

Chemistry

Advanced GCE A2 7882

Advanced Subsidiary GCE AS 3882

Mark Schemes for the Units

June 2009

3882/7882/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme booklet is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with these mark schemes.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
2811 Foundation Chemistry	1
2812 Chains and Rings	9
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper	19
2813/03 How Far? How Fast? /Experimental Skills 1 Practical Examination	25
2814 Chains, Rings and Spectroscopy	30
2815/01 Trends and Patterns	38
2815/02 Biochemistry	42
2815/03 Environmental Chemistry	46
2815/04 Methods of Analysis and Detection	51
2815/06 Transition Elements	55
2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper	60
2816/03 Unifying Concepts in Chemistry/ Experimental Skills 2 Practical Examination	66
Grade Thresholds	71

2811 Foundation Chemistry

Q	uestic	on	Expected Answers	Marks	Additional Guidance
1	а	i	Atoms or isotopes of same element/same atomic number/number of protons with different numbers of neutrons/different masses√	1	Not elements with a different no of neutrons
		ii	³³ S: 16p; 17n; 16e ✓ ³⁴ S: 16p; 18n; 16e ✓	2	Mark by row
	b	i	 <i>M</i>_r = weighted mean mass of an atom/the isotopes of an element ✓ compared with carbon-12 ✓ 1/12th (of mass) of carbon-12/ on a scale where carbon-12 is 12 ✓ (but not 12 g) 	3	Allow 'average mass of atom' or 'mean mass of atom' <i>alternative</i> allowable <i>definitions:</i> mass of one mole of atoms \checkmark compared to 1/12th \checkmark (the mass of) one mole/12 g of carbon-12 \checkmark <u>mass of one mole of atoms \checkmark</u> 1/12 th \checkmark the mass of one mole/12 g of carbon-12 \checkmark
		ii	$A_r = 32 \times \frac{94.93}{100} + 33 \times \frac{0.76}{100} + 34 \times \frac{4.29}{100} + 36 \times \frac{0.02}{100}$ OR 32.0942 ✓ = 32.09 ✓ to four significant figures	2	Allow one mark for $A_r = 32.0942$ with no working out Allow two marks for $A_r = 32.09$ with no working out If a candidate uses incorrect values in 1st line, then the 2nd mark can still be awarded if the calculated value is from 32.01 to 35.99 expressed to two decimal places. This allows for any %'s the wrong way round in 1st line.
		iii	mass spectrometer ✓	1	Allow 'mass spectrometry' OR 'mass spectrum', Allow 'mass spectroscope' OR mass spectroscopy
	C	i	(2) water(s) of crystallisation/ 2 mol of H ₂ O for 1 mol CaSO ₄ \checkmark	1	Allow the salt is hydrated, crystals contain water.
		ii		1	Allow 172.19
		iii	(+)6 ✓	1	Allow lack of + sign but '-6' is wrong
		iv	SO₄ ^{2−} ✓	1	Allow 'SO ₄ ', 2– charge Allow '–2'
			Total	13	

Que	esti	on	Expected Answers		Additional Guidance	
2	а		(electrostatic) attraction between oppositely charged ions/ specific example given√	1	Allow 'oppositely charged atoms'	
	b	i	cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots for example chosen \checkmark Correct charges on both ions \checkmark $2+\left[\begin{array}{c} \\ Mg \end{array}\right]^{2+}\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2	 For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. <i>Circles not required</i> Ignore inner shell electrons Allow: 2[Cl⁻] 2[Cl]⁻ [Cl⁻]₂ Do not allow: [Cl₂]⁻ [Cl]₂⁻ [2Cl]⁻ Accept correct answers without brackets. 	
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓	1	Allow subscripts	
	C	i	attraction between positive ions ✓ and free/delocalised electrons ✓	2	Allow 'sea of electrons'; Do not allow just 'electrons'1st mark is for positive ions OR delocalised/free electrons anywhere 2nd mark is for 'attraction between the correct charged particlesAllow labelled diagram showing a scattering of labelled electrons between positive ions for 1st mark	
		ii	Al ³⁺ compared to Mg ²⁺ / the aluminium ion has a higher charge (density)/there are more delocalised/free/outer electrons (per atom) ✓	1	Allow magnesium ion has a smaller charge (density)/there are less delocalised electrons (per atom) Allow AI has 3 delocalised electrons, Mg has 2 delocalised electrons. ie Do not allow just 'AI has more electrons. (it must be clear that these are the outer shell electrons)	

2811		Mark Sche	me	June 2009
d	i	Co has fewer protons (ORA)/ Periodic Table is in order of number of protons </th <th>1</th> <th>Allow 'Co has an atomic number (1) less than Ni'</th>	1	Allow 'Co has an atomic number (1) less than Ni'
	ii	(On average) isotopes of Co have more neutrons than Ni ✓	1	'Isotopes' essential Allow 'In Co, there is a higher proportion of heavier isotopes/ isotopes with a higher mass number' Do not allow just 'higher mass number'
e	i	moles AI = $\frac{2.025}{27.0}$ = 0.075 \checkmark	1	
	ii	moles $H_2 = 1.5 \times 0.075 = 0.1125 \text{ mol} \checkmark$ volume $H_2 = 0.1125 \times 24 = 2.7 \text{ dm}^3 \checkmark$	2	ECF, 1.5 x answer to (i)
	iii	moles HCI = 3 x 0.075 = 0.225 mol \checkmark volume HCI = $\frac{1000 \times 0.225}{1.80}$ = 125 cm ³ \checkmark	2	ECF, 3 x answer to (i) or 2 x no of moles in (ii) ECF, $\frac{1000 \times \text{moles HCl}}{1.80}$
		Total	14	

Questic	on	Expected Answers	Marks	Additional guidance	
3 a		solid A : BaO ✓ solution B : BaCl ₂ ✓ precipitate C : BaCO ₃ ✓ precipitate D : AgCl ✓	4	Watch order of letters in the boxes. See the pattern on the left	
b		Ba : C : O = $\frac{60.89}{137}$: $\frac{10.67}{12.0}$: $\frac{28.44}{16.0}$ or 1 : 2 : 4 \checkmark empirical formula = BaC ₂ O ₄ (or, if you see it, allow Ba(CO ₂) ₂ !) \checkmark	2	If a candidate uses atomic numbers, the ratio is still 1:2:4. The 2nd mark can still be awarded by error carried forward. Although unlikely, a correct answer of BaC_2O_4 with no working should be awarded both marks. If candidate shows inverse for ratios: ie Ba : C : O = $\frac{137}{60.89}$: $\frac{12.0}{10.67}$: $\frac{16.0}{28.44}$ then the candidate can be awarded the 2nd mark only for Ba ₄ C ₂ O by error carried forward.	
C	i	Ba(g) \longrightarrow Ba ⁺ (g) + e [−] equation \checkmark state symbols as (g) \checkmark	2	ignore absence of ' ⁻ sign' on e ⁻ ignore state symbol with e ⁻ Allow Ba(g) – e ⁻ \longrightarrow Ba ⁺ (g)	
	ii	 (1st ionisation energy) decreases (down the group) ✓ atomic radii increases/ there are more shells ✓ there is more shielding/ more screening ✓ Increased shielding and distance outweigh the increased nuclear charge/ 	4	 'down the group' not required 'more' is essential allow 'more electron repulsion from inner shells' Allow 'nuclear pull' not held less tightly. ignore any reference to 'effective nuclear charge' 	

281	2811		Mark Sch	June 2009	
			the nuclear attraction decreases ✓		
	d	i	Group 2 (elements) react by losing electrons ✓ Group 7 (elements) react by gaining electrons ✓ (As atoms get larger/more shielding), it is easier to lose electrons AND more difficult to gain electrons ✓ chlorine has displaced or oxidised iodine/iodine forms ✓	3	Allow Group 2 form + ions Allow Group 7 form – ions Both comparisons needed for third mark
			$Cl_2 + 2l^- \longrightarrow 2Cl^- + l_2$ OR $Cl_2 + 2KI \longrightarrow l_2 + 2KCl \checkmark$		mark Ignore state symbols Ignore any reference to iodide
			Total	17	

luestion	Expected Answers		Additional Guidance	
	-	3		
	Na has fewer protons/less nuclear charge ✓		Allow Mg has more protons/more nuclear charge Allow 'across a period, nuclear charge	
			increases/protons increase'	
			A comparison must be included	
			Allow a comparison in terms of 'effective nuclear	
	electrons added to the same shell OR		charge' OR	
	screening/shielding remains the same or similar \checkmark		'shielded nuclear charge'	
			ignore reference to distance	
			Ignore comparison of atomic number	
			Ignore comparison of nuclear size	
	Na has less attraction/ less pull		'Na charge is less' OR 'Mg charge is greater' is not sufficient	
			Allow Mg has more attraction/more pull	
			Allow 'across a period, more attraction/more pull' A comparison must be included	
	iodine exists as small molecules /l ₂ /simple molecular structure	5		
	\checkmark			
	van der Waals' forces/intermolecular forces (must be broken) \checkmark		Allow induced dipole/instantaneous dipoles interaction	
	diamond exists as a giant structure ✓			
	covalent bonds (must be broken) ✓		'giant covalent structure' scores both 'diamond marks Allow lattice for giant structure	
	Strength of forces linked to boiling point:		Ĭ	
	van der Waals' forces are weak/			
	small amount of energy to break van der Waals' forces/		Mark this anywhere.	
	covalent bonds are strong/			
	large amount of energy to break covalent bonds \checkmark			

2811	Mark Schem	ne		June 2009
		7	Allow bond angles +/- 0.5°	
			For full marks must say repel at least once.	
	CO ₂ : linear/bond angle = 180° / diagram \checkmark two areas of electron density repel \checkmark		Allow 2 bonds/bonding pairs repel	Acceptable diagrams:
	CH₄: tetrahedral/bond angle =109.5°/diagram ✓ four bonded pairs repel ✓		Allow 4 bonds repel	H H H four bonds shown with at least 2 wedges, one in; one out
	H ₂ O: non-linear/bond angle =104.5°/ diagram \checkmark two bonded pairs and two lone pairs repel/ diagram \checkmark lone pairs repel more (than bonded pairs) \checkmark		Allow 2 bonds and 2 lone pairs repel	For bond into paper, accept:

2811	Mark Scheme		June 2009
	QWC – At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. ✓	1	QWC mark must be indicated with a tick or cross through the Quality of Written Communication prompt at the bottom of page 9. Then scroll up to start of question, counting ticks. Watch out that you have counted ticks on BOTH pages 8 and 9
			Mark QWC anywhere within Q4
	Total	16	

2812 Chains and Rings

C	Quest	tion	Expected Answers	Marks	Additional Guidance
1	а	(i)	D✓	1	no other acceptable response
		(ii)	B✓	1	no other acceptable response
		(iii)	Dr	1	no other acceptable response
		(iv)	A and B✓	1	no other acceptable response
	b	(i)	$H_{3}C \xrightarrow{CH_{3}}{I} H_{2} H$	1	allow $(CH_3)_2CHCH_2NH_2$ allow $H = \begin{pmatrix} CH_3 & H \\ -C & -C & -C \\ -C & -C & -H \\ -H & -H & -H_2 \end{pmatrix}$ ignore bond linkage & lack of Hs
		(ii)	ethanol 🖌	1	allow ethanolic/alcohol/alcoholic/C ₂ H ₅ OH not allow ethanoic
	С	(i)	electron pair donor/lone pair donor 🗸	1	allow donator

(Quest	tion	Expected Answers	Marks	Additional Guidance
2	a	(i)	same molecular <u>formula</u> ✓ different structure/structural formula/ displayed formula ✓	2	 allow same molecular <u>formula</u>, different arrangement of atoms same molecular <u>formula</u> different arrangement in space – scores 1 mark same <u>formula</u>, different structure – scores 1 mark not allow same atoms different structure etc
		(ii)	$\begin{array}{c c} CI & CI & CI & H & H & H \\ \hline C = C & C & C = C & C & C = C \\ CH_3 & H & CH_2CI & H & CHCl_2 & H \\ \hline (1,2-dichloro-) & (2,3-dichloro-) & (3,3-dichloro-) \end{array}$	3	allow correct structural formulae such as $CH_3C(CI)CHCI, CH_2CIC(CI)CH_2, CHCI_2CHCH_2$ allow correct skeletal formulae
		(iii)	1,1-dichloropropene ✓	1	allow 1,1-dichloroprop-1-ene do not allow 1,1-chloroprop(-1-)ene/1-dichloroprop(- 1-)ene/dichloroprop(-1-)ene ignore commas/hypens allow 11dichloroprop1ene
		(iv)	CI CI CH CH CH CH CH CH CH CH	1	allow Cl Cl Cl Cl Cl Cl do not allow names
	b		because they have (C=C) double bond which restricts rotation ✓	2	
			and each C in the C=C is bonded to (two) different groups or atoms \checkmark		
				9	-

C	Quest	tion	Expected Answers	Marks	Additional Guidance	
3	а	(i)	F✓	1	no other acceptable answer	
		(ii)	van der Waals 🗸	1	allow vdW/vdw ignore spelling of van der Waals not allow intermolecular forces/ dipole-dipole/H- bonds	
		(iii)	2,2,3-trimethylbutane/	1	allow either name or any unambiguous formula H_3C CH_3 H_3C CH_3 $CH_$	
	b	(i)	(particle/atom/molecule that) contains an unpaired/single electron ✓	1	allow contains an unpaired electron/has a single unpaired electron do not allow a free electron do not allow an ion with an unpaired/single electron	
		(ii)	$Cl_2 \longrightarrow 2Cl^{\bullet} \checkmark$	1	allow $Cl_2 \longrightarrow Cl^{\bullet} + Cl^{\bullet} / \frac{1}{2}Cl_2 \longrightarrow Cl^{\bullet}$	
		(iii)	homolytic (fission)/ 🗸	1	allow homolysis/ homolytic cleavage	
		(iv)	$C_7H_{16} + CI^{\bullet} \longrightarrow {}^{\bullet}C_7H_{15} + HCI \checkmark$		allow C ₇ H ₁₅ •	
			$^{\bullet}C_{7}H_{15} + CI_{2} \longrightarrow C_{7}H_{15}CI + CI^{\bullet} \checkmark$	2	no other alternatives	
		(v)	$^{\circ}C_{7}H_{15} + ^{\circ}C_{7}H_{15} \longrightarrow C_{14}H_{30} \text{ or } C_{7}H_{15}C_{7}H_{15} \checkmark$	1	allow 2°C ₇ H ₁₅ \longrightarrow C ₁₄ H ₃₀ or C ₇ H ₁₅ C ₇ H ₁₅ \checkmark	

28	2812		Mark Scheme		
	С	(i)	compound E has 6 isomers ✓	1	no other acceptable answer
		(ii)	compound G has 3 isomers ✓	1	no other acceptable answer
				11	

Q	Question		Expected Answers	Marks	Additional Guidance
4	а	(i)	C ₁₀ H ₂₀ O ✓	1	no other acceptable answer
		(ii)	secondary ✓	1	allow 2 nd ary/circle or underline " <i>secondary</i> " on the paper/2°
	b	(i)	and	2	allow $\begin{array}{ccccc} CH_3 & CH_3 \\ H_2C & CH & H_2C & CH_2 \\ H_2C & CH & H_2C & CH_2 \\ H_2C & CH & H_2C & CH_1 \\ H_3C & CH & H_3C & CH_3 \\ \end{array}$
		(ii)	ester√	1	no other acceptable answer
	C	(i)	reagent $Cr_2O_7^{2^-}$ conditionsH ⁺ & heat	2	allow dichromate/ sodium or potassium dichromate/ K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇ allow KMnO ₄ and then corresponding colour change in (ii) conditions mark dependent on a reasonable attempt at the reagent acidified/ sulfuric acid/sulfuric acid/ H ₂ SO ₄ warm/ reflux/heat under reflux/distil
		(ii)	orange to green 🖌	1	allow orange to black/dark green do not allow green allow purple to green/brown/pink/colourless if KMnO ₄ used in (i) but do not allow orange to green. mark as "x con"

Mark Scheme

G	Question	Expected Answers	Marks	Additional Guidance
5	a	Crude oil can be separated by fractional distillation because the compounds/fractions have different boiling points ✓ (AW) fractionation produces insufficient quantities of the 'petrol' fraction ✓ (AW)		allow different volatilities/ condenses at different temperatures not allow more demand
		 <u>balanced equation</u> to illustrate cracking ✓ alkenes which are used to produce alcohols or polymers✓ (AW) <u>balanced equation</u> to illustrate isomerisation ✓ <u>balanced equation</u> to illustrate reforming 	8	 allow alternate wording (AW) throughout 4 marks for equations – if equations not linked to process, allow max of 3 out of 4 do not allow just "more useful"
		to obtain cycloalkanes (and arenes) \checkmark and H ₂ \checkmark which promote more efficient combustion/ better fuels/increases octane number/reduces knocking/ reduces pre-ignition \checkmark * (AW) (*credited once)		can award two marks for balanced equation for reforming if both a cyclic compound and H ₂ shown. 1 mark if H ₂ absent but cyclic compound structure shown not allow word equations
		 ethanol is renewable ✓ obtained from plants/ named plant ✓ equation for fermentation C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂ ✓ oil-based fuels are finite/take millions of years to form ✓ 	4	 not allow obtained from sugar not allow oil is non-renewable allow an alternative argument based on carbon emission ethanol is carbon neutral ✓ obtained from plants which photosynthesise✓ oil based fuels are net carbon emitters ✓
		$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O \checkmark$	1	allow CH ₃ CH ₂ OH not allow C ₂ H ₆ O

2812		Mark Scheme		June 2009
QW	С	Correctly uses, and spells correctly, at least three of:boiling pointefficient,renewableadditive,additive,finiteoctane number/rating,fermentationknocking,fossilpre-ignition,carbon neutralcycloalkanes,van der Waals,cyclic,intermoleculararenebiofuelvolatility,viscosity	1	
b	(i)	$n H_{3}C \longrightarrow CH = CH_{2} \longrightarrow \begin{pmatrix} CH_{3} & H \\ & \\ C & C \\ & \\ H & H \end{pmatrix} n$	1	allow $n C_3 H_6 \longrightarrow (C_3 H_6)_n$
	(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	allow bracket around the two repeat units with or without the following "n"
C	(i)	reagent: $H_2O \checkmark$ conditions: temperature > 100°C and a H ⁺ catalyst \checkmark	2	 allow steam and H⁺ for both marks allow hot aqueous acid for both marks conditions mark is dependent on correct reagent allow H₂SO₄/H₃PO₄ ignore any reference to pressure

2812		Ma	ark Scheme	June 2009
	(ii)	propan-1-ol ✓ and propan-2-ol ✓	2	allow any unambiguous formula
				not allow C ₃ H ₇ OH or propanol
				do not allow bond linkage must be correct. The bond must clearly go to the O
				x x
				do not allow if Hs are not shown
			20	

2813/01

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

G	Quest	ion	Expected Answers	Marks	Additional Guidance	
1	(a)	(i)	respiration (1)	1	Ignore aerobic/anaerobic	
		(ii)	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O(1)$	1	ignore state symbols allow $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$ if specified aerobic/anaerobic in (i), must match in (ii)	
	(b)	(i)	(enthalpy change) when 1 mole of a compound/substance/product/molecules is formed (1) from its (constituent) elements (1)		reject 1 mole of element ignore required/produced	
			in their standard states/ under standard conditions (1)	3	if standard conditions are quoted, they must be correct do not award this mark if standard AND gaseous	
		(ii)	cycle (1)		<u> </u>	
			x - 1367 = 2(-394) + 3(-286) (1)			
		(iii)	x = -279 (kJ mol ⁻¹) diagram to show 2CO ₂ and 3H ₂ O at lower enthalpy than C ₂ H ₅ OH and 3O ₂ (1)	3	reject products ignore state symbols	
			E_{a} marked correctly (1) ΔH marked correctly (1)	3	for E_a and ΔH allow lines or double headed arrows single headed arrows must point in the correct	
	(c)	(i)	(when pressure is increased) more ethene is converted/ equilibrium moves to RHS (1)	5	direction	
			because there are more (gas) moles on LHS/ ora (1)	2	ignore rate arguments reject volumes	

(ii)	when temperature is increased less ethene is converted/ equilibrium moves to LHS(1)		
	(this means that the forward reaction is exothermic/produces heat/ increases the temperature) the sign of ΔH is negative (1)		2 nd mark dependent on 1 st mark ecf possible
		2	
(iii)	sends equilibrium to RHS (1)	1	allow makes reaction goes to completion
			allow increase yield/maximum conversion
	Total	16	

2813/01

Que	estior	Expected Answers	Marks	Additional Guidance
2 (;	a) (i) energy = $mc\Delta T$ (1)	2	need not be actually stated – can be awarded if numbers used correctly if m = 200, allow first mark
		$= 400 \times 4.18 \times 13.6 = 22.7 \text{ (kJ) (1)}$	Z	ignore extra sig figs
		ii) number of moles = 0.4 (1) ΔH neut = 56.8 (kJ mol ⁻¹)		ecf possible from (i) and number of moles in (ii) watch – if 1 used in (i) gives 56.8
		sign ie negative (1)	3	stand alone mark
(b)	$H^{+} + OH^{-} \rightarrow H_2O(1)$	1	
((c)	result same for experiments 1 and 2 because the ionic equation/reaction is the same/ both acids are completely dissociated (1) the result for experiment 3 (is less because) ethanoic acid is weak/ not completely dissociated (1)		both acids strong is insufficient
		energy is needed to break the bond (and release the $H^{\scriptscriptstyle +})$ (1)		idea of another AH, as part of overall reaction must
			3	idea of another ΔH as part of overall reaction must be included
		Total	9	

Q	Question		Expected Answers		Additional Guidance
3	(a)		bonds broken = 2(C=S) + 3(CI–CI) = 1086 + 3(CI–CI) (1)		
			bonds made = $4(C-CI) + 2(S-CI) + (S-S)$ = 2084 (1)		
			1086 + 3(CI-CI) - 2084 = -272 CI-CI = 242 (kJ mol ⁻¹) (1)	3	ecf possible on values of bonds broken and bonds made
	(b)		$C(s) + \frac{1}{2}F_2(g) + 1\frac{1}{2}Cl_2(g) \rightarrow CFCl_3(g)$		
			formulae and balancing (1)		
			state symbols (1)	2	Allow state symbols for species even if formula is not correct/reverse equation
	(c)	(i)	chlorine BUT NO MARK because the C–Cl bond is weaker (than the C–F bond) (1)	1	accept the bond enthalpy of C–Cl is less than that of C–F/ it is easier to break the C–Cl bond (than the C–F bond reject easier to form Cl free radical some comparison has to be made
		(ii)	homogeneous (1)		
			because the catalyst and the reagents are in the same phase/ same physical state (1)	2	can be scored even if homogeneous not given
			Total	8	

Qu	estion	Expected Answers	Marks	Additional Guidance
4		diagram labelled with axes and E_a marked (1)		<i>y</i> axis can be number/ fraction/ percentage of molecules/ particles <i>x</i> axis can be energy/ enthalpy
		curve shape correct – starting at origin and approaching x axis asymptotically (1)		
		curve at higher temperature starting at origin and to RHS and with lower peak than the one at lower temperature (1)		
		statement that, in order to react, the collision energy/ energy of		
		molecules must (be equal to) or exceed $E_a(1)$	4	not allowed if <i>E</i> _a lowered reject more successful collisions accept more molecules have enough energy for successful collisions
		Total	4	

C	Question		Expected Answers	Marks	Additional Guidance
5	а		a strong acid is totally dissociated/ ionised (1)		ignore state symbols
			$HNO_3 \rightarrow H^+ + NO_3^-(1)$	2	ignore equilibrium arrow
	В	(i)	$MgCO_3 + 2HNO_3 \rightarrow Mg(NO_3)_2 + CO_2 + H_2O (1)$	1	
		(ii)	fizzing/solid disappears/ solid dissolve/ gas evolved/ gas given off (1)	1	
		(iii)	$\begin{array}{rcl} MgCO_3 + 2H^+ \rightarrow Mg^{2+} + CO_2 + H_2O/\\ CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O \left(1\right) \end{array}$		Ignore state symbols
			$\text{CO}_3^{2^-} + 2\text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O}(1)$	1	reject spectator ions
	С	(i)	ammonia is a base/ is a proton acceptor	1	allow is an alkali reject has a pair of electrons
		(ii)	$M_{\rm r} {\rm ~of~NH_4NO_3} = 80 {\rm ~(1)}$		
			%N = 35 (1)	2	ecf possible from <i>M</i> _r
			Total	8	

2813/03 How Far? How Fast? /Experimental Skills **1** Practical Examination

Plan: 16 marks maximum (out of 19 marks available)

Α Gravimetric method – 7 marks

A1	Crucible weighed empty <i>then</i> crucible weighed with washing soda Crucible or evaporating dish/basin (but not a test tube) must be used Ignore any reference to use of a lid when awarding A1	[1]
A2	Heat <u>gently</u> at first and reason (to avoid spitting/frothing) or heat <u>gently</u> at first then heat more strongly	[1]
A3	Allow crucible (and contents) to cool with <u>lid</u> on <i>or</i> allow to cool in a desiccator (<i>or</i> a vacuum container) <i>or</i> cool before weighing so that convection currents don't affect balance reading	[1]
A4	(After cooling) weigh the crucible with the anhydrous sodium carbonate in it Candidate must use the word "anhydrous" in a correct context somewhere	[1]
A5	Re-heat, cool and re-weigh until mass stays same for complete reaction/dehydration Note - Simple description of and reason for the procedure is required.	[1]
A6	Equation for thermal decomposition of washing soda crystals Na ₂ CO ₃ . \mathbf{x} H ₂ O \rightarrow Na ₂ CO ₃ + \mathbf{x} H ₂ O (Allow x	[1] = 10)
A7	Shows clearly and correctly how \mathbf{x} is calculated from gravimetric data and the value for M_r of Na ₂ CO ₃ (= 106) must be stated/shown The calculation must start from the three weighings that would be recorded	[1]
в	Gas collection method – 8 marks	
B1	Reacts weighed/stated mass of washing soda with excess of acid	[1]
B2	Equation for reaction of sodium carbonate with the acid specified Na ₂ CO ₃ + 2HCI \rightarrow 2NaCI + CO ₂ + H ₂ O or Na ₂ CO ₃ .xH ₂ O + 2HCI \rightarrow 2NaCI + CO ₂ + (x + 1)H ₂ O	[1]
B3	Calculation of suitable mass of washing soda for the gas collection procedure Candidate must link the calculation explicitly to the capacity of collector.	[1]
B4	Specimen calculation of [minimum] quantity of acid to use in procedure	[1]
B5	Draws a neat diagram of correct apparatus (with some evidence of use of a ruler, if had drawn), including a suitable method of collection and measurement for the gas	and [1]

drawn), including a suitable method of collection and measurement for the gas Downloaded/ photocopied diagrams are only allowed if the labelling is relevant

2813	/03 Mark Scheme	June 2009
B6	Records (final) volume of gas once fizzing has stopped/when syringe stops more Visual observation is required to indicate the completion of reaction	ving [1]
B7+E	Two accuracy precautions (any two from the three below)	
	• Aware of problem of solubility of CO ₂ in water and gives a remedy	[1]
	Accept use of gas syringe to avoid gas being in contact with [as much] water Accept collection over warm/hot water	
	• Use of "inner" ignition tube/ partitioned flask <i>and</i> suitable reason	[1]
	Two points are needed – both the practical precaution and a reason for it	
	• Repeat entire experiment until results are consistent/take mean of results	[1]
	B8 may be awarded in expt A (provided the whole procedure is repeated)	
S	Sources etc – 4 marks	
S1	Researches hazard of sodium carbonate and states a safety precaution [Solid] sodium carbonate is irritant Accept one routine precaution - safety specs, lab coat, gloves, wash if spilt	[1]
S2	Two secondary sources quoted in the text or as footnotes or at end of plan. Book reference(s) must have chapter or page numbers Internet reference(s) must beyond the first slash of web address Accept one <u>specific</u> reference to a "Hazcard" (by name or number) Allow one reference to a specific past paper (but not to teaching notes etc)	[1] ust go
S3	QWC: text is legible <i>and</i> spelling, punctuation and grammar are accurate	[1]
	Award S3 if there are fewer than six errors in legibility, spelling, punctuation or	grammar.
S4	QWC: information is organised clearly and coherently	[1]
	 Is the answer to all three of the following questions positive? Is a word count given and within the limits 450 – 1050 words? Is scientific language used correctly – allow one error Are both methods described logically and without excessive repetition? 	

2813	3/03	Mark Scheme	June 2009
Prac	ctical Test (B)		
Pag	e 3: Part 1		[12 marks]
Rec	ording and calculation [5 marks]		
	ix mass readings shown in table forn le must be drawn (minimum two verti	•	[1]
	nass readings shown to 2 d.p. and un w readings to 3 d.p., provided that th	•	[1]
Corr	ect subtractions to obtain both initial	masses of MCl ₂ .2H ₂ O	[1]
Меа	n mass of MCl ₂ .2H ₂ O used, correctly	v calculated	[1]
and	n mass of anhydrous MCl ₂ residue c mean mass of water lost (= "W") con a answers must be correctly calculate	rectly calculated	[1]
Accı	uracy [6 marks: 4 + 2]		
For		ass loss to the nearest 0.005 g, as loss "W", and note it to nearest 0.005g isor's and candidate's mean mass losses.	
• • •	If candidate's mass loss is within 0 If candidate's mass loss is within 0	.020 g of supervisor's, award 4 marks .030 g of supervisor's, award 3 marks .040 g of supervisor's, award 2 marks .060 g of supervisor's, award 1 mark	
	consistency of candidate's results. ck the calculation of mass loss (due	to water) in both experiments	
•		2(0) g of mass loss in expt 2, award 2 mark 3(0) g of mass loss in expt 2, award 1 mark	
Safe	ety [1 mark]		
Addi	ing water (or diluting) reduces the lev	vel of hazard	[1]
Pag	es 4+5: Part 2		[10 marks]
	k ecf wherever possible from one pa wers, when required for a mark, shou	rt of an answer to the next (but not within a Ild be quoted to 3 significant figures	part).
(a)	No of moles = ^{mean mass of water} / ₁₈ <i>This is a method mark for dividing</i> No of moles of water, correctly calc	<i>the appropriate <u>mean</u> mass from page 2 by</i> culated and expressed to 3 sig fig	[1] / 18 [1]
(b)	$MCl_2.2H_2O(s) \rightarrow MCl_2(s) + 2H_2O(g)$)	
	If formulas <i>and</i> balancing are correct State symbols correct (mark is con	ect ditional on all three formulae being correct)	[1] [1]

(c)	Answer (a) is multiplied by 0.5 There is no ecf if the mole ratio shown in the equation is 1:1	[1]
(d)	<i>M</i> _r = ^{mass of anhydrous salt} / _{no of moles} Candidate earns this mark by quoting the correct figures.	[1]
	$M_{\rm r}$ correctly calculated (to 3 sf) from candidate's own data	[1]
(e)	<i>A</i> _r = answer (d) – 71	[1]
(f)	M must be in Group 2	[1]
	M is barium because its A_r is the closest to 137 (or ecf to the answer to "e") No ecf is allowed for a metal incapable of showing oxidation state +2	[1]
Page	es 6+7: Part 3 [8	marks]
(a) (i) white precipitate/solid/suspension	[1]
(i	i) silver chloride (named)	[1]
(ii	i) $Ag^+ + CI^- \rightarrow AgCI$	[1]
(b) (i) white precipitate/solid/suspension	[1]
(i	i) aq, aq, aq, s (all four state symbols correct)	[1]
(i	ii) insoluble [in water]	[1]
(c) (i)+(ii) white precipitate of MCO₃ <i>NB -</i> Correct answers to both (i) and (ii) are required for this mark	[1]
(iii)	$MCl_2 + Na_2CO_3 \rightarrow MCO_3 + 2NaCl$	[1]
Page	es 8-10: Part 4 (Evaluation) [14 mark	s max]
(a)	A lid would prevent/reduce absorption of water [vapour while cooling] No mark for reference to spitting or frothing when heated: it doesn't!	[1]
(b)	Re-heating makes sure that <u>all</u> the water has been removed Do not allow a vaguer reference to "reaction being finished"	[1]
	[When all water had been removed] final mass would not change/ stay the same	[1]
(c)	Yellow flame is not hot/strong enough [to drive off the water	[1]
	Yellow flame is sooty or it would deposit carbon (or a black residue) on crucible	[1]

(d)(i) 3 marks

	Since two weighings are needed, possible total error in mass H_2O lost = 0.02 g	[1]
	Method mark: candidate uses 0.01 (or 0.02) <i>and</i> mean mass of water lost <i>Mean mass must be correctly selected from data on page 3.</i>	[1]
	% error = $^{0.02 \text{ or } 0.01}/_{\text{mass}}$ x 100, correctly worked out to the number of sig fig quoted	[1]
(d)(ii)5 marks max (but only 4 on Qn paper) – <i>mark the best two strands</i>	
	• Use a larger mass of hydrated salt (<i>or</i> mass used was too small)	[1]
	This reduces the percentage error [in measuring masses]	[1]
	• Use a balance that records to 3 (or "more") decimal places	[1]
	Do not allow a "more accurate" balance or equivalent phrases.	
	This reduces the <u>percentage</u> error [in measuring masses] Do not award a mark twice for this statement, even if used in different contexts.	[1]
	Candidate uses his/her data to work out the % error in <u>any</u> "improved" reading Specimen calculation is needed to score this mark.	[1]
	<u>Cool</u> the residue in a desiccator	[1]
	Desiccator contains a drying agent or it contains air that is free of moisture	[1]
	Prevents absorption of water [vapour] by the residue	[1]
(e)	If both of candidate's mass losses were close/ within 0.01g, this shows reliability <i>Mark is awarded for the opposite conclusion if the candidate's readings justify it</i>	[1]
(f)	2 marks max (but only 1 on Qn paper) Award any two marks from the five ideas below	
	Covalent compounds have low melting/boiling points or a correct reference to weak intermolecular forces	[1]
	The solid being heated might evaporate or the residue obtained might evaporate	[1]
	Hydrated covalent chlorides don't exist	[1]
	Hydrolysis/decomposition of covalent chloride occurs [when heated]	[1]
	Hydrogen chloride would be produced [when the covalent chloride was heated]	[1]

2814 Chains, Rings and Spectroscopy

Qu.	Expected Answers		Marks
1 (a) (i)	NaOH/Na/Na ₂ CO ₃ /NaHCO ₃		[1]
(ii)	COO Na ⁺ 🖌 (rest of the structure the same)	Na⁺ is not essential, but do not allow	[1]
(b)	CH₃CHCICOOH ✓	Na-O	
	FeCl ₃ /AICl ₃		
	equation with HCI 🖌		[3]
(c)	chiral		
	(stereoisomers are) non-superimposable (mirror images)/asymmetric/correct 3-D diagrams of both isomers of ibuprofen drawn ✓	of	
	the chiral centre on ibuprofen is identified, either by a label or shown in the centre of a 3-D diagram of ibuprofen \checkmark	allow ecf on 3-D or side chain errors	
	(is caused by) a C atom with four different groups attached \checkmark		
	disadvantages of producing a mixture		
	only one isomer may be active/one may be inactive \checkmark ,		
	a higher dose is needed AW ✓		
	the other (stereo) isomer may cause harm/side effects \checkmark		
	separation of the isomers may be expensive/difficult \checkmark		
	ANY 6 out of 7 marks		[6]
	QWC mark for at least two sentences with correct spelling, grammar. ✓	ounctuation and	[1]
		[Total:	121

Mark Scheme

Qu.	Expected Answers		Marks
3 (a)		brackets and n not essential	
	$\begin{bmatrix} \uparrow & \uparrow $	allow ecf if no end bonds on both	[2]
(b)	PP is <u>addition</u> which breaks (C=C) double bond/no other products formed ✓		
	PTT is condensation which produces H_2O or small molecule \checkmark		[2]
(c)	HO-C \rightarrow C \rightarrow C \rightarrow C \rightarrow $HO-(CH_2)_3-OH$ \checkmark or the action of the action of the action of the second sec	sid chloride	[2]
(d)	both are polypropene ✓		
	idea of isotactic (side chains on the same side) and syndiotactic (side chains are on alternating sides) ✓ diagrams for both polymers show correct 3-D with zig-	the first two marks can be from incorrect or non-3D diagrams	
	zag backbone and correct wedge/dottybonds ✓ - eg		
	isotactic syndiotactic Or		
	$\begin{array}{c} H CH_3 H CH_3 H CH_3 H CH_3 \\ \hline C \\ C \\ \hline C \\ H \\$		[0]
			[3]
(e)	(in PTT but not PP) 1680–1750 (cm ⁻¹) ✓ 1000–1300 (cm ⁻¹) ✓		[2]
		[Total:	11]

Qu.	Expected Answers		Marks
4 (a) (i)	arrow from lone pair of :CN to C 🖌		
	dipole and curly arrow breaking -bond on C=O 🗸		
	structure of the intermediate 🖌	lone pair is not essential on	
	curly arrow to H of HCN/H ₂ O/H ⁺ \checkmark	intermediate	
	structure of the organic product \checkmark	CN⁻ product is	
	eg $H_{3}C \xrightarrow{\delta_{0}}{C} \xrightarrow{C} H_{3}C \xrightarrow{C}{C} CH_{3} \xrightarrow{O_{1}}{C} H_{3}C \xrightarrow{O_{1}}{C} \xrightarrow{O_{1}}{C} \xrightarrow{O_{1}}{H_{3}C} \xrightarrow{O_{1}}{C} $	not essential	[5]
(b)	reduction/redox 🗸		
	LiAlH₄ + ether/Na + ethanol/H₂ + Ni/Pt ✓		
	$CH_3CH_2CN + 4[H] \longrightarrow CH_3CH_2CH_2NH_2 \checkmark$	allow $2H_2$ in the equation if Na + Ethanol or H ₂ + Ni is chosen	
	hydrolysis 🗸		
	(reflux/heat with) HCl/H ₂ SO ₄ with some evidence of water eg dil/(aq)/H ₂ O shown in the equation \checkmark	allow 'conc' for HCI but not for H_2SO_4	
	equation – eg $CH_3CH_2CN + 2H_2O \longrightarrow CH_3CH_2COOH + NH_3 / CH_3CH_2CN + 2H_2O + H \longrightarrow CH_3CH_2COOH + NH_4$ \checkmark	112004	[6]
		[Total:	11]

5 (a) (i) ammonia which is ethanolic/heated in a sealed tube \checkmark [1 (ii) CH ₃ CHClCOOH + NH ₃ \rightarrow CH ₃ CH(NH ₂)COOH + HCl \checkmark or with any ionisation of the amino groups – eg CH ₃ CHClCOOH + NH ₃ \rightarrow CH ₃ CH(NH ₃ Cl)COOH / CH ₃ CHClCOOH + 2NH ₃ \rightarrow CH ₃ CH(NH ₂)COOH + NH ₄ Cl [1 (b) (i) structure of zwitterion \checkmark eg $\stackrel{CH_3}{\stackrel{H_3}{}_{N}-\stackrel{C}{C}-COO^-}_{\stackrel{H}{}_{H}}$ [1 (ii) structure of organic product \checkmark equation \checkmark eg]
(b) (i) structure of zwitterion \checkmark eg $\begin{array}{c} CH_3CHCICOOH + NH_3 \longrightarrow CH_3CH(NH_3CI)COOH / \\ CH_3CHCICOOH + 2NH_3 \longrightarrow CH_3CH(NH_2)COOH + NH_4CI \end{array}$ (1) (b) (i) structure of zwitterion \checkmark eg $\begin{array}{c} CH_3 \\ H_3N - C - COO^- \\ H \end{array}$ (ii) structure of organic product \checkmark	
(b) (i) $\begin{array}{c} CH_{3}CHCICOOH + NH_{3} \longrightarrow CH_{3}CH(NH_{3}CI)COOH / \\ CH_{3}CHCICOOH + 2NH_{3} \longrightarrow CH_{3}CH(NH_{2})COOH + NH_{4}CI \end{array}$ (b) (i) $\begin{array}{c} structure of zwitterion \checkmark eg \\ CH_{3} \\ H_{3}N - C - COO^{-} \\ H \end{array}$ (ii) $\begin{array}{c} structure of organic product \checkmark \end{array}$ [1]	
(ii) structure of organic product \checkmark [1]]
$\begin{array}{c cccc} CH_3 & CH_3 & H & CH_3 & allow -CONH- for \\ I & I & I & I \\ 2H_2N-C-COOH & \longrightarrow H_2N-C-C-N-COOH & H_2O & the peptide linkage \\ I & I & I & I \\ H & H & O & H \end{array}$ [2]]
(c) (i) $\begin{bmatrix} H & CH_3 \\ - & H \\ N - & C - & C \\ - & H \\ H & O \end{bmatrix}$ brackets not essential [1]]
(ii) hydrolysis ✓ allow aqueous NaOH/KOH or a protease enzyme [2]]
(d) two peaks ✓	
relative areas 3:1 - allow ecf on the second and third marks if extra	
due to the $-CH_3$ and $-CH \checkmark$ peaks are given for COOH and NH ₂ [3]
[Total: 11]	

Mark Scheme

2814

Qu.	Expected Answers		Marks
7 (a) (i)	silver mirror (on warming) with <i>Tollens'</i> reagent/ammoniacal silver nitrate ✓		[1]
(ii)	add to 2,4-DNPH/Brady's reagent ✓ measure the m.p. (of the solid from 2-4-DNPH) ✓	measure the b.p. (of the aldehyde) gets both the first 2 marks	
	compare with known values to identify the aldehyde ✓		[3]
(b) (i)	methanal + butanal 🖌	allow C_3H_7CHO allow correct names	[1]
(ii)	propanone 🖌 + ethanal 🖌	or structures but they must not contradict	[2]
(c) (i)	eg 0 CH ₃ H H H O 1 I I I C C C C C C C C C C C C C C C C C C C		[1]
(ii)	CH ₃ ✓		[1]
		[Total	: 9]

Mark Scheme

Qu.	Expected Answers		Marks
8	molecular formula from % data and mass spectrum		
	<i>M</i> _r = 88 ✓		
	${}^{54.5}/_{12.0} = 4.54$ ${}^{9.1}/_{1.0} = 9.1$ ${}^{36.4}/_{16.0} = 2.28$		
	ratio = 2 : 4 : 1 / empirical formula = C_2H_4C) 🗸	
	$(M_r \text{ of } C_2H_4O = 44 = {}^{88}/_{2} \text{ so}) \text{ molecular formula} = C_4H_8O$	D ₂	
	alternative method for the 2 nd mark calculating mass ou 88 for each element: 88 x ${}^{54.5}/{}_{100} = 48$ 88 x ${}^{9.1}/{}_{100} = 8$ 88 x ${}^{36.4}/{}_{100} = 32$ ${}^{48}/{}_{12} = 4$ C ${}^{8}/{}_{1} = 8$ H ${}^{32}/{}_{16} = 2$ O	t of	
	structural formula from n.m.r. spectrum X is an ester ✓ X is ethyl ethanoate/CH₃COOCH₂CH₃ ✓		
	identified – eg	allow any method to identify which peak is being referred to	
	$-O-CH_2 \checkmark$	the –CH₃ mark is available if methyl propanoate is chosen	
	splitting of one of the peaks is explained in terms of the n + 1 rule – eg '1:2:1 as next to CH_2 '		[9]
	Well organised answer with any two of the following technical terms used correctly: singlet , triplet , quadruplet/quartet		[1]
	duai apies duai ter		

2815/01 Trends and Patterns

	Qu.	Expected Answers	Marks	Additional Guidance
1	(a)	(Enthalpy change of/energy change of) atomisation (1) Ba(g) \rightarrow Ba ⁺ (g) + e ⁻ (1) <u>Second</u> electron affinity (1) Ba(s) + $\frac{1}{2}O_2(g) \rightarrow$ BaO(s) (1)	4	Ss must be correct throughout No multiples
	(b)	Impossible/difficult to get gaseous ions (without them reacting)/difficult to vapourise ions and measure the enthalpy change at the same time/AW (1)	1	
	(c)	Oxide ion is smaller than carbonate ion/oxide ion has a higher charge/electron density/ora (1) (So) stronger attraction between ions in barium oxide/ora (1)	2	Must use correct particle but only penalise once
	(d)	Rb ⁺ , Na ⁺ , Mg ²⁺ , Al ³⁺ (1) and Any two from Idea that polarising power depends on ionic radius and ionic charge/idea that polarising power depends on charge density of ion (1) Rb ⁺ is larger than Na ⁺ /Na ⁺ is larger than Mg ²⁺ /Mg ²⁺ is larger than Al ³⁺ /Al ³⁺ smallest radius/Rb ⁺ largest radius ora (1) Rb ⁺ is less charged than Mg ²⁺ /Na ⁺ is less charged than Mg ²⁺ /Mg ²⁺ is less charged than Al ³⁺ /Al ³⁺ highest charge ora (1)	3	
			10	

	Qu.		Expected Answers	Marks	Additional Guidance
2	(a)	(i)	Giant ionic/ionic lattice (1)	1	Guidance
		(ii)	Two sodium ions with empty or full outer shell or 2.8 and Na ⁺ (1) Oxide ion with full outer shell or correct 2.8 and O^{2^-} (1)	2	Allow empty or full shell for Na ⁺ Allow 2Na ⁺ Allow one mark for either correct charges for both ions or correct electronic structures for both ions Not [Na] ₂ ⁺ /[Na ₂] ²⁺
	-	(iii)	Na ₂ O + H ₂ O \rightarrow 2NaOH/O ²⁻ + H ₂ O \rightarrow 2OH ⁻ (1) Water has behaved as a proton donor/H ⁺ donor (1)	2	
	(b)	(i)	$H_2SO_3(1)$	1	
		(ii)	Silicon(IV) oxide has a giant covalent structure/giant molecular/macromolecular (1) Sulphur dioxide has <u>simple</u> structure with van der Waals' forces/ <u>simple</u> molecular / <u>simple</u> covalent (1) Covalent bonds are (much) stronger than van der Waals' forces/intermolecular forces/temp dipole- temp dipole/induced dipole – induced dipole (1)	3	Allow comparison of forces mark only if associated with the correct forces
				9	

	Qu.	Expected Answers	Marks	Additional Guidance
3	(a)	moles of $MnO_4^- = 0.000571 (1)$ moles of $H_2O_2 = 0.00143 (1)$ concentration (of diluted H_2O_2 is 0.143 and of) undiluted is 1.43 mol dm ⁻³ (1) Concentration = 48.5 g dm ⁻³ (1) (accept range 48.45–48.63 g dm ⁻³)	4	Allow ecf within the question Allow 2 or more sig figs for first three marking points Allow 3 or 4 for the last marking point
	(b)	Fe ²⁺ → Fe ³⁺ + e ⁻ / Unbalanced full equation with all correct species (1) but H ₂ O ₂ + 2H ⁺ + 2Fe ²⁺ → 2H ₂ O + 2Fe ³⁺ (2)	2	Allow full marks for the correct ionic equation between H ₂ O ₂ and Fe ²⁺ Allow correct multiples of equation Ignore state symbols
	(c)	There is no longer a green precipitate/green solid (1) $Fe^{2^+} + 2OH^- \rightarrow Fe(OH)_2$ (1) or There is now a red-brown precipitate/orangey brown/brown/rusty solid (1) $Fe^{3^+} + 3OH^- \rightarrow Fe(OH)_3$ (1)	2	Allow precipitate mark if state symbol given in equation Ignore state symbols
	<u>(d) (i)</u> (ii)	-1/1-/- (1) Oxygen from -1 to -2/0 to -2 which is reduction (1) Oxygen from -1 to 0/-2 to 0 which is oxidation (1)	1 2	Allow O ₂ ⁻ Allow 1 mark for either 2 correct ON changes (1 ox and 1 red) OR correct reference to oxidation and reduction from their ON changes
	(iii)	Moles of $KO_2 = 14.1 (1)$ Moles of $CO_2 = 7.05 (1)$ Volume of $CO_2 = 168.8 \text{ dm}^3 (1)$ Allow range 168 to 169.2	3	Allow ecf within question Allow 2 or more sig figs for first two marking points Allow 3 or 4 sig figs for answer

Expected Answers	Marks	Additional Guidance
Properties 3 from Coloured (ions)/coloured (compounds) (1) Catalysts (1) Several oxidation states (1) Paramagnetic (1)	3	
Complex ion Octahedral/clear three dimensional drawing (1) Ligand donates a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)	4	Allow tetrahedral or square planar and correct bond angles from a correct example Allow bonding marks (2 and 3) from an incorrect complex ion
Ligand substitution Involves swapping of one ligand for another/exchange of ligands/displacement of ligands (1) Example (1) eg reaction of aqueous iron(III) ions with thiocyanate ions Equation (1) eg [Fe(H ₂ O) ₆] ³⁺ + SCN ⁻ → [Fe(H ₂ O) ₅ (SCN)] ²⁺ + H ₂ O Observation (1) eg red coloration	4	Correct equation also scores the description of ligand substitution Wrong metal in complex ions can score the description and equation mark
Quality of Written Communication (1)Use of at least three of the following technicalwords in the correct contextCatalyst/catalyticDative/coordinateLone pair/electron pairOxidation state/oxidation numberOctahedral/tetrahedral/square planar	1	
	Properties 3 from Coloured (ions)/coloured (compounds) (1) Catalysts (1)Several oxidation states (1) Paramagnetic (1)Complex ion Octahedral/clear three dimensional drawing (1) Ligand donates a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)Ligand substitution Involves swapping of one ligand for another/exchange of ligands/displacement of ligands (1) Example (1) eg reaction of aqueous iron(III) ions with thiocyanate ions Equation (1) eg [Fe(H ₂ O) ₆] ³⁺ + SCN \rightarrow [Fe(H ₂ O) ₅ (SCN)] ²⁺ + H ₂ O Observation (1) eg red colorationQuality of Written Communication (1) Use of at least three of the following technical words in the correct context • Catalyst/catalytic • Dative/coordinate • Lone pair/electron pair • Oxidation state/oxidation number	Properties 3 from Coloured (ions)/coloured (compounds) (1) Catalysts (1)3Several oxidation states (1) Paramagnetic (1)4Complex ion or ion accepts a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)4Ligand substitution nor ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)4Ligand substitution igands (1) Example (1) eg reaction of aqueous iron(III) ions with thicoyanate ions Equation (1) eg [Fe(H ₂ O) ₆] ³⁺ + SCN ⁻ \rightarrow [Fe(H ₂ O) ₅ (SCN)] ²⁺ + H ₂ O Observation (1) eg red coloration1Quality of Written Communication (1) Use of at least three of the following technical words in the correct context • Catalyst/catalytic • Dative/coordinate • Lone pair/electron pair • Oxidation state/oxidation number1

2815/02 Biochemistry

Qu.		Expected Answers	Mark
1)	(a)(i)	Hydrogen bonding ✓ between C=O and N–H.✓	[2]
-		Or C=O HN ✓ for second mark	
		NB use of COOH, COH, NH ₂ is CON.	
	(ii)	Each type and explanation of the bonding earns one mark✓✓ AW	[2]
		Ionic: attraction between COO^- and NH_3^+	
		Disulphide/sulphur bridges : covalent/ –S–S– van der Waals/IDID : between alkyl /hydrocarbon/aryl/non-polar	
		groups	
		1 mark is given for both types if they have no correct	
		explanations	
	(b)	Fe ²⁺ ✓	
	(i) (ii)	To bind/carry oxygen/O ₂ \checkmark (not ion , not oxygen atom)	[1]
	(ii)	O in H ₂ O ₂ (–1 ox number) is oxidised to O ₂ (0 ox number) \checkmark and	[1]
		reduced to H ₂ O (–2 ox number). ✓ Ignore H	[2]
	(c)(i)	Give: 1 mark for -2 and 0 for oxygen on the right. A should show initial increase in rate, then a plateau√	
		B should show a more gradual increase levelling out at a lower	[2]
	(ii)	rate than A√.	
		If labels are reversed or no labels on correct diagram 1 mark,	
		t t	
		А	
		initial rate	
		H ₂ O ₂ concentration Two from:	[2]
	(iii)	 Binds to enzyme somewhere other than active site ✓ 	
		 Distorting shape of active site/protein/ tertiary or 3D 	
		structure ✓ (making it less active)	
		• BY combining with free SH or COOH/COO ⁻ /NH₂ groups ✓ AW throughout.	
	d(i)	Any two of the following: \checkmark	[2]
		 Easy separation of product and/from enzyme Continuous use possible /enzyme can be reused 	
		 Continuous use possible /enzyme can be reused Thermal stability of enzyme improved, can be used at 	
		higher temperatures/resists small pH changes	[1]
		Optimum temperature may be increased	
		Minimises/prevents end-product inhibition.	
	(ii)	Any one, for example bread making, brewing, production of lactose-free milk, washing powders or fluids etc. Allow use of	
	. /	micororganisms in other contexts√	

Qu.	Expected Answers	Mark
2) (a)(i)	Either OCO group or the phosphate ✓	[1]
(ii)	 Two of: ✓ ✓ They allow movement of chemicals(AW) in and out of cells/ selectively permeable They separate contents of cells from surrounding/hold in cell contents They allow separate compartments to be formed in cells Allow some proteins to attach AW throughout 	[2]
	van der Waals' (IDID) forces.✓	[1]
(iii)	Reducing the number of van der Waals' forces would make the bilayers more flexible at low temperature ✓. This could be achieved by one of the following: ✓	[2]
(b)	 Shortening the hydrocarbon chain Introducing branches to the chain Introducing double bonds to the chain 	
(c)	Carbohydrates are partially oxidised ✓ Formation of carbon dioxide and water is exothermic/ gives off energy ✓ Formation of C0/0H bonds is exothermic/ provides energy ✓ Allow C-O in this last point	[3]

Qu.		Expected Answers	Mark
3)	(a)(i)	A glycosidic link that is on the same side of the ring as the CH_2OH group/ above ribose ring or up in the diagram AW. \checkmark	[1]
	(ii)	Use of dilute HCl/H₂SO₄ (allow conc HCl /acid) or an enzyme). ✓	[1]
	(b)	$\begin{array}{c} CH_2OH & OH \\ \downarrow & \downarrow & \downarrow \\ C & \downarrow & \downarrow \\ H & \downarrow & \downarrow \\ - & \downarrow & \downarrow \\ OH & OH \\ \checkmark & for each. The ring form must be displayed. The straight form may be as above or displayed or vertical, but allow only one OH the wrong way round. \\ \end{array}$	[2]
	(c)(i)	It involves the elimination of water ✓.AW	[1]
	(ii)	To the C ₅ oxygen or to C5 \checkmark (Not to H or to the phosphate end)	[1]
	(d)(i)	 Any two of: ✓✓ DNA has base thymidine/T and RNA has uridine/U DNA has deoxyribose instead of the ribose in RNA DNA is a larger molecule DNA forms a double helix; RNA (usually) does not Comparison needed 	[2]
	(ii)	 Five points from :√√√√√ <u>Hydrogen</u> bonds joining double helix <u>break/</u> van der Waals forces between (stacked) bases in DNA break. New nucleotides/ (complementary) bases are attached to a single strand of DNA The complementary base pairs are AU and one of CG/GC/TA Hydrogen bonds form between bases New (phosphate) ester bonds form Hydrogen bonds between RNA and DNA Mention of helicase for breaking double helix or RNA polymerase for forming phosphate ester bonds 	[5]
		QWC Award this for accurate use of technical terms – <u>describing</u> <u>transcription</u> and two from: hydrogen bonds, , ester, base pair and complementary.	[1]

Question No.	Expected Answers	Mark
4) (a) (b)	 Two reasons from ✓ ✓ It has 1,6 (glycosidic) links/bonds Because it is a branched structure, Give this mark if both 1,6 and 1,4 links are mentioned α-glucose Give the reason marks independently of the name. With 1,6 and 1,4 glycosidic links ✓ Then the name : amylopectin/ glycogen ✓ Glucose has many site<u>s</u>/OH group<u>s</u> for hydrogen bonding to water ✓ Diagram such as O-H…OH₂ ✓ (beware use of C-H) Must not be two water molecules. In C many OH groups are tied up in glycosidic links ✓ Many OH groups are involved in hydrogen bonding between chains/ within helical regions/intermolecularly. AW ✓ 	[3]

2815/03 Environmental Chemistry

Qu.	Expected Answers	Mark
1) (a)(i)	 <u>First three</u> points from: Encourages anaerobic conditions/prevents air or oxygen from getting in√ Prevents escape of landfill gas/minimises odours√ Stops waste blowing about/ access by gulls or vermin√ Prevents excess rain entering landfill (which would increase leaching)√ 	[3]
(ii)	Two of the following gases : Hydrogen sulphide or formula ✓ to contain the bad smell/toxic gas ✓ Methane or formula ✓ to allow use as fuel or for energy/minimise risk of explosion/ minimise effect on global warming ✓ Carbon dioxide or formula ✓ to prevent pressure increase in landfill/ minimise effect on global warming. ✓	[4]
(b)(i)	NB The same reason is not accepted for two gases.	
	It can contribute to acid rain formation ✓ Toxic/poisonous/irritant ✓ AW.	[2]
(ii)	SO ₂ + 0.5 O ₂ + 2 NaOH → Na ₂ SO ₄ +	
(iii)	H₂0 ✓ Or doubled	[1]
	4NO + 4NH ₃ + O ₂ \longrightarrow 4N ₂ + 6H ₂ O \checkmark Or halved	
	Accept also balanced versions, such as : $2NO + 4NH_3 + 2O_2 \longrightarrow 3N_2 + 6H_2O \checkmark$	[1]

Qu.	Expected Answers	Mark
2) (a)(i)		[3]
(ii)	100,000 dm ³ contains 100,000 x 0.096 mol of Ca(HCO ₃) ₂ = 9.6 x 10 ³ mole ✓ M _r for CaCO ₃ =100.1 ✓ Accept 100 and follow through. This will weigh 100.1 x 9.6 x 10 ³ = 9.6 x 10 ⁵ g ✓ ecf	[3]
(b)	Aluminium ions: to flocculate/coagulate solid particles ✓ Either negative charge on surface of particles ✓ is neutralised ✓ Or A precipitate of aluminium hydroxide/formula is formed ✓ which absorbs other ions/ solid particles ✓. Chlorine gas : It forms HCIO or CIO ⁻ /equation ✓ Cl ₂ + H ₂ O = HOCI + HCI removal of_ bacteria by oxidation ✓.	[5]

Qu.	Expected Answers	Mark

Qu.	Expected Answers	Mark
4)	 Find nine marks from: In 1:1 clays each layer comprises one aluminate/octahedral sheet and one silicate/tetrahedral sheet ✓ 	[10]
	• These sheets are joined by AI-O-Si links✓	
	• The layers are attracted to each other by hydrogen bonding ✓	
	 between O atoms on the silicate/tetrahedral sheet and H atoms attached to the aluminate/octahedral sheet√. 	
	• Water and cations cannot easily get in between the layers ✓ (Water is not readily absorbed)	
	 In 2:1 clays each layer consists of two silicate/tetrahedral sheets with one aluminate/octahedral sheet in between (or diagram)√ 	
	 The layers are not hydrogen bonded together/are only held together by weak forces of attraction√ 	
	 Water can easily penetrate between the layers	
	 Cations can also enter between the layers and become attracted to the negatively charged oxygen atoms within✓ 	
	 This negative charge is increased by the replacement of Si(IV) by Al³⁺ in the original structure (or Al³⁺ by Mg²⁺)√ 	
	 Much larger surface for ion exchange in a 2:1 clay ✓ (and therefore greater cation exchange capacity than 1:1 clay) 	
	The QWC mark should be given for a well organised answer which shows accurate use of two of the following terms in context: hydrogen bonding, sheet, layer, replacement (or substitution), cation.	

2815/04 Methods of Analysis and Detection

Qu.		Expected Answers	Mark
1(a)	(i)	mobile phase = (carrier) gas ✓ stationary phase = (non-volatile) liquid ✓	2
	(ii)	time taken for the component to emerge (after sample injected) ✓	1
(b)		peak 1 = pentane ✓ peak 2 = hexane ✓	2
(c)	(i)	(structural feature that) absorbs UV/visible light/energy ✓	1
	(ii)	conjugation/extended delocalised electrons \checkmark decrease gap between energy levels \checkmark hence absorbs at lower energy/longer λ /in visible region \checkmark	3
			9

Qu.	Expected Answers	Mark
2(a)	gaps between energy levels are fixed/quantised ✓ hence produce fixed lines corresponding to movement between the fixed energy levels ✓	2
(b) (i)	(lines converge because) the fixed/quantised energy levels get closer at high energy ✓	1
(ii)	wavelength(λ)/ nm C correctly labelled and lines getting closer together at shorter $\lambda \checkmark$	2
(c)	converts kJ to J $/E = 3.38 \times 10^{-19}$ J \checkmark calculates $f = 5.10 \times 10^{14}$ (s ⁻¹) \checkmark calculates wavelength/ $\lambda = 5.88 \times 10^{-7}$ (m) \checkmark = 588 nm \checkmark (must be to 3 sig figs) (allow one mark for using formulae $E = hf$ and $c = \lambda f$)	4
(d)	calibration graph needed /plot intensity ~ known conc./ [Na ⁺] \checkmark measure intensity of sample \checkmark deduce concentration/[Na ⁺] of sample from the graph \checkmark	3
		12

Qu.		Expected Answers	Mark
3(a)	(i)	¹³ C ✓	1
	(ii)	uses equation $n = 100 (M + 1) \div 1.1M \checkmark$ $n = 10 \checkmark$	2
	(iii)	$M_r = 134$ \checkmark 10 Cs = 120, therefore must be 14 H \checkmark $C_{10}H_{14}$ \checkmark Allow ecf 2 marks for incorrect M _r peak	3
	(iv)	C ₆ H ₅ ⁺ ✓	1
(b)	(i)	there must be 3 CH_3 s to account for the other 9 Hs and each CH_3 must be joined to a C with no Hs \checkmark	1
	(ii)	C ₆ H₅/benzene (ring)/aromatic ✓	1
(c)		$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & \\ \text{arene } \checkmark \text{ substituent } \checkmark \end{array}$	2
			11

Qu.	Expected Answers	Mark	
4(a) (i)	molecular ion/C ₄ H ₈ O ₂ ⁺ /CH ₃ ⁺ /CO ⁺ /C ₃ H ₅ O ₂ ⁺ \checkmark		
(ii)	CH ₃ CH ₂ CH ₂ ⁺ / C ₃ H ₇ ⁺ / CH ₃ CH ₂ ⁺ / C ₂ H ₅ ⁺ /CH ₂ ⁺ /COO ⁺ / COOH ⁺ \checkmark In parts (i) and (ii) penalise lack of charge once	1	
(b)	isomer B \checkmark isomer B would have OH peak in range 3230–3550 (cm ⁻¹) \checkmark	2	
(c)	peaks labelled left to right: $H_c H_b H_d \checkmark \checkmark$ if two are the wrong way round \checkmark	2	
(d)	 Similarities same number of peaks (4) /proton environments ✓ same peak areas 3 : 2 : 2 : 1or same relative heights ✓ One comment about splitting the CH₃CH₂CH₂ chain ✓ Differences The acidic proton,-COOH (11.0–11.7) and the aldehyde proton, -CHO (9.5–10) protons can be distinguished by their chemical shifts/ isomer D would have (singlet) at 9.5–10 ppm but isomer C would have (singlet) at 11.0–11.7 ppm ✓ in isomer C the acidic proton would disappear if run in D₂O ✓ terminal CH₂ in the CH₃CH₂CH₂- would have different chemical shifts ?/C at 2.0–2.9 and D at 3.3–4.3 ppm ✓ 	6	
QWC	SPAG – two sentences in which the meaning is clear in answer to part(d)	1	
		13	

2815/06 Transition Elements

Qu.	Expected Answers				Mark
1 (a)	ion	VO ²⁺ (aq)	V ³⁺ (aq)	VO ₂ ⁺ /	
				VO ₃ ⁻	
	colour	blue	green	yellow	
	oxidation	+4	+3	+5	
l	state				3
(b) (i)	$2V^{3+}$ + Zn $\rightarrow 2V^{2+}$	+ Zn ²⁺ (allow	v multiples bu	It not electrons	
(ii)	lilac/mauve/purple/vi	olet/magenta			1
(c)	Vanadium(V) oxide/v				
	process/producing s	ulphuric acid/o	xidation of SC	D_2 to SO ₃	1
	$2SO_2 + O_2 \rightleftharpoons 2SO_2$	9₃ (allow multi	ples and a fo	orward arrow)	1
					Total: [7]
L					

Qu.	Expected Answers	Mark
2. (a) (i)	Orange to yellow.	1
(ii)	(Named) acid/H⁺	1
(iii)	All oxidation numbers worked out for both sides of equation.	1
	ie Cr=+6, O=-2, H=+1	
(b)	Moles $Cr_2O_7^{2-}$ used = 0.000348 mol	1
	Moles $Fe^{2+} = 6 \times 0.000348 = 0.002088$ mol	1
	$250 \text{ cm}^3 \text{Fe}^{2+} = 10 \text{ x } 0.00209 = 0.02088 \text{ mol}$	1
	Mass Fe = 0.02088 x 55.8 = 1.165104 g	1
	% Fe in sample = 1.165104/1.20 x 100 = 97.1% (3 sf)	1
	Allow consequential marking throughout	
	If candidates use 3 sf from the start then answer is 97.5 $\%$	
	Allow range from 97.0 – 97.5%	
		Total: [8]

Qu.	Expected Answers	Mark
3. (a) (i)	Emf/voltage/potential difference (of a half cell) (not potential)	1
	Combined with a standard hydrogen half cell	1
(ii)	298K/25°C, 10 ⁵ Pa/1 Atm, 1 mol dm ⁻³ (all 3 needed)	1
(b)	Voltmeter, salt bridge and complete circuit (salt bridge must be in contact with a solution)	1
	Platinum electrode in the $\frac{1}{2}Cl_2/Cl^2$ half cell (labelled)	1
	Chlorine gas feed and chloride ions in solution	1
(c) (i)	$BrO_3^- + 6H^+ + 5Br^- \Rightarrow 3Br_2 + 3H_2O$	
(-) (-)	correct species	1
	balanced	1
(ii)	Yellow/orange/brown (solution) (not ppt or solid or gas)	1
(d)	$Cr_2O_7^{2-}$ has a more positive electrode potential than Br_2 but less positive than Cl_2 / Cl_2 is a better oxidising agent than $Cr_2O_7^{2-}$ but Br_2 is poorer	1
	Credit the working out of cell emf – positive (+0.26) for bromide, negative	
	(-0.03) for chloride	
	(accept lower/higher argument)	
		Total: [10

Qu.	Expected Answers	Mark
4. (a) (i)	1s ² 2s ² 2p⁶3s²3p ⁶	1
(ii)	White	1
	No d-electrons (to absorb visible light) (not does not have a partially filled d-sub shell)	1
(b) (i)	Dative covalent/co-ordinate	1
(ii)	partially filled d-orbitals (accept a suitable diagram)	
	(Ligands cause) splitting of d-orbital energy levels/lower & higher energy d-orbitals/implication of a gap/d-electrons promoted	1
	Particular frequency of visible light is absorbed to promote electrons	1
	(need to have idea that only part of visible light is absorbed)	
(c)	Little or no absorbance in violet and blue region (between 400 and 500 nm) rising to maximum absorbance in yellow/orange/red (allow maximum between 600 and 700 nm)	1
		Total: [8]

Qu.	Expected Answers	Mark
5.	Same structural formula/same atoms & order of bonds but a different arrangement in space (not same molecular formula)	1
	Cis and trans/geometric and optical both mentioned	1
	Correct 3-D diagrams of cis and trans isomers	2
	e.g	2
	CL NH3 CN NH3 CL NH3 HJN CL	
	Cis has same ligands adjacent/at 90° . Trans opposite/at 180° (allow this mark from clearly labelled diagrams)	1
	Correct 3-D diagrams of optical isomers.	
	e.g	2
	Casa a a	
	Non-superimposable mirror images	1
	Cis-platin used to treat cancer	1
	Binds to DNA	1
	Prevents replication of cancerous cells/cells dividing	1
	Quality of Written Communication.	
	1 mark to be awarded for a minimum of two grammatically correct sentences with good spelling and punctuation.	
		1
		Total: [12]

Г

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Qu.	Expected Answers	Mark
1(a)(i)	mole fraction x total pressure / contribution of a gas to the total pressure /	1
	pressure that a gas would have alone \checkmark	
1(a)(ii)	48 kPa ✓ (24 kPa ⁻¹ common error)	1
1(a)(iii)	$(24 \text{ kPa}_{(pSO_3)}^{-1} \text{ compon error})$ $K_p = \frac{1}{(pSO_3)} \sqrt{2}$ Do not allow Bquare brackets.	1
	Brackets not required. Brackets can be around formulae.	
1(a)(iv)	Use of $K_p = \frac{33^2}{(29^2)^4 48}$ to generate a correct calculated value of K_p of 0.0149 up to $(9.014986173(57) \checkmark$ Calculated value essential $K_p = 0.015$ (to 2 significant figures) \checkmark Response of 0.015 would automatically score 1st two marks	3
	units from K_p expression in (iii) : kPa ⁻¹ \checkmark	
	ALLOW ECF for alternative response to 1(a)(ii) and (iii) for	
	calculated value and units	
1(b)	K_{p} decreases \checkmark	2
	The equilibrium goes to the left/more reactants/less products because the (forward) reaction is exothermic	
	OR argument based on K_p and numerator/denominator \checkmark Allow reverse argument based on endothermic reverse reaction.	
1(c)	 high pressures: equilibrium moves to (right-hand) side with fewer moles ✓ high pressures are expensive to generate/have safety problems/yield is high enough without increasing pressure ✓ 	2
1(d)(i)		2
	3.27 x $10^{x} \checkmark$ accept 3 up to calculator value of 3.27217	
	3.27 x 10 ⁵ tonnes/327,000 tonnes/300,000 tonnes/3.27 x 10 ¹¹ g \checkmark	
	ie 1st mark is number at start 2nd mark is for correct powers of 10 AND correct units to match	
1(d)(ii)	2PbS + $3O_2 \longrightarrow$ 2PbO + $2SO_2 \checkmark$ ALLOW multiples, eg PbS + $1\frac{1}{2}O_2 \longrightarrow$ PbO + SO_2 Do not allow S as product	1
	Total:	13

Qu.	Expected Answers	Mark				
2(a)(i)	OH ⁻ : When [OH ⁻] increases by 2.5, rate increases by 2.5 \checkmark , so order = 1 (with respect to OH ⁻) \checkmark CIO ₂ :	4				
	When $[CIO_2]$ increases by 3, rate increases by $9/3^2 \checkmark$, so order = 2 (with respect to CIO_2) \checkmark For both OH ⁻ and CIO ₂ , explanation and order to be marked independently					
2(a)(ii)	rate = $k[OH^{-}] [CIO_2]^2 \checkmark$ ALLOW $r = k[OH^{-}] [CIO_2]^2$ ALLOW ECF from (a)(i) rate = is essential	1				
2(a)(iii)	$k = \frac{rate}{[OH^{-}] [CIO_{2}]^{2}} OR \frac{6.00 \times 10^{-4}}{0.0300 \times 0.0100^{2}}$ \checkmark $= 200 \checkmark$ 200 without working scores the first 2 marks ALLOW ECF from an incorrectly rearranged equation units: dm ⁶ mol ⁻² s ⁻¹ ✓ ALLOW ECF from rate equation (a)(ii) but the units must be derived from the rate equation	3				
2(b)(i)	(b)(i) rate equation shows (2 CIO_2 and) 1 OH^- and overall equation shows (2 CIO_2 and) 2 OH^- OR Rate equation has a different number of moles of OH^- from overall equation \checkmark					
2(b)(ii)	$\begin{array}{l} 2\text{CIO}_2(aq) + 2\text{OH}^-(aq) \longrightarrow \text{CIO}_3^-(aq) + \text{CIO}_2^-(aq) + \text{H}_2\text{O} \\ 1 \text{ mark for } \text{CIO}_3^- \checkmark \\ 1 \text{ mark for total equation (conditional on 1st mark)} \checkmark \end{array}$	2				
	Total:	11				

Qu.	Expected Answers	Mark			
3(a)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1			
3(b)	Equilibrium sign essential	1			
3(c)	- 0 3 -				
3(d)	If g dm ⁻³ used instead on mol dm ⁻³ , pH = 1.83–1.84 3 marks <i>Watch out for evidence of correct M_r as there may be another mark</i> buffer minimises pH changes \checkmark DO NOT ALLOW pH is constant HA discussion is OK here C ₆ H ₅ COOH reacts with added alkali / C ₆ H ₅ COOH + OH ⁻ \rightarrow H ₂ O + C ₆ H ₅ COO ⁻ / added alkali reacts with H ⁺ /H ⁺ + OH ⁻ \rightarrow H ₂ O \checkmark \rightarrow C ₆ H ₅ COO ⁻ /C ₆ H ₅ COOH H ⁺ H ⁺ + C ₆ H ₅ COO ⁻ \rightarrow right (counteracts change) \checkmark	1 EXPL			
	$C_{6}H_{5}COO^{-} \text{ reacts with added acid or H}^{+} \checkmark$ $\rightarrow C_{6}H_{5}COOH/C_{6}H_{5}COOH \square H^{+} + C_{6}H_{5}COO^{-} \rightarrow \text{left (counteracts change)} \checkmark$ $[H^{+}] = K_{a} \times \frac{[C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COO^{-}]} \checkmark$ $= 6.30 \times 10^{-5} \times \frac{0.105}{0.125} \text{ OR } 5.292 \times 10^{-5} \checkmark$ $pH = -\log (5.292 \times 10^{-5}) = 4.28 \checkmark \text{ (calculator: 4.276380164)}$ $ALLOW 4.3$	CALC 3			
	OR ALTERNATIVE APPROACH USING H.H. EQUATION: $pK_a = -\log 6.30 \times 10^{-5} = 4.20 \checkmark$				

$pH = pK_a + \log \frac{[C_6H_5COO^-]}{[C_6H_5COOH]} OR pH = -\log K_a + \log \frac{[C_6H_5COO^-]}{[C_6H_5COOH]} \checkmark$ $pH = 4.20 + 0.08 = 4.28 \checkmark$	1
QWC: correct equilibrium shift discussed at least once \checkmark	
Total:	16

Qu.	Expected Answers	Mark				
4(a)(i)	$0.1 \text{ mol dm}^{-3} \checkmark$	1				
4(a)(ii)	final pH (approximately) 11/equivalence point <7 ✓	1				
	ALLOW correct reference to shape of curve:					
	ie No vertical part after 7/starts to curve at 7					
4(a)(iii)	NH₄NO ₃ ✓	1				
	ALLOW N ₂ H ₄ O ₃					
4(a)(iv)	resazurin ✓					
4(a)(v)	sharp rise after addition of 12.5 cm ³ /half the volume of NH ₃ \checkmark final pH higher \checkmark					
	For 'sharp rise', ALLOW neutralisation/equivalence/end point					
4(b)(i)	$Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2 \checkmark$	2				
-()(-)	$Mg + 2H^{+} \longrightarrow Mg^{2+} + H_2 \checkmark$	_				
	IGNORE state symbols					
	DO NOT ALLOW 2NO ₃ ⁻ added to both sides of ionic equation					
4(b)(ii)	With dilute HNO ₃ : H (reduced) from +1 to 0 \checkmark	2				
x * / X /	With conc. HNO ₃ : N (reduced) from +5 to +4 \checkmark					
	Total:	10				

Qu.	Expected Answers	Mark				
5(a)	moles CaSO ₄ .0.5H ₂ O = $\frac{500}{145.2}$ or 3.44 mol \checkmark	2				
	mass $H_2O = 1.5 \times 3.44 \times 18 = 92.88/92.9/93 \text{ g}/92.98 \text{ g}$ with no rounding \checkmark					
	Correct units of g required					
	ALLOW 3.44 x 27 = 92.88 (watch ECF) ALLOW 1 mark for 78.4 g (2nd mark above from 500/172.2 x 1.5 x 18)					
	ALLOW $M(CaSO_4.0.5H_2O) = 145 \text{ g mol}^{-1}$					
5(b)	$M_{\rm r}$ unknown gas = $\frac{28 \times 1.52}{0.60}$ = 71 \checkmark	2				
	0.00					
	molecular formula = $Cl_2 \checkmark$ ALLOW any gas that exists with an M_r of 71 (if you can think of one)					
	If M_r is incorrect then gas chosen must have this value for M_r BUT CI_2 will always automatically score 2nd mark irrespective of what has come before.					
5(c)(i)						
5(c)(ii)	Moles NaOH	5				
	amount of NaOH in titration = $\frac{0.00425 \times 21.35}{1000}$					
	1000 or 9.07 x 10 ⁻⁵ mol \checkmark					
	(calc: 9.07375×10^{-5})					
	Moles citric acid					
	amount of citric acid in 25.0 cm ³ = $\frac{\text{mol NaOH}}{3}$					
	or 3.02 x 10 ⁻⁵ mol ✓ (calc: 3.024583333 x 10 ⁻⁵)					
	Scaling amount of citric acid in 250 cm ³ = $10 \times 3.02 \times 10^{-5}$ or $3.02 \times 10^{-4} \checkmark$					
	Molar mass molar mass of citric acid = $192 \text{ g mol}^{-1} \checkmark$					
	(or <i>M</i> _r of citric acid is 192) Allow ECF from incorrect molecular formula in 5(c)(i)					
	Mass of citric acid in drink mass citric acid in 250 cm ³ of drink = $3.02 \times 10^{-4} \times 192 = 0.0580$ g					
	<i>If calculator value held throughout, mass = 0.0581 g allow ECF throughout</i>					
	Total:	10				

PLAN (Skill P)

16 marks (out of 19 available)

2816/03 Unifying Concepts in Chemistry/ Experimental Skills 2 Practical Examination

G	Gas collection – 8 marks	
G1	Candidate states meaning of the '100-volume' concentration description and proves, by giving a calculation, that its concentration is 8.3 mol dm ⁻³ and gives equation for its decomposition: $2H_2O_2 \rightarrow 2H_2O + O_2$	[1]
G2	Pipettes justified volume of diluted H2O2 into reaction vessel(i)quantity of gas produced must be related to the capacity of the collecting vessel.(ii)specimen calculation of suitable dilution factor (practical detail not needed)(iii)use of pipette or burette to measure diluted H2O2 into reaction vessel	[1]
G3 Alter	Add manganese(IV) oxide (dioxide) as catalyst and mass of MnO ₂ doesn't matter because it is a catalyst or catalysts work by reducing activation energy for the reaction mative named catalyst or a named enzyme are acceptable.	[1]
G4	A diagram of apparatus with flask, connecting tube and <u>correct</u> collection. No mark if the diagram drawn would not work because of a serious error (eg no bung) Downloaded/ photocopied diagrams are acceptable only if the labelling is relevant No G4 if Bunsen burner (or high temperature) used.	[1]
G5	Use of ignition tube or a boat for MnO_2 (or a divided flask) and reason Reason: stops loss of gas before apparatus has been fully assembled or prevents reaction starting (or stops chemicals mixing) before bung is put on.	[1]
G6	Records (final) volume of gas when fizzing ceases/when syringe stops moving Visual precaution to ensure completion of reaction is required	[1]
G7	Repeat whole procedure <i>and</i> work out average gas volume <i>or</i> obtain consistent readings	[1]
G8	Calculation of the concentration of 100 vol H_2O_2 from specimen data	[1]
т	Titration - 7 marks	
T1	Quantitative dilution of aqueous hydrogen peroxide - practical details Requires use of pipette, distilled water and a volumetric/standard flask	[1]
T2	KMnO₄ of specified concentration used in the burette Concentration specified must lie between 0.010 - 0.20 mol dm ⁻³ Making up aqueous KMnO₄ from solid solute is not required.	[1]
Т3	Equation for the reaction $2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$ or $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow 2MnSO_4 + 5O_2 + 8H_2O + K_2SO_4$	[1]

T4	Redox theory: H_2O_2 is the reducing agent or H_2O_2 is oxidised (by KMnO ₄) and justification, using oxidation states or by quoting the ionic half-equation	
T5 <i>This</i>	Dilution factor for H_2O_2 that will give a titre between 15 and 40 cm ³ must be clearly justified by a numerical calculation	[1]
Т6	Pipette hydrogen peroxide into a flask and acidify with excess sulphuric acid	[1]
Τ7	No indicator required (<i>this may be implied</i>) and the final/end-point colour is pink and titrate until two consistent/concordant accurate titres are obtained Accept "titres within 0.05/0.1 cm ³ " (unit needed) as alternative to "consistent"	[1]
S	Sources etc – 4 marks	
S1	Researches hazard of sodium carbonate and states a safety precaution	64 1
Acce	[Solid] sodium carbonate is in pt one routine precaution - safety specs, lab coat, gloves, wash if spilt	[1] rritant
S2	Two secondary sources quoted in the text or as footnotes or at end of plan. Book reference(s) must have chapter or page numbers Internet reference(s) must go beyond the first slash of web address Accept one <u>specific</u> reference to a "Hazcard" (by name or number) Allow one reference to a specific past paper (but not to teaching notes etc)	[1]
S3	QWC : text is legible <i>and</i> spelling, punctuation and grammar are accurate <i>There must be fewer than six errors in legibility, spelling, punctuation or grammar.</i>	[1]
S4	 QWC: information is organised clearly and coherently Is the answer to all three of the following questions positive? Is a word count given and within the limits 450 – 1050 words? Is scientific language used correctly – allow one error Are both methods described logically and without excessive repetition? 	[1]
A2 F	Practical Test (Part B)	
Page	e 3 (Part 1 – Skill I) [10 m	arks]
	sentation of titration data ck the following four bullet points: all must be correct.	[1]
• • •	Correctly labelled table (initial, final and difference - aw) used to record burette data A table grid, showing at least three grid lines, must be drawn. All accurate burette data and titres (including 0.00cm ³ at start) are quoted to 0.05 cm ³ All subtractions are correct (<i>these must be checked</i>)	
Self	-consistency of titres (all three bullets must be correct)	[1]

- •
- Both of the candidate's two **accurate** titres agree within 0.10 cm³. **Units**, cm³ or ml, must also be given (*once in or alongside the table is sufficient*). •

[1]

[1]

• Three titres are shown.

Mean titre correctly calculated

- The mean should normally be calculated using the two accurate titres.
 However the trial may be used if it is closer than one of the accurate readings.
- The mean must be correctly quoted either to 2 d.p or to 0.025/0.075
- Unit must be given, with the answer.

Accuracy – [6 marks]

- Write down the supervisor's mean titre, rounded to 0.05 cm³ and ringed. Check that supervisor's subtractions are correct
- The candidate's own mean should normally be used for assessment of accuracy. Use candidate's mean to nearest 0.05 cm³
- Compare the supervisor's mean titre with the candidate's mean titre. Put " $\delta = _$ " on the script to show the difference between these two mean titres.
- Use the conversion chart below to award the mark out of 6 for accuracy.

Spread penalty

("Spread" relates to the titres used by the candidate to calculate his/her mean) If the titres have a spread of more than 0.30 cm³, deduct 1 mark from accuracy mark. If the titres have a spread of more than 0.70 cm³, deduct 2 marks from accuracy mark. If the titres have a spread of more than 1.20 cm³, deduct 3 (max) from accuracy mark.

Safety [1 mark]

Any **two** precautions stated, from the six listed below

- wash off with [plenty of] water after use (or if spilt)
- dilute before use
- keep off the skin [of the scalp]
- wear an apron *or* overall *or* lab coat
- wear [plastic/latex] gloves
- wear eye protection/safety spectacles (but not "keep away from eyes") [1]

Pages 4 + 5 (Part 2- Skill A)[9 marks](a) M_r of hydrated sodium thiosulphate = 248.2 (or 248)
No M_r attempted = no marks at all in (a)[1]No of moles used = $\frac{15.5}{248.2} \times \frac{\text{mean titre}}{1000}$ [1]

This is a **method** mark for correct use of 15.5, an M_r and the mean titre/1000

(b)(i) Correct balancing: $I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2Nal$

2810	6/03 Mark	Scheme	une 2009
(i i	i) No of moles of $I_2 = 0.5 x$ answer (a)		[1]
(c)(i) $2l^- \rightarrow l_2 + 2e^-$		[1]
(ii	i) $2H^+ + H_2O_2 + 2I^- \rightarrow 2H_2O + I_2$ (<i>ie</i> 1 mol H <i>or</i> correct use of electrons to demonstra <i>or</i> correct "molecular" equation: H_2SO_4 +	te 1:1 mole ratio	[1]
(d)	No of moles H ₂ O ₂ = answer (b)(ii)		[1]
(e)	Conc ⁿ of undiluted H_2O_2 = answer (d) x ² This is a method mark, for multiplying an		[1]
	Conc ⁿ of H_2O_2 , correctly calculated from <i>Award this mark for obtaining correct fine</i>		[1]
Pag	e 6 (Part 3 – Skill I)		[6 marks]
• • •	dings: presentation - 1 mark (All four but Table grid drawn (minimum of one line of Initial and final temperatures clearly labe All four temperatures recorded to 0.5°C Readings recorded as two pairs within of reading titles must be repeated/duplicated	rawn horizontally and one line vertically) lled (<i>i</i> e one decimal place shown, 0.0 or 0.5)	
Calc • •	culations – 1 mark (All three bullets must Unit of temperature given for each of the Correct subtractions to give each tempe Mean temperature rise correctly calculat	e four readings rature rise (both written as 0.0 or 0.5)	[1]
Writ	uracy – 4 marks (3 + 1): e supervisor's mean temp rise (to nearest the candidate's mean temperature rise candidate's mean temperature rise is w If candidate's mean temperature rise is w If candidate's mean temperature rise is w	alculated to nearest 0.1°C. within 1.0°C of supervisor's \rightarrow 3 marks within 1.5°C of supervisor's \rightarrow 2 marks	[4]
•	If both candidate's temperature rises are	e within 1.0°C of each other \rightarrow 1 mark	
Pag	e 7 (Part 4 – Skill A)		[5 marks]
(a)	Heat produced = 25 x 4.2 x mean temp	ise	[1]
	Method mark awarded for correct figure	s (or check answer if no working shown	
(b)	$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$		[1]
(c)(i) <i>n</i> (H ₂ O ₂) used = ^{cV} / ₁₀₀₀ = concentration of <i>This is a method mark for using appropriate</i>		[1]
(ii)	Enthalpy change calculation: working sh ΔH (kJ mol ⁻¹) = ^{heat produced} / _{1000 × no of moles of I} This is a method mark, but the mark is f	1202	[1]
<u>Neg</u>	ative sign given for ∆H and answer <u>correc</u>	tly calculated to 2 or 3 sig fig	[1]

June 2009

Answer should be approximately $-90 \text{ kJ mol}^{-1} = \frac{4.2 \times \text{temp rise}}{(1+2)^2}$ Pages 8+9: Part 5 (Skill E – Evaluating) [14 marks max (out of 17)] (a) 7 marks (but only 6 on the question paper. The extra mark is available in (ii)) (i) Excess KI ensures that <u>all the H_2O_2 reacts</u> [1] Using excess KI speeds up the reaction [with hydrogen peroxide] or it prevents precipitation of iodine [1] (ii) $n(H_2O_2)$ used = ${}^{10}/_{1000} \times 0.88 = 0.0088$ mol [1] n(KI) used = $\frac{80}{1000} \times 0.5 = 0.040$ mol [1] Use of mole ratio: H₂O₂ reacts with 0.0176 mol of KI (or 35.2 cm³ of KI) and this is less than 0.04 mol (or 80 cm³) of KI, so excess KI was used [1] If wrong mole ratio (or no mole ratio) is used, maximum 2 marks are available (iii) Titration was repeated [1] Reference to any factor related to accuracy negates this mark It is reliable since the titres are consistent (or vice versa) [1] Mark this according to whether student's titres were within 0.10 cm^3 (b) Use a lid/cover for the cup [1] Using thicker plastic/ use two cups/ put lagging around cup/ use Dewar flask [1] **8 marks maximum** (but 6 on guestion paper) (c) Mark the best three strands. C1 The 100 volume solution would react more rapidly/vigorously [1] C2 There would be more spitting /frothing /spray out of the cup [1] D1 The temperature rise would be greater **or** reaction would be more exothermic [1] D2 The percentage error in measuring the temperature rise would be reduced [1] D3 Justification of reduced % error (= greater accuracy) using specimen calculation [1] E1 Heat losses would be [much] greater [1] E2 The temperature rise reached during reaction would be [much] greater or reaction would be more exothermic or mixture would get hotter [1] Award of E2 is conditional on award of E1 E3 Rate of cooling depends on temp difference between solution and surroundings [1] F1 The heat produced [in the reaction] would be ten times as great [1] F1 must refer to the heat produced, not the temperature rise F2 The solution would boil or some of the solution/water would evaporate [1]

Grade Thresholds

Advanced GCE Chemistry (3882/7882) June 2009 Examination Series

Unit Threshold Marks

U	nit	Maximum Mark	а	b	С	d	е	u
2811	Raw	60	49	44	39	34	29	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	44	38	32	27	22	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	91	80	70	60	50	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	70	61	52	44	36	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	73	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	72	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	73	66	59	52	46	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	75	68	61	54	48	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	91	80	69	59	49	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	C	D	E	U
3882	300	240	210	180	150	120	0
7882	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3882	32.9	57.4	75.3	88.9	97.9	100	2936
7882	31.7	56.6	74.8	87.6	96.3	100	11875

14811 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

