8 1 1.1)/100=0.19/0.2\checkmark```	[3]
(d)	Any matching two from: $\begin{array}{ll} m / e=15 & \text { caused by } \mathrm{CH}_{3}^{+} \\ m / e=171 & \text { caused by } \mathrm{CH}^{39} \mathrm{Br}^{79} \mathrm{Br}^{+} \\ m / e=173 & \text { caused by } \mathrm{CH}^{79} \mathrm{Br}^{81} \mathrm{Br}^{+} \\ m / e=175 & \text { caused by } \mathrm{CH}^{81} \mathrm{Br}^{81} \mathrm{Br}^{+} \end{array}$	[4]

Question	Expected answers	Marks
3a) (i)	Electron falling from high energy to low energy. energy difference released (as electromagnetic radiation)	[2]
(ii)	Each series corresponds to the lower energy level to which excited electrons falls.	[1]
(iii)	The lines converge because the energy levels get closer together/at convergence the energy levels are continuous.	[1]
(iv)	(uses $E / h=f)$ $f=6.18 \times 10^{14}\left(\mathrm{~s}^{-1}\right)$ \checkmark $($ uses $c / f=\lambda)$ $\lambda=4.85 \times 10^{-7}(\mathrm{~m})$ \checkmark $($ uses $h \times c / E=\lambda)$ $\left.\lambda=4.85 \times 10^{-7}\right)(\mathrm{m})$ scores both $\checkmark \checkmark$ converts to nm by multiplying by 1×10^{9} to give $485(\mathrm{~nm})$	[3]
b)	carotene has chromophores/ π-bonds which can conjugate/has conjugation by conjugation/delocalisation moves to lower energy/narrows energy gap \checkmark therefore absorbs light in visible region hence is coloured \checkmark	[3]

Question	Expected answers	Marks
4	Infra red - any two from absorption at approx $1700 /$ between $1680-1750 \mathrm{~cm}^{-1}$ shows $\mathrm{C}=\mathrm{O}$ absorption at approx $1200 /$ between $1000-1300 \mathrm{~cm}^{-1}$ shows $\mathrm{C}-\mathrm{O} \checkmark$ no broad absorption at approx $3000 \mathrm{~cm}^{-1}$ therefore not O-H / or quotes either range 2500-3500 therefore not carboxylic acid / 3230-3550 therefore not alcohol	[2] 2 marks for IR
	Mass spec $M_{r}=116 \checkmark$ $116-32$ (for the two oxygens) $=84$, hence a max of 6 Cs therefore Molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \checkmark$ base peak $=57=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}^{+} /$or other correct fragment ion \checkmark n.m.r. peak areas show that there are $12 \mathrm{Hs} /$ table shows there are 4 different $\mathrm{H} /$ proton environments $\delta=0.9$ (likely to be a) CH_{3} next to a CH_{2} (as it is split into a triplet) \checkmark $\delta=1.2$ (likely to be a) $2 \times \mathrm{CH}_{3}$ next to a CH (as it is split into a doublet) \checkmark $\delta=2.3$ (likely to be a) CH_{2} next to a CH_{3} (as it is split into a quartet)/ CH_{2} must be next to a $\mathrm{C}=\mathrm{O}(\delta=2.0-2.9) \checkmark$ $\delta=4.1$ (likely to be a) CH next to two $\mathrm{CH}_{3} \mathrm{~s} / \mathrm{CH}$ is next to an $\mathrm{O}(\delta=3.3-4.3)$ Compound \mathbf{X} is	[8]

Mark Scheme 2815/05 June 2007

Question	Accepted answers	Marks
1 a) i)	The v.p. of a solvent in a solution is equal to the v.p. of the pure solvent multiplied by its mole fraction in the solution. / $P_{\mathrm{A}}=N_{\mathrm{A}} \times P_{\mathrm{A}}^{\mathrm{A}}$ with terms defined	[1]
(ii)	$\begin{align*} & \text { mol heptane }=100 / 100=1 \\ & \text { mol octane }=19 / 114=0.167 \tag{1} \end{align*}$	[4]
	mol fraction heptane $=1 / 1.166=0.857$ mol fraction octane $=0.166 / 1.166=0.143$	
	$\begin{align*} & P(\text { heptane })=473 \times 0.857=405.4 \mathrm{~Pa} \\ & P(\text { octane })=140 \times 0.143=20.02 \mathrm{~Pa} \tag{1} \end{align*}$	
	Total v.p. $=425.32 \mathrm{~Pa} / 425 \mathrm{~Pa}$	
(b)	Column with beads Condenser, water in at bottom out at top A complete apparatus including flask, heating, thermometer, collection of distillate with no gaps	[3]
(c) (i)	The intermolecular bonds between molecules of trichloromethane and between molecules of ethoxyethane are van der Waals forces/ permanent dipoles.	[3]
	These are stronger in the mixture than the (dipole-dipole) attractions between the individual liquids.	
	This means that molecules in the mixture have less tendency to escape into the vapour phase than in the pure liquids. Accept hydrogen bonding. Mark (i) and (ii) independently	
		[1]
(c) (ii)	Negative Deviation	
(d) (i)	The azeotrope / azeotropic mixture	[1]
(d) (ii)	Use of tie lines on diagram from 20% upwards 4 Plates	[2]
		[Total: 15]

Question	Accepted answers	Marks	
2 (a)	At low pressure	(1)	$[4]$
Therefore particles have negligible volume	(1)	(1)	
At high temperature			
Therefore there are no intermolecular forces.	(1)		
(b) (i)	$P V=n R T$		$[1]$
(b) (ii)	$M_{r}=\frac{m R T}{P V}$ (1) $=\frac{0.174 \times 8.31 \times 343}{101000 \times 63 \times 10^{-6}}$	(1)	$[3]$
$M_{r}=78$			
(77.9)	(1)		

Question	Accepted answers	Marks
3 (a)	Shape of graph to form a ' v ' areas correctly labelled: Solution Ice and solution Salt and solution Temperature at $0^{\circ} \mathrm{C}$ and $-21^{\circ} \mathrm{C}$ Eutectic composition at $29 \% \mathrm{NaCl}$	[6]
(a) (ii)	At $-5^{\circ} \mathrm{C}$, a concentration of $14 \% \pm 4 \%$ causes ice to be in equilibrium with the solution [mark this according to their sketch in (i)] Increasing concentration causes NaCl and water all to be in solution and so no ice is present. Use of diagram can score both marks. An alternative method may be to draw a line at 20% and say that this is in solution at $-5^{\circ} \mathrm{C}$	[2]
(b)	From Graph, at $70^{\circ} \mathrm{C}, 120 \mathrm{~g}$ is dissolved At $25^{\circ} \mathrm{C}, 42 \mathrm{~g}$ is dissolved So, $120-42=78 \mathrm{~g}$ precipitated $\quad(+\mathrm{or}-2 \mathrm{~g})$	
		[2]
		[Total: 10]

Question	Accepted answers	Marks
4 (a)	Penicillin and water added to ethoxyethane in a separating funnel and shaken Allow layers to separate and run off bottom layer/water It works because the 2 layers are immiscible The solute/organic compound dissolves to different extents in different solvents. QWC for logical sequence describing a process that will work using correct terms in context.	[4] [1]
(b) (ii)	This is the equilibrium constant of the concentration of the solute in 2 immiscible solvents at equilibrium $\begin{align*} & K=5 / 1=\quad \frac{\text { [conc. in alcohol] }}{\text { [conc. in water] }} \\ & \frac{m / 50 \times 1000}{0.1-m / 100 \times 1000}=5 \end{align*}$	[1]
	$\begin{align*} & \text { So } 20 m=5(1-10 \mathrm{~m}) \tag{1}\\ & 70 m=5 \tag{1}\\ & m=0.0714 \mathrm{~mol} \end{align*}$ $\begin{equation*} \text { so to } 3 \text { sig figs amount }=0.071 \mathrm{~mol} \tag{1} \end{equation*}$ Can award 3 sig figs mark on any ecf answer	$4 \max [3]$
(b) (iii)	Repeated distribution(s) using smaller portions Consequential additions to the aqueous layer (each time fresh)	[3] [Total: 12]

Mark Scheme 2815/06 June 2007

Question	Expected answers	Marks
(iii)	$298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ temperature all solutions $1 \mathrm{~mol} \mathrm{dm}^{-3}$ Both needed for 1 mark. Ignore any reference to pressure	1
(c) (i)	$\begin{aligned} & \mathrm{Zn}+2 \mathrm{~V}^{3+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{~V}^{2+} \\ & \text { Correct species } \\ & \text { Equation balanced } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	Green to violet / lilac / mauve / purple / magenta	1
(iii)	Zinc dissolves / disappears / bubbles	1
(d)	$20 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{VO}^{2+}=0.002$ moles 0.002 moles $\mathrm{VO}^{2+}=0.0004$ moles MnO_{4}^{-} 0.0004 moles $\mathrm{MnO}_{4}{ }^{-}$are in $16.0 \mathrm{~cm}^{3}$	
		Total: 14

Question	Expected answers	Marks
$3 \text { (a) (i) }$ (ii)	Pink to blue	1
	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}-$ octahedral	1
	$\left[\mathrm{CoCl}_{4}\right]^{2-}$ - tetrahedral	1
(b) (i)	$2\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+21^{-} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{I}_{2}$	1
(ii)	I_{2} is a stronger oxidising agent than $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ / I^{-}gains electrons more easily Accept calculation of cell potential and non feasibility argument	1
(iii)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is more stable the E^{\ominus} value is less positive so the forward reaction is less likely to occur / ammonia is a stronger ligand / ammonia forms stronger dative bonds	1 1
		Total: 7

Question	Expected answers	Marks
4 (a)	Ligand able to donate two lone pairs to form dative covalent / co-ordinate bonds	1
(b)		
(c)	3-D diagram with three ethanedioate ligands used correct bonding between ligands and Cr^{3+} correct charge on ion (3-) (Accept $\mathrm{O}-\mathrm{O}$ as minimum for ethanedioate ion) stereoisomers have same structural formula but a different arrangement in space	1 1 1 1

Question

Mark Scheme 2816/01
 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)

Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
7. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points N answers which are not worthy of credit $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected answers	Marks
(ii) (iii) (iv)	Curve downwards starting at $t=0 \checkmark$ with slope gradually levelling off with no increase \checkmark (don't worry about hitting the x axis) Tangent shown at start \checkmark Half-life is constant OR: draw tangents and then plot a 2nd graph of tangent or rate against concentration, which is a straight line through the origin.	[2] [1] [1] [1]
(b)	$\begin{aligned} & 4 \text { times }[\mathrm{KI}] \text {, rate increases by } 4 \checkmark \\ & \text { so order }=1 \text { with respect to KI } \checkmark \text { independent marks } \end{aligned}$	[2]
(c) (i) (ii)	rate $/ \mathrm{r}=k\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\right][\mathrm{KI}] \checkmark \quad$ or ecf from (b) $k=\frac{\text { rate }}{\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\right][\mathrm{KI}]} / \frac{0.027}{0.50 \times 0.18}$ $=0.3(0) \checkmark \quad \text { units: } \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark$ units dependent on rate equation in (i). Mark independently.	[1]
		Total: 11

\begin{tabular}{|c|c|c|}
\hline Question \& Expected answers \& Marks \\
\hline 2 (a) \& \[
\begin{aligned}
\& \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{H}_{2}+\mathrm{CO} \\
\& \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{2}+\mathrm{CO}_{2} \\
\& \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2}+\mathrm{CH}_{2} \mathrm{O} / \mathrm{HCHO} \\
\& \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2}+\mathrm{CH}_{2} \mathrm{O}_{2} / \mathrm{HCOOH} \checkmark \\
\& \text { or } \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}+\mathrm{CH}_{3} \mathrm{OH} \checkmark
\end{aligned}
\] \& [1] \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \begin{aligned}
\& K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \checkmark \\
\& {\left[\mathrm{NH}_{3}\right]^{2} }=\left(K_{\mathrm{c}} \times\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}\right) \checkmark \\
\&=0.768 \checkmark \\
\& {\left[\mathrm{NH}_{3}\right] }=\sqrt{ } 0.78=0.876 / 0.88\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark
\end{aligned}
\end{aligned}
\] \\
If no powers, then rearrangement mark only.
\end{tabular} \& [1] \\
\hline (c) \& \begin{tabular}{l}
High pressure: \\
adv: Fewer moles on r.h.s. \(\rightarrow\) equilibrium moves to right \(\checkmark\) Greater pressure \(\rightarrow\) faster rate/more frequent collisions \(\checkmark\) \\
dis: Safety issues from (high) pressure / \\
Expense of (high) pressure \(\checkmark\) \\
High temperature: \\
adv: more collisions exceed activation energy/ more successful collisions/more energetic collisions/molecules have more energy \(\checkmark\) \\
dis: Equilibrium moves to left/reverse direction because (forward) reaction is exothermic \(\checkmark\) \\
Catalyst: \\
lowers activation energy/ allows reaction to take place at a lower temperature \\
QWC: Uses 2 words following list in the correct context: exothermic/endothermic, activation energy, collisions, equilibrium/Le Chatelier
\end{tabular} \& [3]
[2]

$[1]$
$[1]$

\hline
\end{tabular}

(d)	Moles NH_{3} required $=\frac{1.3 \times 10^{12}}{17}=7.6 \times 10^{10} \mathrm{~mol} \checkmark$ calc: $7.6470588 \times 10^{10} \mathrm{~mol}$	
Volume $\mathrm{CH}_{4}=n\left(\mathrm{NH}_{3}\right) \times 10.5$		
$7.6 \times 10^{10} \times \frac{7}{16} \times 24=8.0 \times 10^{11} \mathrm{dm}^{3} \checkmark n\left(\mathrm{NH}_{3}\right) \times 10.5$		
calc: $8.029411765 \times 10^{11} \mathrm{dm}^{3}$		
Volume air $=n\left(\mathrm{NH}_{3}\right) \times 15$		
$7.6 \times 10^{10} \times \frac{(8+2)}{16} \times 24=1.1 \times 10^{12} \mathrm{dm}^{3} \checkmark$		
OR $0.228 \times 10^{12} \mathrm{dm}^{3} \mathrm{O}_{2} \mathrm{and}^{3} 0.912 \times 10^{12} \mathrm{dm}^{3} \mathrm{~N}_{2}$		
calc: $1.147058824 \times 10^{12} \mathrm{dm}^{3}$		
OR $0.229411764 \times 10^{12} \mathrm{dm}^{3} \mathrm{O}_{2} \mathrm{and}^{2.917647059 \times 10^{12} \mathrm{dm}^{3} \mathrm{~N}_{2}}$		
	Volume $\mathrm{H}_{2} \mathrm{O}=n\left(\mathrm{NH}_{3}\right) \times 11.25$ $7.6 \times 10^{10} \times \frac{10}{16} \times 18=8.6 \times 10^{11} \mathrm{~cm}^{3} \checkmark$ calc: $8.60294117 \times 10^{11} \mathrm{~cm}^{3} / 8.60294117 \times 10^{8} \mathrm{dm}^{3}$	[4]
		Total: 16

Question	Expected answers	Marks
3 (a) (i)	proton donor \checkmark partially dissociates	[2]
(b)	$\begin{aligned} & K_{\mathrm{a}}=\frac{[\mathrm{HCOO}]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]} / \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} /\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times[\mathrm{HA}]\right) / \\ & 1.58 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.025} / \checkmark \\ & \left.\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(1.58 \times 10^{-4}\right) \times(0.025)\right\}=1.99 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.99 \times 10^{-3}=2.70 \checkmark \end{aligned}$ 5.4034 (no square root) with working would score 1 mark.	[3]
(c) (i) (ii) (iii)	A solution that minimises pH changes/resists pH changes/opposes pH changes \checkmark (not pH is kept constant/pH maintained/pH cancelled out. $\mathrm{HCOONa} / \mathrm{HCOO}^{-} / \mathrm{NaOH} \checkmark$ HCOO^{-}is the conjugate base/ HCOONa is the salt of the weak acid or $\mathrm{HCOOH} /$ HCOONa supplies $\mathrm{HCOO}^{-} \checkmark$ Two points from: $K_{\mathrm{a}} / \mathrm{p} K_{\mathrm{a}} /$ acid strength/amount of dissociation \checkmark temperature \checkmark (but not "temperature \& pressure") ratio/amounts/concentrations of weak acid and conjugate base/salt \checkmark (or reverse ratio) (not concentration of base as it could imply NaOH)	[1] [2] [2 max]
(d)	$\begin{aligned} & \text { Mass of } \mathrm{HNO}_{3}=\frac{1400 \times 65}{100} / 910 \mathrm{~g} \checkmark \\ & \text { Moles of } \mathrm{HNO}_{3}=\frac{910}{63}=14.4 \checkmark \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 14.4=-1.16 / 1.2 \checkmark \text { calc }-1.15836 \end{aligned}$ pH from ignoring $65 \% \mathrm{pH}=-1.35$: with working, 2 marks.	[3]
(e)	$\longrightarrow \ldots \ldots \ldots . . \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$ Complete correct balanced equation for 2nd mark: $\begin{aligned} & 2 \mathrm{HNO}_{3}+\mathrm{CaCO}_{3} \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} / \\ & 2 \mathrm{H}^{+}+\mathrm{CaCO}_{3} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} / \\ & 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$	[2]
(f)	Two species differing by H^{+}.... AW \checkmark one pair: $\quad \mathrm{HNO}_{3}$ and $\mathrm{NO}_{3}^{-} \checkmark$ other pair: HCOOH and $\mathrm{HCOOH}_{2}^{+} \checkmark$	[3]

(g) (i)$6 \mathrm{HNO}_{3}+\mathrm{S} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} /$ $4 \mathrm{HNO}_{3}+\mathrm{S} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+4 \mathrm{NO}_{2}+\mathrm{H}_{2} /$ $2 \mathrm{HNO}_{3}+\mathrm{S} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\frac{1}{2} \mathrm{~N}_{2} \checkmark$		
(ii)	from (+)5 to (+)4 \checkmark	[1]
		Total: 20

Question	Expected answers	Marks
4 (b)	$\begin{aligned} & \text { moles of } \mathrm{NaOH}=\frac{0.1263 \times 23.75}{1000} / 3.00 \times 10^{-3} \mathrm{~mol} \\ & \text { moles of acid }=3.00 \times 10^{-3} \mathrm{~mol} \checkmark \\ & \text { moles of acid in flask }=10 \times 3.00 \times 10^{-3}=3.00 \times 10^{-2} \mathrm{~mol} \end{aligned}$ molar mass of compound $=\frac{\text { mass }}{n}=\frac{2.58}{3.00 \times 10^{-2}}=86 \checkmark$ Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} \checkmark$ A 4 carbon carboxylic acid (e.g. butanoic acid) shown (bod) \checkmark Any 2 possible isomers $\checkmark \checkmark$ from: $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{COOH}$ cis $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$ trans $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$ Accept structural formulae that are unambiguous.	[4] [4]
		Total: 13 max

Mark Scheme 2816/03
 June 2007

PLAN Skill P 16 marks maximum (out of 19 available)
Titration method (T) - 8 marks
Either a potassium manganate(VII) or an iodine-thiosulphate titration is suitable.
An unsuitable titrant forfeits all marks except $T 1$ and $T 6$

T1 Controlled dilution of hydrogen peroxide
Use of (i) pipette (ii) volumetric flask and (iii) distilled water are required.
T2 Calculation and justification of suitable quantities for dilution
T3 Transfer peroxide into conical flask using a pipette and acidify with $\mathrm{H}_{2} \mathrm{SO}_{4}$
For the "iodine method" addition of excess KI is also needed
T4 Use KMnO_{4} of known/specified concentration in the burette
Concentration of KMnO_{4} must lie between 0.01 and $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$
For "iodine method" use sodium thiosulphate ($0.01-0.5 \mathrm{M}$) in the burette
T5 No indicator (implied) and end-point change is to pink/pale purple
For "iodine method" use starch: goes colourless (not "clear")
T6 Obtain two consistent accurate/concordant titres (or within $0.1 \mathrm{~cm}^{3}$)
T7 Equation(s) for titration or ionic equations
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
or $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KI} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$ and $\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
T8 Specimen calculation of concentration of peroxide from titration data.
Calculation must include "scaling up" to allow for dilution procedure

Order Determination (D) - 7 marks

D1 Realises need for preliminary work to obtain a measurable rate of reaction, by adjusting either the concentration of the $\mathrm{H}_{2} \mathrm{O}_{2}$ or the mass of catalyst.

D2 Outline of how to start the procedure - both bullets needed

- use known/specified volume of hydrogen peroxide
- start timing immediately when specified catalyst $\left(\mathrm{MnO}_{2}\right)$ is added

D3 Monitoring procedure - one of the following methods described briefly

- Measure the quantity of oxygen at regular intervals using a gas syringe (or equivalent)
- Mass loss to determine mass of oxygen evolved at regular intervals
- A procedure that enables $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ to be determined at regular intervals.
- A procedure with a range of initial $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ concentrations, measuring the times taken for a small ($<20 \mathrm{~cm}^{3}$) volume of gas (syringe measurement) to be produced
- Sampling technique
- (i) use of pipette to withdraw a sample
(ii) quench the sample or remove catalyst [to stop reaction]
(iii) suitable titrant for sample named

D4 Accuracy precautions: accept any two from the six below

- Stir/swirl or mix reagents at start of reaction
- Use water bath to keep temperature of mixture constant during the reaction
- Repeat whole procedure and calculate mean values/ignore anomalies.
- Calculation of maximum volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ to use so that syringe is not over-filled
- Use an ignition tube (or equivalent) to separate reagents if gas collection used

D5 Sketch graph of typical results showing quantity v time, with axes labelled

- Volume (or mass) of oxygen increasing with time
- Concentration of hydrogen peroxide decreasing with time (but candidate must show how the concentration of peroxide was derived from the O_{2} measurements)
- An "initial rate v concentration" graph, linear through 0,0 (assuming that the candidate did a series of experiments using varying concentrations of peroxides)

D6 Detailed explanation of how to analyse the data obtained
D7 Brief statement as to how the order of reaction is shown to be first order

- Half-life: if any two half-lives are [nearly] equal, this indicates first order
- Initial rate compared with initial concentration is straight line/ directly proportional or if one doubles, the other doubles (or specimen figures quoted)
- Tangent-rate: Graph of rate v concentration is a straight line [through 0,0]

S 4 marks for safety, sources and QWC

S1 Risk assessment for hydrogen peroxide in the procedure chosen
"20 volume" is irritant (not corrosive)
Accept wearing specs or gloves (provided linked to the hazard) as precaution.
S2 Two different sources quoted in the text or at end of plan.
Book references must have chapter or page numbers
Internet reference must go beyond the first slash of web address
Accept one specific reference to "Hazcards", by name or number
S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Award S3 if there are fewer than six errors in spelling, punctuation or grammar.
A repeated error (e.g. no capitals at start of sentences) is penalised once only.
S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly? (One error is allowed without penalty).
- Is the description in a reasonably logical order?

Practical Test (Part B)

Page 3 (Part 1) - 9 marks
Both units at top of table and final temperature with unit given (at foot of page)
Five readings for t recorded in table
All five t values show increasing increments of time
The time for $V=10.0 \mathbf{~ c m}^{\mathbf{3}}$ is within $\mathbf{1 0 \%}$ of the supervisor's mean time
Award 2 marks if within 10\%: award one mark if within 20%
Use the mean of the supervisor's two readings to assess accuracy
The time for $V=20.0 \mathrm{~cm}^{3}$ is within 20% of the supervisor's time

Candidate's self-consistency marks:

Divide candidate's time at $V=10$ by the time at $V=5$
Give one mark if the answer is between 2.00 and 2.20 (incl)
Divide candidate's time at $V=15$ by the time at $V=5$
Give one mark if the answer is between 3.30 and 3.55 (incl)
Divide candidate's time at $V=25$ by the time at $V=10$
Give one mark if the answer is between 3.10 and 3.55 (incl)
Part 2-21 marks maximum (22 available)
Page 5-3 marks
2 (a) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$n\left(\mathrm{I}_{2}\right)$ produced in experiment $=n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=0.000417 \mathrm{~mol}\left(4.17 \times 10^{-4}\right)$
The number of moles of iodine must be specifically shown in the working.
If the moles link is via KI (or iodide), award 0 out of 2 for calculation n (thiosulphate) required in experiment $=2 \times 0.000417 \mathrm{~mol}$
so volume of thiosulphate required in experiment $={ }^{0.000833} / 0.015=0.0555(5) \mathrm{dm}^{3}$

Page 6-2 marks

2 (b) Second column of table correctly completed with ' 35.6 ’ and missing log value inserted $=0.194$
All times correctly entered in the table in seconds

Page 7 - 6 marks for graph

2(c) Both graph axes labelled, with numbering and units of time (s) shown
Sensible uniform scales chosen for each axis, starting from 0,0
Points plotted must extend for at least half of the grid, in each direction
Non-uniform scales (check the log axis) forfeit the previous mark also.
Four points plotted correctly
Points must be within half a small square each way and on the right side of grid lines
Two points wrong $=0$
Best fit straight line drawn
One mark is awarded for a reasonable attempt.

Page 8-9 marks available (but 8 on question paper)
(d) 1 mark

The points on the graph fit a straight line or quantities are 'directly proportional'
(e) 4 marks

Construction to determine the gradient is clearly indicated on graph
NB: Construction must include at least four large squares in one direction
Correct method of calculating gradient $={ }^{\text {change }}$ in $\log /$ change in t
Rate constant correctly calculated ($k=2.3 \times$ gradient)
\boldsymbol{k} will be approximately $1.0 \times 10^{-3} \mathrm{~s}^{-1}$ (answer expressed to 2 or 3 sig fig) Unit is s^{-1}
(f) $\mathbf{4}$ marks can be awarded (but 3 on question paper)

First order with respect to hydrogen peroxide
KI and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are in [large] excess ...
..... so their concentrations are [nearly] constant
Either sodium thiosulphate is not a reagent in the reaction under investigation or $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ is the only reagent whose concentration changes

Page 9-2 marks (Safety)

(g) Add [aqueous] sodium thiosulphate to the stain

Sodium thiosulphate is not harmful/has no hazard itself or the iodide ions produced are not harmful

Part 3: Skill E Maximum 14 marks (from 17 marking points)

Page 10-9 marks available

(a) 2 marks

$$
\left.\begin{array}{ll}
& \% \text { error }=0.04 / 10[\times 100] \tag{1}\\
0.4 \% & {[1]} \\
\text { (b) } & 4 \text { marks available (but only } 3 \text { on question paper) } \\
& \text { Each reading was only done once or whole experiment should be repeated }
\end{array}\right]\left[\begin{array}{ll}
\text { [1] }
\end{array}\right]
$$

Points on graph are close to best fit [giving evidence of reliability]

One anomalous/residual result correctly identified [1] or an appropriate statement that there aren't any residuals

(c) 3 marks available, maximum (but only 2 on question paper) Credit any three ideas

Reaction would be faster or times measured would be shorter......
..... so there would be a greater error in measurement of times
There would not be enough time between readings to add the "thio" and mix
If the concentration was higher, the blue colour appeared much more suddenly
If a greater concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used, the total volume of "thio" needed for complete reaction would be greater than $55.6 \mathrm{~cm}^{3}$

Page 11-8 marks available

(d) 3 marks available, maximum (but only 2 on question paper)

Credit any three ideas from the following four
KI is in excess . .
. . so it doesn't matter if its volume is not measured exactly
It would take longer to add the aqueous KI to the mixture from a pipette or a measuring cylinder allows aqueous KI to be poured in quickly

Timer should be started half way through the addition [so would be less accurate] or starting timer after the addition of all aq KI would give an error in $t=0$
(e) $\mathbf{3}$ marks: credit any three ideas from the following seven

Because the stop watch was still running, you wouldn't be able read it to 0.01 s or you would have to stop the stop watch in order to read it [to 0.01 s]
The times are long/well spread, so an error of one second is not significant or \% error is small because the times are large

When graph was plotted, the scale is too small to show 0.01 s intervals or times would have to be rounded up when graph was plotted

The reagents were not measured to high level of accuracy, so there is no benefit in
measuring the time to a high level of accuracy
Human response times are finite [1]
The timer was started slightly after the reaction had begun/chemicals had been mixed [so all timings were slightly inaccurate]

Blue colour does not appear instantaneously/ takes a second or so to develop
(f) $\mathbf{2}$ marks (from the ideas listed below)

Process the reading as $V=26.0 \mathrm{~cm}^{3}$
Plot time, t, and $\log { }^{55.6} / 55.6-26.0$ on the graph
OR Ignore final $/ 26.0 \mathrm{~cm}^{3}$ reading when plotting the graph or realise that this is an anomalous reading
Only one mark is available for this strand

Advanced GCE (Subject) (Aggregation Code(s))

January 2007 Assessment Series
Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2811	Raw	60	47	41	35	29	24	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	48	41	34	28	22	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	95	86	77	68	59	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	95	86	77	68	59	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	89	78	68	58	48	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	69	61	53	46	39	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	68	60	53	46	39	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	69	61	53	46	39	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	68	61	54	47	40	0
	UMS	90	72	63	54	45	36	0
2815D	Raw	90	68	60	52	44	36	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	69	61	53	46	39	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	97	87	77	67	58	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	97	87	77	67	58	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	91	80	70	60	50	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 2}$	20.7	39.7	57.8	73.3	86.1	100	14835
$\mathbf{7 8 8 2}$	29.9	55.3	74.1	88.0	96.2	100	11113

For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

[^0]: ${ }^{1}$ Note that in organic chemistry a candidate may identify a compound by name and formula. If one of these is wrong then the mark is not awarded, as this is a contradictory answer.

