

Chemistry

Advanced GCE A2 7882

Advanced Subsidiary GCE AS 3882

Mark Schemes for the Units

January 2007

3882/7882/MS/R/07J

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:	0870 870 6622
Facsimile:	0870 870 6621
E-mail:	publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME ON THE UNITS

Unit	Content	Page
2811	Foundation Chemistry	1
2812	Chains and Rings	7
2813/01	How Far? How Fast? / Experimental Skills 1 Written Paper	13
2813/03	How Far? How Fast? / Experimental Skills 1 Practical Examination	19
2814	Chain, Rings and Spectroscopy	27
2815/01	Trend and Patterns	37
2815/02	Biochemistry	43
2815/04	Methods of Analysis and Detection	49
2815/06	Transition Elements	57
2816/01	Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper	63
2816/03	Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination	69
*	Grade Thresholds	75

Mark Scheme 2811 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme / = alternative and acceptable answers for the same marking points () = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit () = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument					nt		
Question		Expected Ans	wers				Marks
1 (a)	(i)	(atoms of) sar different num	ne element/s			,	[1]
(b)	(i)	isotope ⁸⁵ Rb ⁸⁷ Rb	percentage composition 71 to 73 27 to 29	protons 37 37	number of neutrons 48 50	electrons 37 37	✓ ✓
	(ii)	= 85.6 71/29: 85.58	x 72) + (87 x 100 ✓ 2nd mark t = 85.6	28) / 85.5	6 🗸		[3] [2]
(c)		73/27: 85.54 carbon-12/ ¹²					[1]
(d)		atomic radii o Rb has electro Rb has more s Rb has more s (increased) nu despite increa factors above less attraction	ons in shell fu hells ✓ hielding ✓ (7 iclear charge ised nuclear c /	rther from nore' is es is outweigh hargeby	n nucleus / <i>sential)</i> ned /		[3]
(e)	(i) (ii)	Simplest (who ratio Rb : Ag	g:I = 7.42	/85.5 : 3	7.48/108 : 47 : 0.434 5 √_	55.10/127	[1]
				-، ر	-		[2] Total: 13

Abbreviations, annotations and conventions used in the Mark Scheme / = alternative and acceptable answers for the same marking point / = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit () = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument				
Questi	on		Expected Answers	Marks
2	(a)	(i)	8-14 √	[1]
	()	(ii)	Ca(OH) ₂ (aq) + CO ₂ (g) \longrightarrow CaCO ₃ (s) + H ₂ O(l) 1st mark for species in equation \checkmark 2nd mark for rest with st symbols \checkmark Allow H ₂ O as either 'l' or 'aq'	[2]
		(iii)	precipitate disappears/goes clear/goes colourless 🗸	
			$Ca(HCO_3)_2 CaH_2C_2O_6 \checkmark$	[2]
	(b)	(i)	1s²2s²2p ⁶ 3s²3p ⁶ ✓	[1]
		(ii)	3 √	[1]
		(iii)	10 🗸	[1]
		(iv)	'dot-and-cross' of Ca ²⁺ with either 8 electrons or no electrons. ✓ 'dot-and-cross' of 20H ⁻ correct ✓ N.B. H electron and Ca electrons can look the same.	[2]
	(c)	(i)	Heat $CaCO_3 \checkmark$ $CaCO_3 \longrightarrow CaO + CO_2 \checkmark$ Add water to CaO (or + H ₂ O in equation) \checkmark $CaO + H_2O \longrightarrow Ca(OH)_2 \checkmark$	[4]
	(d)		neutralising (acid) soils/neutralising sewage/ softening water in water treatment/ neutralising acid water 🗸	[1]
				Total: 15

Abbreviations, annotations and conventions used in the Mark Scheme			 / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Ques	tion		Expected Answers	Marks
3	(a)	(i)	attraction between oppositely charges ions \checkmark	[1]
		(ii)	shared pair of electrons ✓ ✓ <i>'shared electrons' scores 1 mark only</i>	[2]
	(b)	(i)	attraction of an atom/element for electrons \checkmark in a (covalent) bond/bonded pair \checkmark	[2]
		(ii)	one element attracts bonded pair more /is more electronegative than other \checkmark $\longrightarrow \delta$ - on more electronegative atom and δ + on less electronegative element in example \checkmark <i>May need to look for these marks in (c) if not given here.</i>	[2]
	(c)		H-bond shown between H of one molecule and O, N or F of another ✓ H-bond shown going to a lone pair ✓	[2]
			<u> </u>	Total: 9

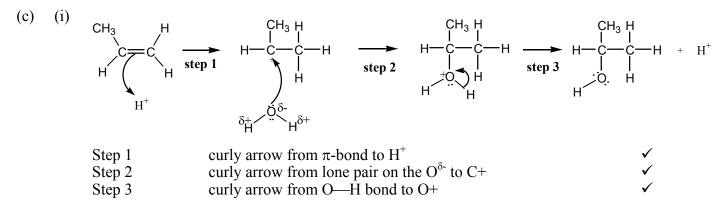
Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 					
Question	Ехр	ected Answ	vers			Marks
4 (a)		element Mg Si S	structure giant giant simple	bonding metallic covalent covalent		[3]
(b)	covo P ho	alent bonds is weak forc	orces between atc are broken √ ces between molec forces/van der W	ules/	broker	[2] n ✓
(c)	From Na \rightarrow Al, no of delocalised electrons increases \checkmark charge on positive ion increases/ ionic size decreases/ charge density increases \checkmark attraction between + ions and electrons increases/ metallic bonding gets stronger \checkmark				[2 max]	
						Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 			
Question	Expected Answers	Marks		
5 (a) (i)	12 × 50/1000 = 0.600 mol √	[1]		
(ii)	4 mol HCl \longrightarrow 1 mol Cl ₂ / moles Cl ₂ = 0.15 mol \checkmark vol of Cl ₂ = 0.15 x 24 = 3.60 dm ³ \checkmark 2nd mark is consequential on molar ratio given	[2]		
(b)	Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO_2 : ox no of Mn = +4 or $MnCl_2$: ox no of Mn = +2 \checkmark The other oxidation number of Mn is correct, ie in MnO_2 : ox no of Mn = +4			
	or in MnCl₂: ox no of Mn = +2 ✓	[2]		
(c) (i)	$2Na(s) + Cl_2(g) \longrightarrow 2NaCl(s) \checkmark \checkmark$ 1st mark for equation 2nd mark for state symbols	[2]		
(ii)	Giant ionic (lattice) or 3D ✓ with alternating Na⁺ and Cl⁻ ✓	[2]		
	 With Br⁻, goes yellow/orange/red ✓ 'precipitate' makes this incorrect. With I⁻, goes purple/brown/brown ✓ 'precipitate' should be ignored Cl₂ + 2Br⁻ → Br₂ + 2Cl⁻ ✓ Cl₂ + 2I⁻ → I₂ + 2Cl⁻ ✓ Or full equations using soluble halides, eg NaBr If both equations given with correct species but not balanced, award 1 mark reactivity trend: Cl more reactive than both Br and I/ Cl is the most reactive ✓ Cl (atoms) are smaller (ora) / attraction for electrons or electron affinity is greater / Cl is a stronger oxidising agent ✓ <i>ignore any reference to 'electronegativity'.</i> 	[6]		
	QoWC: At least 2 sentences in which the meaning is clear. ✓	[1] Total: 16		

Mark Scheme 2812 January 2007

2812	2	Mark Scheme Januar	
Q1			
(a)		separation by (differences in) boiling point	\checkmark
(b)		$C_7H_{16} \longrightarrow C_4H_{10} + C_3H_6$	✓
(c)	(i)	Any of	
		$\begin{array}{ccccccc} H & H_{3}C & H & H_{3}C & H & H \\ H & C & C & H & H & H & H \\ H & C & C & H & H & H & H \\ H & H & H & H & H & H$	✓
	(ii)	$C_7H_{16} \longrightarrow C_7H_{14} + H_2$ (or by structural formula)	√
(d)	(i)	2,2-dimethylpentane	√
	(ii)	3-methylhexane, 3,3 dimethylpentane or (3)-ethylpentane in any unambiguous form	. 🗸
	(iii)	2,2,3-trimethylbutane	\checkmark
	(iv)	if branched, difficult to pack/less surface interaction/less points of contact less van der Waals' forces/ less intermolecular bonds/less energy needed to boil	✓ ✓
(e)	(i)	(A fuel whose feedstock is obtained) from a plant/animal excrement	\checkmark
	(ii)	fossil fuels are non-renewable because they take millions of years to form/ ethanol is renewable because the plant (sugar beet, cane) can be re-grown	✓
			101

[Total: 12]


January 2	2007
-----------	------

Q2

(a) (i) $C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(l)$ or $(aq) + 2CO_2(g)$ balanced equation \checkmark state symbols can be awarded only if equation shows $C_6H_{12}O_6$, C_2H_5OH and $CO_2 \checkmark$

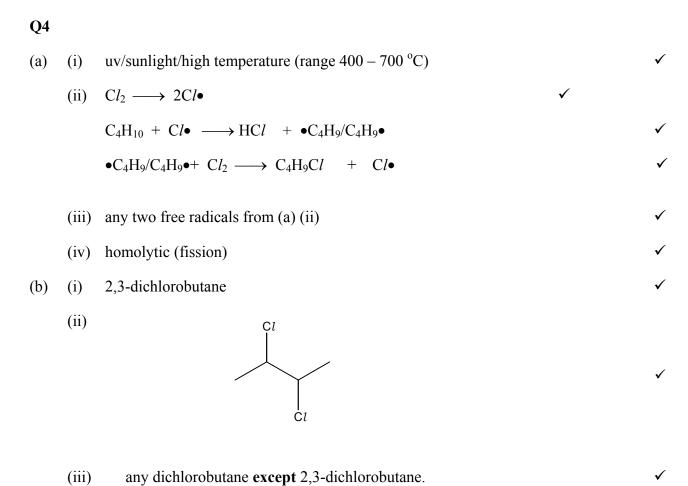
Mark Scheme

- (ii) anaerobic, aqueous, temp range 25 40 °C/warm to just above room temp
- (iii) no more bubbles/gas/CO₂
- (b) (i) phosphoric acid/ H^+ /sulphuric acid
 - (ii) lone/electron pair of electrons acceptor

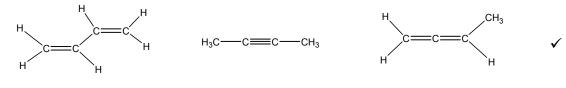
(ii) catalyst ... no marks because it is **not** consumed/used up in the reaction/owtte

(d) $CH_3CH(OH)CH_3 + 4\frac{1}{2}O_2 \longrightarrow 3CO_2 + 4H_2O$ $\checkmark \checkmark$

(1 mark if correct formula for all four chemicals and 1 mark for correct balancing)

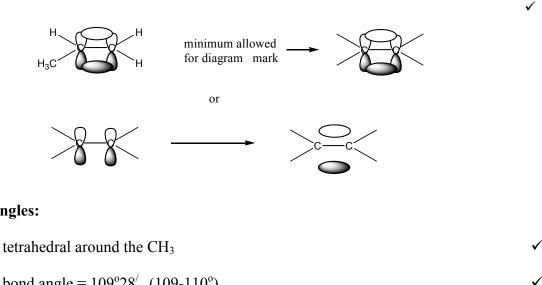

(e) ethanoic acid/ CH_3COOH/CH_3COCl

 \checkmark


 $\checkmark\checkmark$

[Total: 14]

2812 **Mark Scheme** January 2007 Q3 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene \checkmark (a) (b) Н ÇH₃ Н ÇH₃ Backbone of 4 carbons and a reasonable attempt √√ gets 1 mark. ĊH₂Cl Ĥ ĊH₂C1 Ĥ compound F compound G (c) (i) Н CH₃ Н CH3 -CH₂OH -CH₂OH ~ Н H Ĥ Ĥ Вr Вr (ii) CH₃ ÇH₃ H 2 HBr ·CH₂Br C + H₂O $\checkmark\checkmark$ CH₂OH Вr Ĥ C_4H_8O $C_4H_8Br_2$ 1 mark for HBr $Cr_2O_7^{2-}$ (iii) \checkmark H⁺and reflux (iv) CH₃ √ / methylprop-2-enal сно infra-red (d) (alcohol)E would show absorption 3230 - 3550 cm⁻¹ (carboxylic acid) I would show either an absorption $1680 - 1750 \text{ cm}^{-1}$ or $2500 - 3300 \text{ cm}^{-1}$ 1 I contains C=O at approx 1700 cm⁻¹ but E doesn't get both marks $\checkmark\checkmark$ [Total: 12]


- (c) (i) ethanol
 - (ii) elimination
 - (iii) any one from:

[Total: 12]

Q5

Bonding: π -bond formed by overlap of (adjacent) p-orbitals/ π -bond labelled on diagram diagram to show formation of the π -bond

Shape/bond angles:

bond angle = $109^{\circ}28'$ (109-110°)
trigonal planar around each C in the C=C
bond angle = 120° (118-122°)

Cis-trans

cis & trans correctly labelled eg but-2-ene	\checkmark
require a double bond because it restricts rotation	\checkmark
each C in the C=C double bond must be bonded to two different atoms or gr	oups 🗸

3

4

2

QWC Allow mark for well constructed answer and use of **three** terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric \checkmark

[Total: 10]

Mark Scheme 2813/01 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme		ns and ons	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	1
Que	stior	1	Expected Answers	Marks
1	(a)	(i)	$MgCO_{3}(s) + 2HCI(aq) \rightarrow MgCI_{2}(aq) + CO_{2}(g) + H_{2}O(I)$	
			balancing ✓ state symbols ✓	2
		(ii)	$\begin{array}{rcl} MgC_{O_3} + 2H^{\scriptscriptstyle +} \rightarrow Mg^{2^{\scriptscriptstyle +}} + CO_2 + H_2O/\\ CO_3 & + 2H^{\scriptscriptstyle +} \rightarrow CO_2 + H_2O \checkmark \end{array}$	1
	(b)		(as the reaction proceeds) the concentration decreases ✓ (rate) of collision decreases ✓ reaction stops when all of one reagent is used up ✓	3
	(c)	(i)	sketch to show slower rate of production ie less steep (must not be straight line) \checkmark final volume the same but reached later \checkmark	2
		(ii)	rate is slower because weak acid is partially ionised/ dissociated ✓ lower concentration of H ⁺ in weak/ higher concentration of H ⁺ in strong/ HCl ✓	2
				Total: 10

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
2 (a)	C_3H_8 + 5 O_2 → 3 CO_2 + 4 H_2O formulae \checkmark balancing \checkmark	2
(b)	ignore state symbols (enthalpy/ energy/ heat change) when 1 mole of substance/	-
	element/ compound ✓ (NOT absorbed) is completely burnt/ burnt in excess oxygen ✓ under standard conditions (if conditions stated they must be correct) ✓	3
(c) (i)	use of $mc \Delta T \checkmark 200 \text{ X } 4.18 \text{ X } 50.3$ correct answer $\checkmark 42.1/42.0/42$ (2 or more sig figs) final answer must be in kJ for 2 nd mark	2
(ii)	moles = $\frac{1.00}{44}$ = 0.0227/ 0.023 \checkmark	1
(iii)	<u>42.1</u> = 1850 (kJ mol ⁻¹) ✓ 0.0227 sign ie – ✓	2
(d)(i)	cycle \checkmark multipliers x – 2219 = 3(–394) + 4(–286) \checkmark answer –107 (kJ mol ⁻¹) \checkmark	3
(ii)	carbon and hydrogen would react to give more than 1 product/ do not react together easily/ the reaction has a high activation energy \checkmark	1
		Total 14

Abbrevia annotatio conventio used in th Scheme	ons and ons	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>ecf</u> = (underlining) key words which <u>must</u> be used to gain credit AW = alternative wording ora = or reverse argument 	
Question		Expected Answers	Marks
3 (a)		any two from rate of forward reaction = rate reverse reaction ✓ macroscopic properties remain constant/ concentrations remain constant ✓ closed system needed ✓	2
(b)	(i)	a substance that alters the rate of a reaction without being	
		used up / a substance that lowers the activation energy (for a reaction) by providing an alternative route \checkmark	1
	(ii)	catalyst is in the same state/ phase as reactants \checkmark	1
	(iii)	H ⁺ ✓	1
	(iv)	they alter the rate of the forward and the reverse reaction by the same amount \checkmark	1
(c)	(i)	axes labelled y as number/ fraction/ % of molecules/ particles and x as energy/ enthalpy/ velocity/ speed \checkmark correct shape to include origin, hump and position wrt x axis \checkmark	2
	(ii)	two vertical lines drawn both to the RHS of hump (at least one labelled <i>E</i> a) (labels reversed cannot score) \checkmark greater proportion of collisions have energy greater than <i>E</i> a/ more molecules exceed <i>E</i> a \checkmark	2
			Total 10

Abbreviations, annotations and conventions used in the Mark Scheme	 = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
4 a)	pressure 50 – 1000 atm ✓ temperature 200 – 600°C ✓	2
b)	 rate (increased) pressure increases rate because molecules are closer together/ more concentrated ✓ (increased) temperature increases rate because molecules are moving faster/ have more energy ✓ equilibrium increased pressure pushes equilibrium to RHS ✓ because fewer (gas) moles/ molecules on RHS ✓ increased temperature pushes equilibrium to LHS ✓ because (forward) reaction is exothermic ✓ compromise if temperature is too high, low yield ✓ if temperature is too low, slow rate ✓ 	
	if pressure is too high, increased costs/ safety issues ✓	9
		Total: 11

Mark Scheme 2813/03 January 2007

AS Practical Exam 2813/03 Jan 2007: Mark Scheme

Skill P: 16 marks (out of 19 available)

G Gas collection method – 9 marks

G1	Adds measured quantity of sulphuric acid to known mass of baking powder	[1]
G2	Collects the gas in a gas syringe/measuring cylinder/inverted burette or measures total mass of materials at start, then mass loss after reaction	[1]
G3	Uses excess dilute sulphuric acid and states reason for excess	[1]
G4	Draws a neat accurate diagram of apparatus (using a ruler) If mass loss method is described, a wool plug must be shown	[1]
G5	"Inner tube" (or equivalent) used to prevent premature start of reaction	[1]
G6	Waits until no more gas collected before measuring volume of gas. A specific observation is required (fizzing stops or syringe plunger stops Mass loss: measurement must be to constant mass (aw)	[1] moving)
G7	Repeats whole experiment until volumes of gas are consistent/takes mean	[1]
G8	CO ₂ is [slightly] soluble in water (or acid)	[1]
G9	Uses water/acid pre-saturated with CO ₂ or uses hot water or uses acid that is more concentrated or states that syringe collection is more accurate since less water involved	[1]
С	Calculations etc – 6 marks	

C1	Background theory: baking powder liberates CO ₂ when heated or when acidified	ed.
	and the CO ₂ produced makes dough/cakes/bread (etc) rise.	[1]

C2 Researches typical % mass of NaHCO₃ in baking powder (stating source of info) or states three components of baking powder (starch, bicarb and an organic acid) or realises that method assumes that no other type of carbonate is present [1]

- C3 Equation for reaction: $2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$ [1]
- C4 **Calculates** suitable mass of NaHCO₃ so that syringe is not over-filled with gas [1]
- C5 **Calculates** suitable volume **or** concentration of sulphuric acid to use [1] Calculation must implicitly use a correct mole ratio
- C6 **Calculates % NaHCO**₃ in baking powder from mass used and volume of gas [1] Accept an intelligible calculation leading to any answer **below** 100%

S Sources etc – 4 marks

S1 Researches hazard of **and** explains a safety measure for the sulphuric acid [1] Sulphuric acid is corrosive if > 1.5M (and irritant at lower concentrations) Treat any gross overstatement of hazard as a CON

S2 References to two secondary sources quoted as footnotes or at end. [1]

- Books must have chapter or page numbers
- An Internet reference must go beyond the first slash of web address
- Accept one <u>specific</u> reference a page in "Hazcards"

S3 **QWC**: text is legible and spelling, punctuation and grammar are accurate [1]

Accept not more than **five** different errors in legibility, spelling, punctuation or grammar.

- Treat ICT slip in text (eg "cm3") as one error.
- Don't penalise an error that has already been penalised in an equation.

S4 **QWC**: information is organised clearly and accurately

[1]

Can you say "yes" to all three of the following questions?

- Is a word count given and between 450 and 1050 words? Accept a total word count or any word numbering in the margin
- Is scientific language used correctly? Allow one error, only, without penalty. Is there any error of terminology - eg "strong" for "concentrated"? Is there an incorrect chemical formula in the text? If units are quoted in text or in calculations are they [normally] correct?
- Is the description written logically, coherently and without undue repetition?

AS Practical Test (Part B)

Page 3 – 8 marks (Part 1)

First three weighings listed or tabulated <i>Unit, g, must be shown somewhere against the weighings.</i>			[1]
Fourth	Fourth weighing (after re-heat) shown and is within 0.01 g of third weighing <i>Give</i> <u>one</u> mark if fourth mass is within 0.02 g of third mass		
Mass	of NaHCO₃ used and mass of residue obtained These must <u>both</u> be subtracted correctly and given	to 2 (or 3) dp)	[1]
Accuracy of % mass obtained <i>Calculate mean supervisor's</i> % ^{mass of residue} / _{mass of NaHCO3} to nearest 1 dp. <i>Then calculate candidate's</i> % mass in the same way. Answers of candidate and supervisor % are within 1.0% → 3 marks: within 2.0% → 2 marks: within 4.0% → 1 mark			[3]
Safety	: yellow flame is visible/easily seen		[1]
Page	4 – 3 <i>mark</i> s (Part 2)		
2(a)	Lime water goes milky/cloudy		[1]
	Solid does not change colour or white residue/solid formed after heating (allow "nor condensation produced or drops of liquid formed or after some time, lime water begins to go colourle	d [higher up the test tube]	[1]
	Carbon dioxide produced (allow formula)		[1]
Page	5 – 6 <i>marks</i> (Parts 2 + 3)		
2(b)(i)	Fizzing/bubbling observed Do not allow "gas produced", but allow "colo	ourless gas produced"	[1]
(ii)	Residue is sodium carbonate		[1]
	Reason for deduction: <i>Either</i> : <u>only</u> sodium carbonate reacts with acid to g <i>Or</i> sodium oxide/hydroxide produce no gas when a	-	[1]
3(a)	[sodium hydrogen carbonate \rightarrow water] + sodium carbonate + carbon dioxide [Both products must be correct. Words are required – it is a "word equation"		
3(b)	$M_{\rm r}$ of NaHCO ₃ = 84		[1]
	no of moles of NaHCO ₃ , correctly calculated from o Answer must be correct to 3 sig fig	andidate's data	[1]

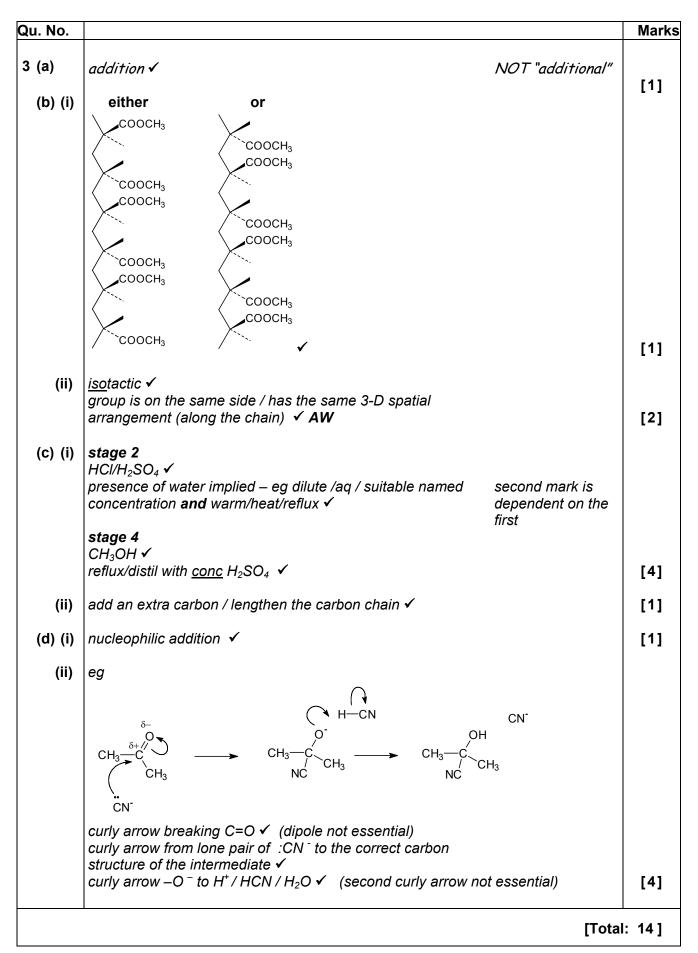
Page 6 – 4 marks (Part 3)

3(c)	M_r of Na ₂ CO ₃ = 106 Allow ecf to candidate's answer in 3(a), either NaOH = 40 or Na ₂ O = 62	[1]
	Number of moles of residue, correctly calculated from candidate's data	[1]
3(d)	Ratio = 2:1	[1]
3(e)	Equation fully correct: $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$	[1]
Page	8 – <i>4 marks</i> (Part 4)	
4(a)	Both temperatures clearly labelled and recorded to 0.5°C (ie one decimal place)	[1]
	Temperature drop correctly worked out and unit shown (somewhere)	[1]
	 Accuracy – 2 marks Candidate's temperature drop within 0.8°C of supervisor's mean → 2 Candidate's temperature drop within 1.5°C of supervisor's mean → 1 	
Page	9 – <i>5 mark</i> s (Part 4)	
4(b)	Temperature change/fall shown in formula	[1]
	Heat absorbed, correctly calculated (= 105 x temp fall)	[1]
4(c)	No of moles of HCI = 0.025	[1]
4(d)	$\Delta H/kJ = \frac{heat}{no of moles} \times \frac{1}{1000}$ This is a method mark	[1]
	ΔH value calculated: correct answer is expressed in kJ, to 2 or 3 sf. Positive sign is not required, but penalise a negative sign with the answer	[1] r
Page	s 10 + 11 – <i>14 marks (maximum, out of 19).</i> Part 5	
5(a)	2 marks (but 1 on question paper)	
	Constant mass or third and fourth mass readings should be [nearly] equal	[1]
	To ensure that the solid has completely reacted/decomposed	[1]
5(b)	4 marks (but 3 on question paper)	
	Yellow flame contains soot/carbon.	[1]
	A deposit of soot would increase the mass of the crucible and residue	[1]

2813/	03 Mark Scheme	January 2007	
	Yellow flame has a lower temperature or yellow flame heat is [too] gentle [compared to a cone flame]	[1]	
	Heating would be required for a longer period <i>or</i> the NaHCO ₃ might not decompose [completely] <i>(owtte)</i>	[1]	
5(c)	2 marks		
	Potential error = 0.02 g, because two readings are involved	[1]	
	% error = ^{0.02} / _{mass of NaHCO3} x 100 (ignore sf) Give 1 mark (out of 2) for use of 0.01 in this expression	[1]	
5(d)	2 marks		
	Repeat experiment and take mean/ignore anomalous results	[1]	
	Consistent readings are evidence of reliability	[1]	

·

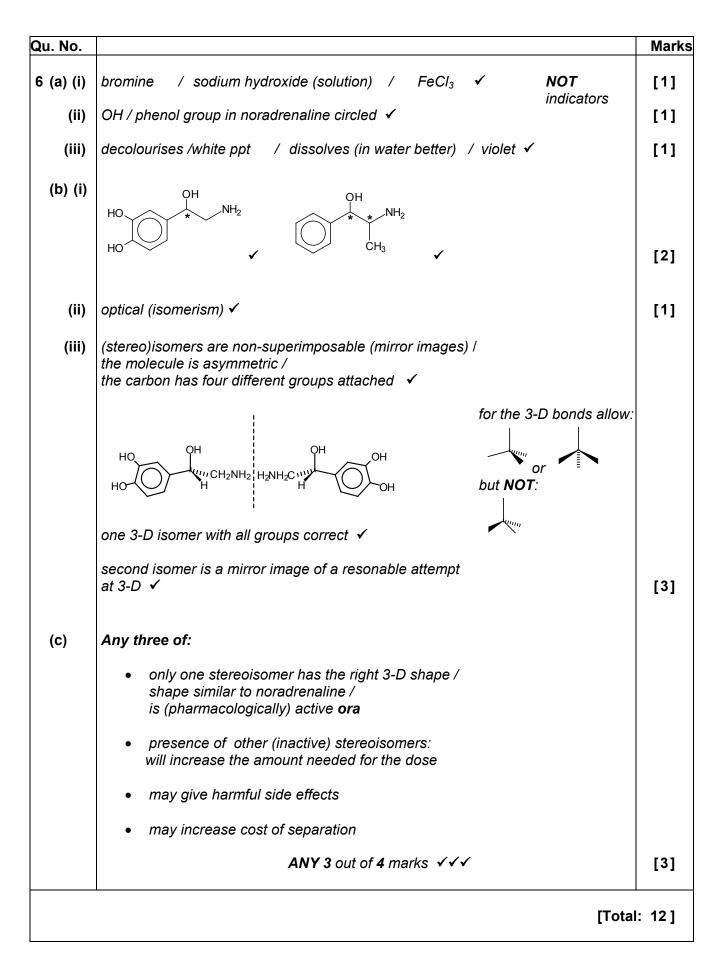
5(e) 9 marks (but 6 on question paper)


Mark the best **three** strands from those below

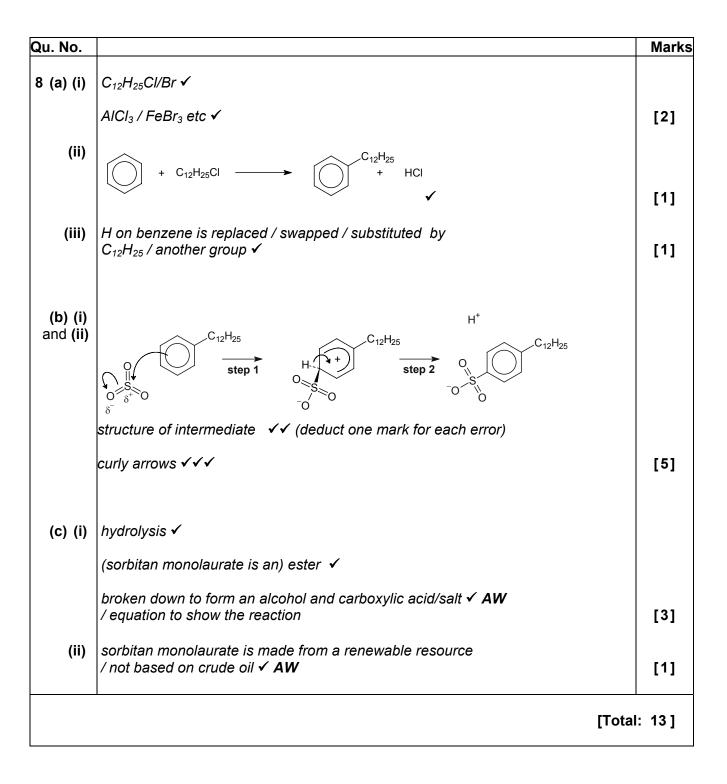
•	Heat gains (accept "losses") during reaction	[1]
	These result from convection or conduction	[1]
	Use a lid or thermos flask or thicker/better/more insulation/calorimeter	[1]
•	Loss of [acid] spray during reaction	[1]
	Use a lid or bigger cup or acid that is more dilute	[1]
•	Inaccuracy of the thermometer or temperature drop is [too] small	[1]
	This results in a high percentage error in the measurement Allow a reasonable attempt to calculate % error for thermometer	[1]
	Use acid that is more concentrated [to increase the temperature change] <i>or</i> use a thermometer reading to 0.1oC <i>or</i> one more accurately <u>calibrated</u> (<i>owtte</i>	9)[1]
•	There were still some bubbles/fizzing when the final temp reading was taken	[1]
	This shows that the reaction had not finished	[1]
	Use NaHCO ₃ with greater surface area/ more powdered or use acid that is more concentrated	[1]
•	Pipette/burette is more accurate than a measuring cylinder (owtte)	[1]
	Sensible % error for one piece of apparatus correctly calculated	[1]

Mark Scheme 2814 January 2007

Qu. No.		Marks
1 (a) (i)	Tollens' reagent / ammoniacal silver nitrate 🖌	
	silver mirror / precipitate 🗸	
	butanoate / butanoic acid / unambiguous formula or structure ✓	[3]
(ii)	Any of: NOT	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	test \checkmark - observation \checkmark - type of reaction \checkmark	[3]
(b)	recrystallise /purify (the precipitate) ✔	
	measure melting point ✓	
	compare with known values ✓	[3]
(c) (i)	the peak is due to the CH₃CO- group ✓	
	not split, so next to a C with no protons / has no neighbouring proton / δ value is in the range 2.0 – 2.9 \checkmark	[2]
(ii)	adjacent to a C with three protons / to a $CH_3 \checkmark$	[1]
(iii) and (iv)	relative peak areas: 2 : 3 : 3 ✓	
	triplet ✓ at 0.7-1.6 ✓ at 0.7-1.6 ✓ additional incorrect peaks first	[3]
	<u> </u>	
	[Tota	al: 15]


Qu. No.		Marks
2	General formula of an α -amino acid	
	<i>RCH(NH₂)СООН</i> / N-C-C ✓ H H OH	
	Diagram to show length of polypeptide / repeat unit – eg	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	with:	
	displayed peptide bond ✓	
	correct structure with a minimum of two amino acids joined (can be scored by a dipeptide) ✓	
	idea of polymerisation shown by 'end bonds' \checkmark	
	loss of water ✓	
	relate variety to different R groups / sequence of amino acids ✓ AW	
	Quality of written communication: correct organisation and use of both of the terms: <u>condensation polymer</u> (isation) and <u>peptide bond/link</u> ✓	[7]
	[Tota	l: 7]

Qu. No.		Mark
4 (a) (i)	\sim NO_2 + 6 [H] + HCI \rightarrow \sim $NH_3^+CI^-$ + 2 H_2O	
	H_2O as product \checkmark balancing \checkmark	[2]
(ii)	reducing agent ✓	[1]
(b)	\swarrow $-NH_3^+CI^-$ + NaOH \rightarrow \swarrow $-NH_2$ + H_2O + NaCl	
	(or as the ionic equation without Na $^{+}$ or Cl $^{-}$)	
	$C_6H_5NH_2 \checkmark$ balanced \checkmark	[2]
(c)	moles $C_6H_5NO_2$ used = 0.0300 (mol) \checkmark	
	theoretical yield of $C_6H_5NH_2 = 2.79(3)$ (g) \checkmark or ecf	
	actual 72.1% yield = 2.014 (g) / (calculator value 2.013753) ✓ or ecf	
	to three sig figs = 2.01 (g) \checkmark or ecf	[4]
(d)	Primary amines as bases	
	lone pair on N ✓	
	lone pair is donated to the H * / dative covalent bond \checkmark	
	or both marks can be shown by a suitable diagram – eg $\int_{C_6H_5NH_2}^{H^+}$	
	Why phenylamine is weaker	
	(ignore) lone pair /electrons move away from the N in phenylamine towards the benzene ring AW √ from the N in phenylamine towards the benzene ring AW √ ethylamine	5
	because the lone pair on the N is (partially) delocalised around the or to the inductive	9
	or diagram to show – eg	
	so is less available to donate / lower electron density on N \checkmark	[5]
	 	al: 14]


Qu. No.		Mark
5 (a)	$\begin{array}{rcl} CH_3COOH & + & SOCI_2 & \longrightarrow & CH_3COCI & + & SO_2 & + & HCI / \\ CH_3COOH & + & PCI_5 & \longrightarrow & CH_3COCI & + & POCI_3 & + & HCI \\ \hline reactants \checkmark & & & products \checkmark \end{array}$	[2]
(b)	$CH_3COCI + H_2O \longrightarrow CH_3COOH + HCI \checkmark$	[1]
(c)	Any three of:	
	• absorption at 2500-3300(cm ⁻¹) for O-H (in COOH)	
	• absorption at 1000-1300 (cm ⁻¹) for C-O	
	 absorption at 1680-1750 / below 1750 (cm⁻¹) for C=O 	
	 no peak at ~600 (cm⁻¹) / no C-Cl peak 	
	ANY 3 out of 4 marks √√√	[3]
(d)	ethanoic acid because:	
	$M_r = 60 \checkmark$	
	60 = m/e value / mass of the molecular ion / furthest right peak / correct peak indicated on the spectrum or	
	any valid evidence based on the the absence of peaks due to CI or valid fragmentation peaks that would distinguish them \checkmark	[2]
		otal: 8]

2814

Qu. No.			Marks
7	Discussion of the -bonding p-orbitals overlap ✓	any of the first three marks are available from a labelled diagram	
	above and below the ring \checkmark	eg π -bonds	
	(to form) π -bonds / orbitals 🗸		
	(π -bonds / electrons) are <u>delocalised</u>	✓ 4 marks	
	Other valid points – any two of:	4 11/0/1/5	
	• ring is planar l		
	 C-C bonds are equal length / h length/strength between C=C a 		
	• σ -bonds are between C-C and	/or C-H	
	• bond angles are 120°		
		MAX 2 out of 4 marks ✓✓	[6]
	Quality of written communication two or more sentences with correct sp grammar	pelling, punctuation and	[1]
			[Total: 7]

Mark Scheme

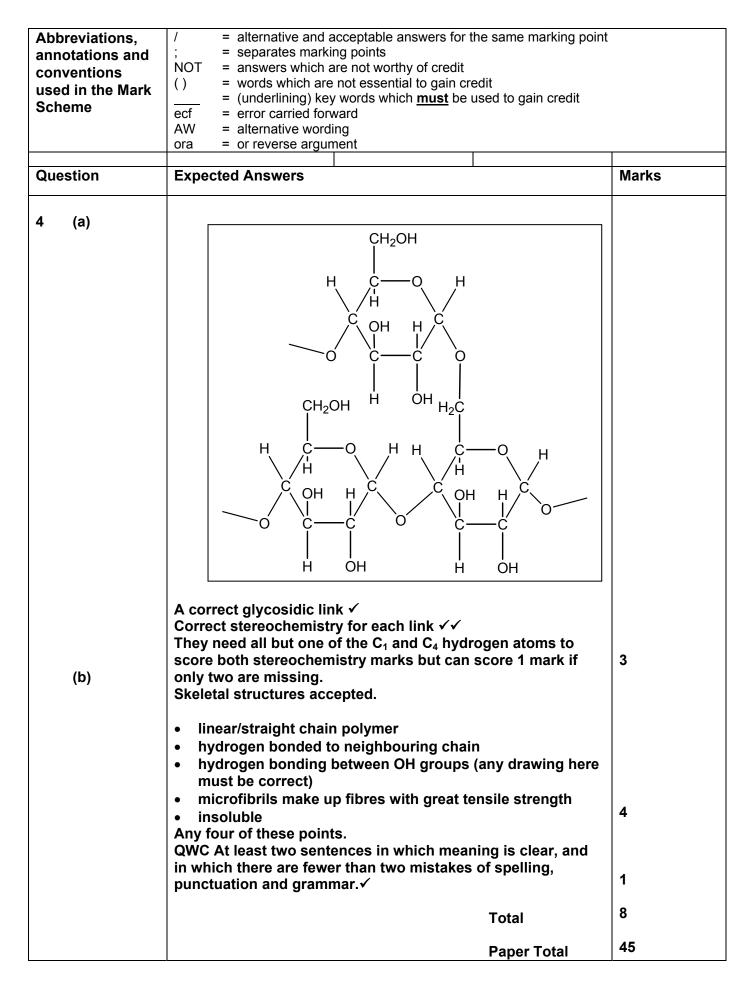
Mark Scheme 2815/01 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme/= alternative and acceptable answers for the same marking point separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit = error carried forward AW = alternative wording ora = or reverse argument			bint
Question	Expected answers	Marks	Additional guidance
1 (a)	Increase in the number of electrons in the outer shell (in the atom of the element in Period 3) / increase in oxidation number of the element in Period 3 (1)	1	
(b)	lons are not able to move / aw (1)	1	Ignore reference to electrons
(C) (i)	$AI_2O_3 + 6HCI \rightarrow 2AICI_3 + 3H_2O /$ $AI_2O_3 + 6H^+ \rightarrow 2AI^{3+} + 3H_2O (1)$	1	Allow Al ³⁺ and Cl ⁻ as products Not Al ₂ Cl ₆ Ignore State symbols
(ii)	$AI_2O_3 + 3H_2O + 6NaOH \rightarrow 2Na_3AI(OH)_6$	1	
(d)	Lots of covalent bonds / many covalent bonds (1) have to be broken which needs a large amount of energy (1)	2	Allow network structure (1)
(e)	(Reacts with water) to form an acidic solution / $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ (1)	1	Ignore it is acidic
		Total = 7	

Abbreviations, annotations and conventions used in the Mark Scheme	annotations ; = separates marking points and NOT = answers which are not worthy of credit conventions () = words which are not essential to gain credit used in the = (underlining) key words which <u>must</u> be used to gain credit		
Question	Expected answers	Mark s	Additional guidance
2 (a)	Oxidation because oxidation state of Hg changes from 0 to +2 so oxidation (1) Reduction because oxidation number of O changes from -1 to -2 (1) Or Correct identification of all the oxidation numbers (1) Correct identification of oxidation and reduction (1)	2	Allow ecf for the identification of oxidation and reduction from wrong oxidation numbers
(b)	Does not have an incomplete set of d electrons / does not have a partially filled d orbital / does not have a partially filled d sub-shell / ora (1)	1	Allow use of 3d
(c) (i)	Correct 'dot and cross' diagram (1) H $\stackrel{\times}{\bullet} \stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet} \stackrel{\times}{\bullet} H$	1	Ignore inner shell of oxygen atoms
(ii)	Idea that lone pair repulsion is greater than bond pair repulsion / 2 bonded pairs and two lone pairs (1) Bond angle of 104° – 105° (1)	2	Allow any bond angle between 95 to 106° (1) Allow ecf from wrong 'dot and cross' diagram
		Total = 6	

Abbreviations, annotations and conventions used in the Mark Scheme/= alternative and acceptable answers for the same marking point = separates marking points not answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit = error carried forward AW = alternative wording ora = or reverse argument			
Question	Expected answers	Marks	Additional guidance
3 (a)	Mole ratio Fe : $CI = 2.99 : 9.01 (1)$; Empirical formula = FeC $I_3 (1)$; Molecular formula = Fe ₂ C $I_6 (1)$ Alternatively Mole ratio of Fe to compound is 2.99 : 1.44 (1) So formula of compound is Fe ₂ C $I_x (1)$ Molecular formula = Fe ₂ C $I_6 (1)$	3	
(b)	Simple molecular / simple covalent (1) Idea that if giant structure then it would have a high melting point / idea that simple structure because it melts easily / idea that covalent or molecular chlorides are hydrolysed to give an acidic solution (1)	2	Not ionic bonding
(c) (i)	(1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ (1)	1	
(ii)	Octahedral shape with some indication of three dimensions (1); Bond angle 90° (1)	2	Allow use of wedges and dotted lines to indicate three dimensions Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond angle mark
(iii)	Green / olive green / dark-green / green-blue ppt (1) $Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$ (1)	2	Allow solid instead of precipitate Allow solid or precipitate to be awarded from the state symbol in Fe(OH) ₂ (s)

Abbreviations annotations and conventions used in the Mark Scheme	and NOT = answers which are not worthy of credit conventions () = words which are not essential to gain credit used in the = (underlining) key words which <u>must</u> be used to gain credit = error carried forward			
Question	Expected answers	Marks	Additional guidance	
3 (d) (i	$\operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{6}^{3^{+}} + \operatorname{SCN}^{-} \rightarrow \operatorname{[Fe}(\operatorname{H}_{2}\operatorname{O})_{5}(\operatorname{SCN})]^{2^{+}} + \operatorname{H}_{2}\operatorname{O}(1)$	1		
(i	 Any five from Known amounts or volumes of FeCl₃ and KSCN (and water) are mixed together (1) Absorbance of solution is measured (1) 	5		
	Idea of a fair test (same overall volume and changing the volumes of the other reagents in a logical way) (1) Volumes or amounts of reagents that give maximum absorbance are determined (1)		Allow marks from an appropriate graph	
	Molar ratio of reagents calculated / moles of substances must be calculated (1) The molar ratio should be one to one (1)			
(e) (i	The molar ratio should be one to one (1) $MnO_2 + 4H^+ + 2Fe^{2+} \rightarrow Mn^{2+} + 2H_2O + 2Fe^{3+}$ (1)	1	Ignore state symbols	
(i	0.0077 (1) Mass of $MnO_2 = 0.00385 \times 86.9 = 0.335$ (1) % purity = 66.4% (1) Alternatively Moles of MnO_2 in 0.504 = 0.00580 So moles of Fe ²⁺ that should react with this is 0.0116 (1)	3	Allow ecf within question Allow 66.4 – 66.5	
	Moles of Fe ²⁺ that reacted with $MnO_2 = 0.02 - 0.0123 = 0.0077 (1)$ % purity = 66.4% (1)	Total = 20		


Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same ma ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit () = (underlining) key words which <u>must</u> be used to gain ecf = error carried forward AW = alternative wording ora = or reverse argument 		
Question	Expected answers	Marks	Additional guidance
4	Definition – maximum 3 marks $Mg^{2+}(g) + 2CI(g) \rightarrow MgCI_2(s)$ (1) The enthalpy change that accompanies the formation of one mole of a solid (compound) (1); from its constituent gaseous ions (1) Born-Haber cycle – maximum 5 marks Correct formulae on cycle (1)	12	Allow marks from an equation Allow energy released / energy change Not energy required Allow ionic compound / salt Every formula
	Correct state symbols (1) Use of 2 moles of Cl(g) ie 246 (1) Use of 2 moles of Cl ⁻ (g) 1.e. 698 (1) -2526 kJ mol ⁻¹ (1)		must have the correct state symbol at least once Allow -2403 / - 2875 (2) Allow -2752 (1) Unit required
	Any three from Na ⁺ has a larger radius than Mg ²⁺ / ora (1) Br ⁻ has a larger radius than C <i>I</i> / ora (1) Na ⁺ has a lower charge than Mg ²⁺ / ora (1) Strongest attraction is between Mg ²⁺ and C <i>I</i> / MgC <i>I</i> ₂ has the strongest attraction between its ions / ora (1) Or Na ⁺ has a lower charge density than Mg ²⁺ / ora (1) Br ⁻ has a lower charge density than Cl ⁻ / ora (1) Strongest attraction between ions which have the highest charge density / MgC <i>I</i> ₂ has the strongest attraction between its ions / ora (1) And QWC One mark for correct spelling, punctuation and grammar in at least two sentences (1)		Penalise the use of incorrect particle only once within the answer. Penalise it the first time an incorrect particle is mentioned

Mark Scheme 2815/02 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme/= alternative and acceptable answers for the same marking p/= separates marking points NOT = answers which are not worthy of credit ()= words which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit = error carried forward AW = alternative wording ora = or reverse argument			
1 (a)	(i)	HOH ₂ CCHOHCHOHCH ₂ CHO Accept displayed .✓	1
	(ii)	 Any two points. ✓ ✓ AW. Both are condensation polymers of nucleotides/ contain monomers with base, sugar and phosphate. Sugar-phosphate polymer/backbone or mention of phosphodiester links. Base attached to sugar. Both contain the bases ACG. 	2
	(iii)	Base uracil/U in RNA but thymine/T in DNA√ Double helix in DNA/single strand in RNA√	
(b)		 DNA is a much longer molecule ✓ AW Any two. Four points from the following. ✓ ✓ ✓ ✓ AW. Double helix unwinds with breaking of hydrogen bonds/ mention of enzyme helicase. The base pairs are CG and AT. Exposed bases become hydrogen bonded to complementary bases on free nucleotides/ mention of nucleotide triphosphates/ both strands act as templates for replication Incoming nucleotides attached to growing chain by a (phosphate) ester link / the joining of each nucleotide is catalysed by DNA polymerase Semi-conservation replication/ each of the two resulting double helices contains one original strand and one newly synthesised strand 	2
(c)	(i)	In the genetic code the triplets UCU and UUC code for different amino acids ✓ - accept any similar argument that refers to actual bases on the m-RNA or t-RNA. This results in different t-RNA bringing different amino acids to same place on m-RNA/ use of term translation. ✓ AW	2
	(ii)	Possibility of hydrogen bonding ✓ with serine's OH sidechain ✓ - give mark for van der Waals with phenylalanine if either of these two is missed. This can lead to (a different tertiary structure and) wrong shape for active site. ✓	3
	(iii)	TAAAGACCA ✓ ignore numbering.	1
		Total	15

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> (underlining) key words which <u>must</u> be used to gain cred ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
3 (a) (b)	$H_2N \xrightarrow{H} C \xrightarrow{C} C \xrightarrow{H} H \xrightarrow{H} C \xrightarrow{C} COOH$ $H \xrightarrow{H} C \xrightarrow{H} C \xrightarrow{H} C \xrightarrow{C} COOH$ $H \xrightarrow{H} C \xrightarrow{H} C$	2
(~)	At low pH –COO ⁻ becomes –COOH/ uncharged ✓ At high pH -NH ₃ + becomes -NH ₂ /uncharged ✓ If they suggest uncharged versions at pH 7, give one only of these marks. Allow use of amine and carboxyl groups which are not on sidechains. Ionic attractions disrupted by changes.✓ (Independent mark)	3
(c) (i)	Inhibitor does not compete for active site/binds somewhere other than on the active site.✓	1
(ii)	Heavy metal ion replaces hydrogen on the cysteine or accept a formula –NHCH(CH₂SAg)CO ✓. Hg ²⁺ similarly.	2
(d) (i) (ii)	This changes shape of enzyme/active site \checkmark . Four proteins/polypeptides \checkmark , <u>each</u> with a haem group/Fe ²⁺ \checkmark , aggregate to form complete haemoglobin/ are held together by weak attractions (accept one example of these) \checkmark . AW	3
(11)	The iron ion/atom combine <u>reversibly</u> √ with oxygen/O ₂ ✓ but not plain O. Accept reference to binding at high O ₂ concentrations and vice versa for second mark. AW	2
	Total	13

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 		
Question	Expected Answers	Marks	
2 (a) (i)	$ \begin{array}{c c} H & O & H \\ \hline $	1	
	The spare bonds at each end are optional.✓		
(ii)	Triglyceride has a fatty/carboxylic acid esterified/attached instead of the phosphate ✓. Accept triglyceride has three fatty acids attached, but not simply has no phosphate.	1	
(iii)	U Hydrophilic/polar etc Both labels for ✓.	1	
(b)	Active site has (specific)shape to fit the/substrate phospholipid \checkmark Accept answer based on R grops in active e site matching those on substrate. Catalytic site is in correct position to catalyse hydrolysis of the C ₂ ester group only / when bound to active site only the C ₂ ester is in correct position to be hydrolysed \checkmark . AW.	2	
(c)	To remove/hydrolyse fat stains√.	1	
(d) (i)	Higher substrate concentration leads to increased number of collisions per unit time/ plenty of free active sites therefore rate = k[S] . ✓ AW	1	
(ii)	All the active sites are in use√; adding more substrate cannot increase rate/ rate depends on rate at which products leave the active site/ [E] is limiting factor/ reaction is zero order with respect to S√.AW	2	
	Total	9	

Mark Scheme 2815/04 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
1 (a)	R _f value is distance moved by a component/spot/solute divided by distance moved by solvent. ✓	
	Retention time is the time between injection and emergence (or detection) of a component. \checkmark	2
(b) (i) (ii)	Partition / adsorption ✓ Role of gas: carrier gas / mobile phase / to carry to sample through the chromatography column ✓	1
(iii)	Role of liquid: stationary phase ✓ Trace with two peaks drawn ✓	2
(iv)	Measure area under each peak ✓ Find total area ✓	
	% = (area of one peak/total area) × 100% ✓	3
(c) (i) (ii)	 ³⁷Cl / ⁸¹Br / Cl or Br isotopes that differ by mass of two (either ³⁷Cl or ⁸¹Br) or contains isotopes with 2 extra neutrons 	1
	<pre>If similar height halogen is bromine / bromine isotopes have similar / same abundance ✓ If in ratio 3 : 1 then halogen is chlorine / chlorine isotopes are in abundance ratio 3 : 1 ✓</pre>	2
		Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme		s and Is	 / = alternative and acceptable answers for the same marking point; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	t	
	stion		Expected Answers	Marks	
2	(a) ((i)	Energy levels are quantised / energy levels are discrete / specific gap between energy levels in the H atom \checkmark	1	
	((ii)	Electrons fall / drop back from higher levels to different energy levels	2	
	((iii)	Convergence limit signifies the fall of an electron from (n =) infinity to a particular energy level / wavelength at which the electron is at the edge of the atom / point at which the atom is ionised / point at which electron orbitals or lines merge or close together \checkmark	1	
	((iv)	Electron in ground state / n = 1 / lowest energy level / Lyman series can be used \checkmark	1	
	((v)	Multiply by 1000 and divide by L to give J per atom 1312 \times 1000 / 6.02 \times 10 ²³ = 2.179 \times 10 ⁻¹⁸ J		
			E = hf so f = E/h f = 2.179 × 10 ⁻¹⁸ J / 6.63 × 10 ⁻³⁴ J s = 3.287 × 10 ¹⁵ s ⁻¹		
			λ = c/f = 3.0 × 10 ⁸ m s ⁻¹ / 3.287 × 10 ¹⁵ s ⁻¹ = 9.126 × 10 ⁻⁸ m 9.13 × 10 ⁻⁸ m answer to three sig figs (allow 9.12 for answer kept in calculator)		
			Use of correct formulae as above or using E = $hc/\lambda \checkmark$ Correct use of L \checkmark Correct answer of 9.126 x 10 ⁻⁸ m (allow 9.12 or 9.13) \checkmark Answer to 3 sig figs \checkmark	4	

Question	Expected Answers	Marks
(b) (i)		2 (1 for each molecule circled)
	NOTE: mark incorrect answers first	
(ii)	Electronic / electron transitions / any mention of electrons being involved ✓ From low to high energy levels / to excited states n to pi* / pi to pi* ✓	1
		Total: 13

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
3 (a)	IR Similarities Any 2 of the following three peaks (must give the quoted range) peak corresponding to OH in all three(3230 - 3550 cm ⁻¹) ✓ peak corresponding to NH in all three(3100 - 3500 cm ⁻¹) ✓ peak corresponding to CO in all three (1000 - 1300 cm ⁻¹) ✓	2 max
	Differences only shown in the fingerprint region √ Mass Spec	1
	similarities Mr (75)/ base peak will be the same ✓ M + 1 peak same ✓	1 1
	Differences Fragmentation pattern may show differences between isomers / specific example, eg CH₃+ at m/e 15 ✓	1 (MAX 5)
	QWC Use of any two terms from: functional group / amino group / hydroxy group / fingerprint / fragmentation / fragment ion(s) / base peak or molecular ion / M + 1 peak / m/e	1
(b)	Glycine C₂H₅NO₂ Molecular mass = (12.000 × 2) + (1.0078 × 5) + 14.0031 + (15.9949 × 2) = 75.0319 ✓	1
	isomers of aminopropanol C₃H₂NO molecular mass = (12.000 × 3) + (1.0078 × 9) + 14.0031 + 15.9949 = 75.0682 ✓	1
		Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>ecf</u> = (underlining) key words which <u>must</u> be used to gain credit AW = alternative wording ora = or reverse argument 	
Question 4 (a)	Expected Answers (M : M + 1 = 74.6 : 6.5) No. of carbon atoms = $(6.5 \times 100) / (74.6 \times 1.1) \checkmark$ = 7.92 therefore eight carbons / $C_8 \checkmark$	Marks 2

Question	Expected Answers	Marks
4 (b)	Infrared spectrum	
	Presence of sharp peak at approx. 1700 cm-1 indicates $C=0$ \checkmark	1
	Peak(s) at approx. 1300 cm ⁻¹ consistent with C-O ✓ (broad) peak at 2500-3300 cm ⁻¹ shows O-H (<u>not alcohol</u>)	1
	present \checkmark	•
		1
	NMR	
	Three sets of peaks means three chemical environments \checkmark	
	Total of 8 hydrogen atoms present (allow if indicated in	1
	formula of compound) ✓	1
	Dealer at annual 2.2 mm and the annual of	•
	Peaks at approx. 2.3 ppm could be any one of:	
	ССНСН	
	$-C-CH_3$	
		1
	peaks at 7.3 and 7.9 ppm are:	
	())—H	
	/aromatic protons ✓	1
	but peak area is 4 which means $C_6H_4 \checkmark$	1
	peak at approx. 12.5 ppm is:	•
	peak at applies. 12.5 ppm 13.	
	-соон 🗸	
		1
	Mass spectrum	
	$M_r = 136 \checkmark$	1
	Base peak at m/e = 91 produced by loss of -COOH (136 - 45)	
	OR peak at m/e = 119 shows loss of -OH (136 - 17) √	1
		Maximum 9
	Data suggests structure is:	
	H ₃ CC	
		1
	ОН	
	(1,2- or 1,3- isomers equally acceptable)	
	(allow ecf as $C_6H_5CH_2COOH$ if nmr deduction was for $C_6H_5-CH_2$ -	
	at 2.3 ppm)	
		Total: 12

Mark Scheme 2815/06 January 2007

ann con use	ventio	ns and	and ; = separates marking points NOT = answers which are not worthy of credit	
Que	estion		Expected Answers	Marks
1	(a)	(i)	+3	1
		(ii)	Cis and trans forms drawn in 3-D (only award these marks if C has been chosen)	2
		(iii)	Type of isomerism is cis-trans/geometric	1
	(b)	(i)	(concentrated) hydrochloric acid/sodium chloride/ Other suitable named ionic chloride but <u>not</u> just chloride or Cl ⁻	1
		(ii)	Ligand substitution / ligand exchange	1
				Total: 6

Abbreviations, annotations and conventions used in the Mark Scheme	innotations and proventions ; = separates marking points in the Mark cheme ; = answers which are not worthy of credit in the Mark cheme ; = words which are not essential to gain credit in the Mark cheme : = words which are not essential to gain credit in the Mark cheme : = error carried forward AW = alternative wording ora in the mark cheme : : in the mark chem	
2 (a) (b) (c) (i) (ii) (iii)	Emf/voltage/potential difference (of electrochemical cell) comprising a (Cu/Cu ²⁺) half cell combined with a standard hydrogen electrode 1 atm, 1 mol.dm ³ , 298K (all 3 needed but can transfer mark if stated in (b)) Salt bridge and voltmeter Platinum electrode dipping into 1 mol dm ⁻³ H ⁺ Hydrogen gas feed (Accept a suitable alternative standard electrode) (See additional sheet for diagram) Decolorised / add starch which is decolorised Allow blue/black→ white or brown → white Do not allow colourless moles $S_2O_3^{2^-} = 23.20x0.100/1000 = 0.00232$ moles $Cu^{2^+} = S_2O_3^{2^-} / moles Cu^{2^+} = 0.00232$ moles But 25 cm ³ of original = 10x 0.00232 = 0.0232 moles Concentration of original = 1000 x 0.0232 / 25 Because concentration of Cu ²⁺ is less than 1 mol dm ⁻³ / less than standard equilibrium moves to left (reducing +ve value of E)	1 1 1 1 1 1 1 1 1 1 1 1 1
		Total: 13

Abbreviations, annotations and conventions used in the Mark Scheme	 alternative and acceptable answers for the same marking point separates marking points IOT = answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit error carried forward alternative wording or reverse argument 	
Question	Expected Answers	Marks
3 (a)	d-orbitals split 3 lower, 2 higher (accept diagram) in octahedral complexes visible light/light/energy absorbed to promote an electron from lower to higher orbital different ligands cause a different energy gap colour/frequency/wavelength of light absorbed depends on size of energy gap ΔE colour transmitted is complementary to colour absorbed / light transmitted is colour we see	1 1 1 1 1 1
(b)	Quality of written communication: Award 1 mark for the correct use of at least 3 of the following terms: orbitals, visible (light), absorbed, transmitted, complementary, splitting, energy gap, d_{xy} etc, $\Delta E = hf$, photon, frequency, wavelength Yellow complex (accept ligand X) Because max absorbance is in blue region (of visible light) / yellow is complementary colour to maximum absorbance (blue) Allow violet and blue light absorbed	1 1
		Total: 9

Abbreviatio annotations conventions used in the Scheme	ns and ns NOT = answers which are not worthy of credit () = words which are not cosontial to gain credit		
Question		Expected Answers	Marks
(b) ((c) ((i) (ii) (i) (i) (ii)	Stainless steel + corrosion resistance or alloys for tools + hardness or other named alloy/use/property Allow chrome plating with attractive or barrier to corrosion Chromium $1s^22s^22p^63s^23p^63d^54s^1$ (allow $4s^{1}3d^5$) $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$ $Cr_2O_7^{2-} / Cr^{3+}$ has more positive electrode potential Therefore $Cr_2O_7^{2-}$ is the stronger oxidising agent which oxidises Fe^{2+} to Fe^{3+} (ora) Emf = (+) 0.56 V Orange to yellow Hydroxide ions react with or remove H ⁺ ions Position of equilibrium moves to the right (to produce more H ⁺ ions and CrO_4^{2-} which is yellow)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Abbreviations, annotations and conventions used in the Mark Scheme	; = separates marking points NOT = answers which are not worthy of credit	swers which are not worthy of credit rds which are not essential to gain credit iderlining) key words which <u>must</u> be used to gain credit or carried forward ernative wording	
Question	Expected Answers	Marks	
5 (a) (b) (i) (ii)	For colour, need at least 1 d-electron and a space in higher energy d-orbital for it to be promoted to. Cu ⁺ has no space / has a full d-sub shell. Pigment (accept dye) / colouring paints Dative covalent/co-ordinate	1 1 1 1	
(c)	Red-brown solid is copper / Cu Blue solution is $[Cu(H_2O)_6]^{2+}$ / $Cu^{2+}(aq)$ / $CuCl_2$ $2CuCl \rightarrow Cu + CuCl_2$ / $2Cu^+ \rightarrow Cu + Cu^{2+}$ Cu(l) compounds are unstable in solution / Disproportionate or explained.	1 1 1 1 Total: 8	

Mark Scheme 2816/01 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
1 (a) (i)	H ₂ : Exp 2 has 2.5 times [H ₂] as Exp 1 and rate increases by 2.5 ✓ , so order = 1 with respect to H ₂ ✓	[2]
	NO: Exp 3 has 3 x [NO] as Exp 2; and rate has increased by 9 = $3^2 \checkmark$,	
	so order = 2 with respect to NO \checkmark	[2]
QWC	At least two complete sentences where the meaning is clear.	[1]
(ii)	rate = <i>k</i> [NO]² [H₂] ✓	[1]
(iii)	$k = \frac{\text{rate}}{[\text{NO}]^2 [\text{H}_2]} / \frac{2.6}{0.10^2 \times 0.20} \checkmark$	
	= 1300 \checkmark units: dm ⁶ mol ⁻² s ⁻¹ \checkmark allow 1 mark for 7.69 x 10 ⁻⁴ or 1.3 x 10 ^x (x not 3)	[3]
(b) (i)	$\begin{array}{ccc} 1\frac{1}{2}O_2(g) \longrightarrow O_3(g)/\\ O_2(g) + \frac{1}{2}O_2(g) \longrightarrow O_3(g) \checkmark\end{array}$	
	NO is a catalyst ✓ as it is (used up in step 1 and) regenerated in step 2/ not used up in the overall reaction√ allow 1 mark for 'O/NO₂ with explanation of regeneration.'	[3]
(ii)	Rate = $K[NO] [O_3] \checkmark$ Species in rate equation match those reactants in the slow step / rate determining step \checkmark	[2]
		Total: 14

Abbreviations, annotations and conventions used in the Mark Scheme/= alternative and acceptable answers for the same marking points = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected Answers	Marks
2 (a)	$\mathcal{K}_{c} = \frac{[PCI_{3}][CI_{2}]}{[PCI_{5}]} \checkmark$	[1]
(b) (i)	$PCl_5 > 0.3 \text{ mol dm}^{-3}$; PCl_3 and $Cl_2 < 0.3 \text{ mol dm}^{-3}$ \checkmark	[1]
(ii)	At start, system is out of equilibrium with too much PCl ₃ and Cl ₂ and not enough PCL ₅ / $\frac{0.3 \times 0.3}{0.3}$ = 0.3 is greater than K _c = 0.245 mol dm ⁻³ ✓	[1]
(c) (i)	K_c does not change as temperature is the same \checkmark	[1]
(ii)	Fewer moles on left hand side \checkmark system moves to the left to compensate for increase in pressure by producing less molecules \checkmark	[2]
(d) (i)	K_c decreases (as more reactants than products) \checkmark	[1]
(ii)	Forward reaction is exothermic/ reverse reaction is endothermic \checkmark equilibrium \longrightarrow left to oppose increase in energy/ because K_c decreases \checkmark	[2]
(e) (i)	$4PCI_5 + 10MgO \longrightarrow P_4O_{10} + 10MgCI_2 \checkmark$	[1]
(ii)	100g P ₄ O ₁₀ = $\frac{100}{284}$ / 0.35(2) mol \checkmark	
	moles PCl_5 needed = $4 \times 0.352 = 1.408/1.4$ mol \checkmark	
	mass PCl₅ = 1.4(08) × 208.5 = 293.568 / 294 g/ 291.9 g ✓	
	\checkmark for use of 284 for P_4O_{10} and 208.5 for PCl_5	[4]
	73.4/72.975/72.3 g scores 3 marks (no use of '4' factor) 18.35 g from dividing by 4 scores 3 marks	
		Total: 14

Abbreviations, annotations and conventions used in the Mark Scheme	tations and ; = separates marking points entions used in NOT = answers which are not worthy of credit		
Question	Expected Answers	Marks	
3 (a) (i)	Ionic product \checkmark	[1]	
0 (u) (i)		1.1	
(ii)	$K_w = [H^{\dagger}(aq)] [OH^{-}(aq)] \checkmark$ state symbols not needed	[1]	
(b)	$K_{w} = [H^{+}(aq)] [OH^{-}(aq)] \checkmark state symbols not needed$ moles of HCl = $\frac{5 \times 10^{-3} \times 21.35}{1000}$ = 1.067 × 10 ⁻⁴ mol \checkmark moles of Ca(OH) ₂ = $\frac{1.067 \times 10^{-4}}{2}$ = 5.34 × 10 ⁻⁵ mol \checkmark		
	concentration of Ca(OH) ₂ = 40 × 5.34 × 10 ⁻⁵ = 2.136 × 10 ⁻³ mol dm ⁻³ ✓ 2 marks for 4.27 × 10 ⁻³ / 8.54 × 10 ⁻³ mol dm ⁻³ (no factor of 4)	[3]	
(c)	$[OH^{-}] = 2 \times 2.7 \times 10^{-3} = 5.4 \times 10^{-3} \text{ mol } dm^{-3} \checkmark$ $[H^{+}(aq)] = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{5.4 \times 10^{-3}} = 1.85 \times 10^{-12} \text{ mol } dm^{-3}$ \checkmark		
	pH = $-\log (1.85 \times 10^{-12}) = 11.73/11.7$ ecf is possible for pH mark providing that the [H ⁺] value has been derived from $K_w/[OH^-]$ If pOH method is used, pOH = 2.27. would get 1st mark, pH = 14 - 2.27 = 11.73 gets 2nd mark. Commonest mistake will be to not double OH and to use 2.7 × 10 ⁻³ This gives ecf answer of 11.43/11.4, worth 2 marks. pH = 11.13 from dividing by 2: worth 2 marks	[3]	
(d)	8 √	[1]	
. ,			
		Total: 9	

Abbreviations, annotations and conventions used in the Mark Scheme	 = alternative and acceptable answers for the same marki = separates marking points NOT = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
4 (a)	$Ca_3(PO_4)_2 + 2H_2SO_4 \longrightarrow Ca(H_2PO_4)_2 + 2CaSO_4 \checkmark$	[1]
(b)	$H_{2}PO_{4}^{-}(aq) \Rightarrow H^{+}(aq) + HPO_{4}^{2-}(aq) /$ $H_{2}PO_{4}^{-}(aq) \Rightarrow 2H^{+}(aq) + PO_{4}^{3-}(aq) \checkmark$ (or equivalent with H ₂ O forming H ₃ O ⁺)	[1]
(c) (i)	$HPO_4^{2^-} \checkmark$	[1]
(ii)	H₃PO₄ ✓	[1]
(iii)	$\begin{array}{l} H_2PO_4^{-} \text{ produced } Ca(H_2PO_4)_2 \text{ or on LHS of an attempted} \\ \text{equilibrium equation } \checkmark \\ 2 \text{ equations/equilibria to shown action of buffer } \checkmark \checkmark \\ \text{from:} \\ H_2PO_4^{-} + H^+ \rightleftharpoons H_3PO_4 / \\ H_2PO_4^{-} \equiv H^+ + HPO_4^{2^-} / \\ H_2PO_4^{-} + OH^- \rightleftharpoons H_2O + HPO_4^{2^-} / \\ H^+ + OH^- \equiv H_2O \end{array}$	[3]
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit alternative wording ora = or reverse argument 	
Question	Expected Answers	Marks
5 (a)	Sulphuric acid molecules form hydrogen bonds Diagram showing hydrogen bonds between molecules: H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	H—O OH—O O O√ or H bond from H-O to O-H (as in water) hydrogen bonds break (on boiling) √	[3]
(b)	Correct equation for a metal \checkmark Correct equation for a carbonate \checkmark Correct equation for a base \checkmark	[3]
(c) (i)	$SO_4^{2-} \longrightarrow H_2S$: S from +6 to -2 \checkmark I ⁻ \longrightarrow I ₂ : I from -1 to 0 \checkmark	[2]
(ii)	$10H^{+} + 5O_{4}^{2-} + 8I^{-} \longrightarrow 4I_{2} + H_{2}S + 4H_{2}O \checkmark$	[1]
(d)	$\begin{array}{ccc} \mathbf{A}: & CO \checkmark \\ HCOOH/H_2CO_2 \longrightarrow CO + H_2O \checkmark \end{array}$	[2]
	$B: C \checkmark$ $C_{12}H_{22}O_{11} \longrightarrow 12C + 11H_2O \checkmark$ $C: C_4H_8O_2 \checkmark$ $2C_2H_6O_2 \longrightarrow C_4H_8O_2 + 2H_2O \checkmark$	[2]
	Structure:	
	$\sim \sim$ accept any sensible structure of $C_4H_8O_2$	[3]
		Total: 16

Mark Scheme 2816/03 January 2007

PLAN (A)

Α	Test for iron(III) ions	(3 marks)
A1	Add [hot] acid to dissolve the iron(III) oxide	[1]
A2	Add thiocyanate ions to produce a red colouration Use of Hexacyanoferrate(II) ions, going blue, is an acceptable alternati	[1] Ve
A3	Chemical equation correct: $[Fe(H_2O)_6]^{3+} + SCN^- \rightarrow [Fe(SCN)(H_2O)_5]^{2+} + H_2O$ Allow equation for Fe^{3+} without water ligands	[1]
в	Mass of zinc carbonate	(7 marks)
B1	Shake/stir the calamine mixture <i>and</i> measure out a <u>known</u> volume/mass of it	[1]
B2	Add <u>excess</u> of specified acid and statement/implication that ZnCO ₃ gives off a gas but Zn(OH) ₂ does not B2 is not awarded if candidate heats the reacting mixture	[1]
B3	Neat diagram of apparatus showing suitable method of gas measurement Collection in gas syringe, inverted burette or measuring cylinder is acce Measurement of mass loss method requires [cotton] wool plug to be sh Gas absorption requires use of soda lime or a concentrated aqueous a	iown
B4	Measure volume of gas produced when fizzing stops/ volume stops increasing Mass loss method requires weighing to constant mass to be described Gas absorption method also requires weighing to constant mass	[1]
B5	 One accuracy precaution Use of "inner tube" or similar <i>and</i> reason/ how it is used Repeat, until consistent readings are obtained <i>or</i> take mean Use of acid/water pre-saturated with CO₂ to reduce solubility of the 	[1] ne gas
B6	Equation for reaction: $ZnCO_3 + 2HCI \rightarrow ZnCI_2 + CO_2 + H_2O$ and links mass of $ZnCO_3$ used to capacity of gas collector by calculation Absorption method must calculate minimum mass of active absorbent is	[1] needed
B7	Calculation of the [minimum] volume/concentration of acid required	[1]
с	% by mass of zinc carbonate	(5 marks)
C1	Filters a known mass/volume of calamine to collect the [suspended] solid.	[1]
C2	Uses Buchner/ reduced pressure filtration <i>or</i> filters with high quality filter paper <i>or</i> filters more than once <i>or</i> is aware of the problem that some solid may go through filter paper	[1]
C3	Uses a pre-weighed filter paper and washes the solid collected [with water]	[1]
C4	Dries the solid to constant mass in an oven [at low temperature] or desiccator	[1]

C5	Uses the mass of zinc carbonate from " B " and mass of residue obtained to o Specimen calculation with figures for B is needed for mark C5	deduce %. [1]
S	Safety and sources	(4 marks)
S1	Hazard researched for the acid used in the procedure, plus safety measure No mark if hazard is overstated of	[1]
S2	References to two secondary sources quoted as footnotes or at end. Books must have page numbers Internet reference must go beyond the first slash of web address Accept one <u>specific</u> reference to Hazcards without any qualification	[1]
S3	QWC: text is legible and spelling, punctuation and grammar are accurate Allow mark for not more than five errors in spelling, punctuation or	[1] grammar.
S4	 QWC: information is organised clearly and coherently Is a word count given and within the limits 450 – 1050 words? Accept a total word count or any word numbering in the Is scientific language used correctly – allow one error without Are the descriptions of both parts of the method presented log 	e margin t penalty.
TES	Т (В)	

Pag	(6 marks)					
Black solid/residue formed or green/turquoise \rightarrow black colour change						
Fou	weighings clearly	y listed, recorded to 2 (or 3) d.p., and unit given somewhere	[1]			
Fourth weighing is within 0.02 g of the third <i>(ie constant mass)</i> If the mass increases, it must be within 0.01g						
Mas	s of residue and r	mass of malachite both shown (<i>and</i> correctly subtracted)	[1]			
Acc Calc Calc	Accuracy Calculate the supervisor's % ^{mass of residue} / _{mass of malachite} (to one decimal place) Calculate candidate's % ^{mass of residue} / _{mass of malachite} If % mass of residue is within 1.5% of supervisor's % value → 2 marks If % mass of residue is within 3.0% of supervisor's % value → 1 mark					
Pag	e 4 (Part 2)	Calculation of <i>M</i> _r of malachite	(5 marks)			
(a)	"2" shown in from	nt of CuO	[1]			
(b)	$M_{\rm r}$ of CuO = 79.	5	[1]			
	Moles of CuO =	mass of residue/79.5 correctly calculated	[1]			
(c)	n (malachite) = 0 <i>This [first]</i>	0.5 x n (CuO) mark cannot be awarded ecf to a 1:1 ratio in the equation abov	[1] /e.			
	<i>M</i> _r of malachite	correctly calculated [= ^{mass} / _{number of moles}]	[1]			

2816/03	Mark Scheme	January 2007
Page 6 (Part 3)	Observations	(2 marks)
	scence/ bubbles produced dissolves or blue solution produced	[1]
	/brown precipitate/solid forms d is required	[1]
Page 7 (Part 3)	Titration readings	(10 marks)
Mass readings		[1]
Check the follo	owing <u>four</u> points. Award <u>one</u> mark if all	criteria are met
All massesSubtraction	s readings must be listed with units shown s should be recorded to two (or three) dec on to give mass of Y must be correct. of the masses must have minimum of the v	imal places
Presentation of titra	tion data	[2]
 Correctly I Trial titre i All "accura All subtraction 	ks: 4 correct \rightarrow 1 mark labelled table (initial and final - aw) used to is shown and clearly labelled (eg by "T" or ate" burette data are quoted to 0.05 cm ³ (in ctions are correct (these must be checked) ³ or ml, must be given somewhere (once in	<i>"R" but <u>not</u> by "1")</i> e 2 decimal places))
Self-consistency of	titres	[1]
Candidate's two	accurate titres should agree within 0.15 c	cm ³ .
Mean should be	alculated, with "cm ³ or ml" unit given correctly calculated and quoted to two d. cabsence of units again, if already done in	
<u>Accuracy</u> – 5 marks a	are available	[5]
T = candidate	e's adjusted mean titre x ^{supervisor's mass} / _{can}	didate's mass
Tio within 0.20	0 am^3 of moon supervisor's value \rightarrow	[E morke]

\mathbf{T} is within 0.30 cm ³ of mean supervisor's value	\rightarrow	[5 marks]
T is within 0.50 cm ³ of mean supervisor's value	\rightarrow	[4]
T is within 0.70 cm ³ of mean supervisor's value	\rightarrow	[3]
<i>T</i> is within 0.90 cm ³ of mean supervisor's value	\rightarrow	[2]
T is within 1.20 cm ³ of mean supervisor's value	\rightarrow	[1 mark]

Spread penalty:

The	me	read is defined as the difference between the titres used by candidate to com ean or the difference between the two closest accurate titres (whichever is the <i>if accurate readings differ by more than 0.50 cm</i> ³ , <i>subtract 1 mark</i> <i>if accurate readings differ by more than 0.70 cm</i> ³ , <i>subtract 2 marks</i> <i>if accurate readings differ by more than 0.90 cm</i> ³ , <i>subtract 3 marks</i> <i>if accurate readings differ by more than 1.20 cm</i> ³ , <i>subtract 4 marks</i> <i>if accurate readings differ by more than 1.20 cm</i> ³ , <i>subtract 5 marks</i> <i>if accurate readings differ by more than 1.50 cm</i> ³ , <i>subtract 5 marks</i>	greater).
			7 marks)
(a)		osulphate) = ${}^{20}/_{248} \mathbf{x} {}^{\text{mean titre}}/_{1000}$ This mark is a "method" mark for knowing how to calculate n as above	[1]
(b)	n (io	dine) correctly calculated Expected answer = 0.5 x (a) = approx 0.0009 mol	[1]
(c)	n (Cu	uSO ₄) = "b" x 2 x 10 This is a "method" mark for using mole ratio and scaling up	[1]
(d)	<i>M</i> _r of	f malachite = ^{mass of X used} / _{number of moles} = ^{2m} / _(c) This method mark is awarded to candidates for quoting correct figures	[1]
	<i>M</i> _r of	f malachite correctly calculated from answer (c) Expect answer of approximately 230 Give 1 mark ecf for an Mr resulting from an incorrect use of the 1:2 mole rat	[1] io
(e)		s of CuCO ₃ .Cu(OH) ₂ = 221 correct calculation of mass of water (= M_r – 221)	[1]
	n = ^{(,}	^{250 – 221)} / ₁₈ = 1.6(1) <i>(if data supplied was used)</i> Most candidates will use their own Mr to calculate n.	[1]
Page	es 10	- 12 (Part 5) Evaluation (14	4 marks)
Awa	rd ma.	ximum 14 marks: 17 marking points are available.	
(a)	5 ma	arks	
	(i)	Cooling with a lid reduces/prevents absorption of water [vapour]	[1]
	(ii)	The aim is to achieve "constant mass"	[1]
		This ensures that decomposition was complete or reaction has finished Allow reference to all of the water [of crystallisation] being driven off	[1]
	(iii)	Repeat the <u>whole</u> procedure	[1]

Results should be consistent/very similar/the same to show reliability [1]

(C)

(b) 6 marks maximum available (but only 5 on Question Paper):

Mark the best **three** strands (each 2 marks) Marking points can be awarded in (a)(iii)

• In Part 1 , the procedure is simpler <i>or</i> there are fewer measurements needed	[1]
So Part 1 has less <u>cumulative</u> error <i>(ora)</i>	[1]
In the titration the end-point [colour change] is inaccurate/imprecise	[1]
The colours grey and off-white are similar or the grey colour disappears gradually, not suddenly	[1]
• In Part 1 the [percentage] error is high because some masses are small	[1]
Use larger quantity of malachite or a balance reading to 3 d.p.	[1]
• Titration is repeated (but the mass loss experiment was not)	[1]
Consistent <i>or</i> accurate titres were obtained with 0.1 cm ³	[1]
 % error for use of burette/pipette is lower than that for the balance or titration equipment is accurately calibrated 	[1]
Reasonable attempt at a % accuracy calculation to justify this statement	[1]
6 marks available (but only 4 on Question paper)	
Balanced equation: $CuCO_3 + H_2SO_4 \rightarrow CuSO_4 + CO_2 + H_2O$	[1]
No of moles of sulphuric acid used = ${}^{1 \times 10}/{}_{1000} = 0.01$ or volume of acid = ${}^{0.01 \times 1000}/{}_1 = 10 \text{ cm}^3$	[1]
$Cu(OH)_2$ + H_2SO_4 → $CuSO_4$ + $2H_2O$	[1]
Combined equation: $CuCO_3.Cu(OH)_2.nH_2O + 2H_2SO_4 \rightarrow 2CuSO_4 + CO_2 + (n+3)H_2O$ Scores both equation marks. Allow 1 mark if "H ₂ O" is balanced wrongly	
10 cm ³ of H ₂ SO ₄ are needed to react with [0.01 mol of] Cu(OH) ₂ in malachite or 20 cm ³ of 1.0 mol dm ⁻³ H ₂ SO ₄ are required to react fully with malachite	[1]
H_2SO_4 (0.03 mol) is an <u>excess</u> quantity	[1]
Excess acid ensures that all of the malachite reacts/dissolves	[1]

Advanced GCE Chemistry (3882/7882) January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	e	u
2811	Raw	60	47	41	35	29	23	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	47	41	35	30	25	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	94	85	76	67	59	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	94	85	76	67	59	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	89	80	71	63	55	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	73	66	59	52	46	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	66	59	52	45	39	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	68	60	52	45	38	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	67	59	52	45	38	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	96	86	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	96	86	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	90	79	68	57	46	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3882	300	240	210	180	150	120	0
7882	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3882	14.6	35.2	53.6	77.1	92.7	100.0	401
7882	16.5	59.1	78.3	93.0	98.3	100.0	136

437 Candidates aggregated this series.

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/exam_system/understand_ums.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

