Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme booklet is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with these mark schemes.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)
Advanced Subsidiary GCE Chemistry (3882)
MARK SCHEME FOR THE UNITS
Unit/Content Page
2811 Foundation Chemistry 1
2812 Chains and Rings 9
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper 19
2813/03 How Far? How Fast? /Experimental Skills 1 Practical Examination 25
2814 Chains, Rings and Spectroscopy 30
2815/01 Trends and Patterns 38
2815/02 Biochemistry 42
2815/03 Environmental Chemistry 46
2815/04 Methods of Analysis and Detection 51
2815/06 Transition Elements 55
2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper 60
2816/03 Unifying Concepts in Chemistry/ Experimental Skills 2 Practical Examination 66
Grade Thresholds 71

2811 Foundation Chemistry

Question			Expected Answers	Marks	Additional Guidance
1	a	i	Atoms or isotopes of same element/same atomic number/number of protons with different numbers of neutrons/different masses \checkmark	1	Not elements with a different no of neutrons
		ii	$\begin{aligned} & { }^{33} \mathrm{~S}: 16 \mathrm{p} ; 17 \mathrm{n} ; 16 \mathrm{e} \checkmark \\ & { }^{34} \mathrm{~S}: 16 \mathrm{p} ; 18 \mathrm{n} ; 16 \mathrm{e} \checkmark \end{aligned}$	2	Mark by row
	b	i	$M_{\mathrm{r}}=$ weighted mean mass of an atom/the isotopes of an element compared with carbon-12 \checkmark 1/12th (of mass) of carbon-12/ on a scale where carbon-12 is $12 \checkmark$ (but not 12 g)	3	Allow 'average mass of atom' or 'mean mass of atom' alternative allowable definitions: mass of one mole of atoms compared to $1 / 12$ th \checkmark (the mass of) one mole/12 g of carbon-12 \checkmark mass of one mole of atoms $1 / 12^{\text {th }} \checkmark$ the mass of one mole/12 g of carbon-12 \checkmark
		ii	$\begin{aligned} & A_{r}=32 \times \frac{94.93}{100}+33 \times \frac{0.76}{100}+34 \times \frac{4.29}{100}+36 \times \frac{0.02}{100} \\ & \text { OR } \\ & 32.0942 \checkmark \\ & =32.09 \checkmark \text { to four significant figures } \end{aligned}$	2	Allow one mark for $A_{\mathrm{r}}=32.0942$ with no working out Allow two marks for $A_{\mathrm{r}}=32.09$ with no working out If a candidate uses incorrect values in 1st line, then the 2nd mark can still be awarded if the calculated value is from 32.01 to 35.99 expressed to two decimal places. This allows for any \%'s the wrong way round in 1st line.
		iii	mass spectrometer \checkmark	1	Allow 'mass spectrometry' OR 'mass spectrum', Allow 'mass spectroscope' OR mass spectroscopy
	C	i	(2) water(s) of crystallisation/ 2 mol of $\mathrm{H}_{2} \mathrm{O}$ for $1 \mathrm{~mol} \mathrm{CaSO}_{4}$	1	Allow the salt is hydrated, crystals contain water.
		ii	$172.2\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark}$	1	Allow 172.19
		iii	(+)6 ${ }^{\text {d }}$	1	Allow lack of + sign but ' -6 ' is wrong
		iv	$\mathrm{SO}_{4}{ }^{2-} \checkmark$	1	Allow ' SO_{4} ', 2- charge Allow '-2'
			Total	13	

Question			Expected Answers		Marks	Additional Guidance
2	a		(electrostatic) attraction between oppositely charged ions/ specific example given \checkmark		1	Allow 'oppositely charged atoms'
	b	i	cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots for example chosen \checkmark Correct charges on both ions \checkmark		2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. Circles not required Ignore inner shell electrons Allow: $2\left[\mathrm{Cl}^{-}\right] 2\left[\mathrm{Cl}^{-}\left[\mathrm{Cl}^{-}\right]_{2}\right.$ Do not allow: $\left[\mathrm{Cl}_{2}\right]^{-}\left[\mathrm{Cl}_{2}{ }^{-}[2 \mathrm{CI}]^{-}\right.$ Accept correct answers without brackets.
		ii	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$		1	Allow subscripts
	c	i	attraction between positive ions \checkmark and free/delocalised electrons		2	Allow 'sea of electrons'; Do not allow just 'electrons' 1st mark is for positive ions OR delocalised/free electrons anywhere 2nd mark is for 'attraction between the correct charged particles Allow labelled diagram showing a scattering of labelled electrons between positive ions for 1st mark
		ii	Al^{3+} compared to Mg^{2+} the aluminium ion has a higher charge (density)/there are more delocalised/free/outer electrons (per atom)		1	Allow magnesium ion has a smaller charge (density)/there are less delocalised electrons (per atom) Allow Al has 3 delocalised electrons, Mg has 2 delocalised electrons. ie Do not allow just 'Al has more electrons. (it must be clear that these are the outer shell electrons)

d	i	Co has fewer protons (ORA)/ Periodic Table is in order of number of protons	1	Allow 'Co has an atomic number (1) less than Ni'
	ii	(On average) isotopes of Co have more neutrons than $\mathrm{Ni} \checkmark$	1	'Isotopes' essential Allow 'In Co, there is a higher proportion of heavier isotopes/ isotopes with a higher mass number' Do not allow just 'higher mass number'
e	i	$\text { moles } \mathrm{AI}=\frac{2.025}{27.0}=0.075$	1	
	ii	moles $\mathrm{H}_{2}=1.5 \times 0.075=0.1125 \mathrm{~mol} \checkmark$ volume $\mathrm{H}_{2}=0.1125 \times 24=2.7 \mathrm{dm}^{3} \checkmark$	2	ECF, $1.5 \times$ answer to (i)
	iii	$\begin{aligned} & \text { moles } \mathrm{HCl}=3 \times 0.075=0.225 \mathrm{~mol} \\ & \text { volume } \mathrm{HCl}=\frac{1000 \times 0.225}{1.80}=125 \mathrm{~cm}^{3} \end{aligned}$	2	ECF, $3 x$ answer to (i) or $2 x$ no of moles in (ii) ECF, $\frac{1000 \times \text { moles } \mathrm{HCl}}{1.80}$
		Total	14	

Question			Expected Answers	$\frac{\text { Marks }}{4}$	Additional guidance Watch order of letters in the boxes. See the pattern on the left
3	a		solid A: $\mathrm{BaO} \checkmark$ solution B: $\quad \mathrm{BaCl}_{2} \checkmark$ precipitate C: $\mathrm{BaCO}_{3} \checkmark$ precipitate D: $\mathrm{AgCl} \checkmark$		
	b		$\mathrm{Ba}: \mathrm{C}: \mathrm{O}=\frac{60.89}{137}: \frac{10.67}{12.0}: \frac{28.44}{16.0}$ or $1: 2: 4 \checkmark$ empirical formula $=\mathrm{BaC}_{2} \mathrm{O}_{4}$ (or, if you see it, allow $\mathrm{Ba}\left(\mathrm{CO}_{2}\right)_{2}$!) \checkmark	2	If a candidate uses atomic numbers, the ratio is still 1:2:4. The 2 nd mark can still be awarded by error carried forward. Although unlikely, a correct answer of $\mathrm{BaC}_{2} \mathrm{O}_{4}$ with no working should be awarded both marks. If candidate shows inverse for ratios: $\text { ie } B a: C: O=\frac{137}{60.89}: \frac{12.0}{10.67}: \frac{16.0}{28.44}$ then the candidate can be awarded the 2nd mark only for $\mathrm{Ba}_{4} \mathrm{C}_{2} \mathrm{O}$ by error carried forward.
	c	i	$\begin{aligned} & \mathrm{Ba}(\mathrm{~g}) \longrightarrow \mathrm{Ba}^{+}(\mathrm{g})+\mathrm{e}^{-} \\ & \text {equation } \checkmark \\ & \text { state symbols as }(\mathrm{g}) \checkmark \end{aligned}$	2	ignore absence of ' ${ }^{\text {- }}$ sign' on e^{-} ignore state symbol with e^{-} Allow $\mathrm{Ba}(\mathrm{g})-\mathrm{e}^{-} \longrightarrow \mathrm{Ba}^{+}(\mathrm{g})$
		ii	(1st ionisation energy) decreases (down the group) atomic radii increases/ there are more shells there is more shielding/ more screening \checkmark Increased shielding and distance outweigh the increased nuclear charge/	4	'down the group' not required 'more' is essential allow 'more electron repulsion from inner shells' Allow 'nuclear pull' not held less tightly. ignore any reference to 'effective nuclear charge'

		the nuclear attraction decreases \checkmark			
	\mathbf{d}	\mathbf{i}	Group 2 (elements) react by losing electrons \checkmark Group 7 (elements) react by gaining electrons \checkmark (As atoms get larger/more shielding), it is easier to lose electrons AND more difficult to gain electrons \checkmark	3	Allow Group 2 form + ions Allow Group 7 form - ions Both comparisons needed for third mark
	$\mathbf{i i}$	chlorine has displaced or oxidised iodine/iodine forms \checkmark $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$ OR Cl $2+2 \mathrm{KI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{KCI} \checkmark$	2	I_{2} as a product in an attempted equation scores 1st mark Ignore state symbols Ignore any reference to iodide	

	stion	Expected Answers	Marks	Additional Guidance
4		Na has fewer protons/less nuclear charge \checkmark electrons added to the same shell $O R$ screening/shielding remains the same or similar \checkmark Na has less attraction/ less pull	3	Allow Mg has more protons/more nuclear charge Allow 'across a period, nuclear charge increases/protons increase' A comparison must be included Allow a comparison in terms of 'effective nuclear charge' $O R$ 'shielded nuclear charge' ignore reference to distance Ignore comparison of atomic number Ignore comparison of nuclear size ' Na charge is less' OR ' Mg charge is greater' is not sufficient Allow Mg has more attraction/more pull Allow 'across a period, more attraction/more pull' A comparison must be included
		iodine exists as small molecules $/ I_{2} /$ simple molecular structure van der Waals' forces/intermolecular forces (must be broken) \checkmark diamond exists as a giant structure \checkmark covalent bonds (must be broken) \checkmark Strength of forces linked to boiling point: van der Waals' forces are weak/ small amount of energy to break van der Waals' forces/ covalent bonds are strong/ large amount of energy to break covalent	5	Allow induced dipole/instantaneous dipoles interactions 'giant covalent structure' scores both 'diamond marks Allow lattice for giant structure Mark this anywhere.

\left\lvert\,	QWC - At least two sentences that show legible text with
accurate spelling, punctuation and grammar so that the	
meaning is clear.	\quad
:---	
QWC mark must be indicated with a tick or cross	
through the Quality of Written Communication prompt	
at the bottom of page 9.	
Then scroll up to start of question, counting ticks.	
Watch out that you have counted ticks on BOTH	
pages 8 and 9	
Mark QWC anywhere within Q4	\right.

2812 Chains and Rings

(ii)

Question			Expected Answers	Marks	Additional Guidance
2	a	(i)	same molecular formula \checkmark different structure/structural formula/ displayed formula \checkmark	2	allow same molecular formula, different arrangement of atoms same molecular formula different arrangement in space - scores 1 mark same formula, different structure - scores 1 mark not allow same atoms different structure etc
		(ii)	 (1,2-dichloro-) (2,3-dichloro-) (3,3-dichloro-)	3	allow correct structural formulae such as $\mathrm{CH}_{3} \mathrm{C}(\mathrm{Cl}) \mathrm{CHCl}, \mathrm{CH}_{2} \mathrm{ClC}(\mathrm{Cl}) \mathrm{CH}_{2}, \mathrm{CHCl}_{2} \mathrm{CHCH}_{2}$ allow correct skeletal formulae
		(iii)	1,1-dichloropropene \checkmark	1	allow 1,1-dichloroprop-1-ene do not allow 1,1-chloroprop(-1-)ene/1-dichloroprop(- 1-)ene/dichloroprop(-1-)ene ignore commas/hypens allow 11dichloroprop1ene
		(iv)	 or	1	allow or do not allow names
	b		because they have ($\mathrm{C}=\mathrm{C}$) double bond which restricts rotation \checkmark and each C in the $\mathrm{C}=\mathrm{C}$ is bonded to (two) different groups or atoms \checkmark	2	
				9	

Question			Expected Answers	Marks	Additional Guidance
3	a	(i)	F \checkmark	1	no other acceptable answer
		(ii)	van der Waals \checkmark	1	allow vdW/vdw ignore spelling of van der Waals not allow intermolecular forces/dipole-dipole/Hbonds
		(iii)	2,2,3-trimethylbutane/	1	allow either name or any unambiguous formula $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}$
	b	(i)	(particle/atom/molecule that) contains an unpaired/single electron	1	allow contains an unpaired electron/has a single unpaired electron do not allow a free electron do not allow an ion with an unpaired/single electron
		(ii)	$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{\bullet} \quad \checkmark$	1	allow $\mathrm{Cl}_{2} \longrightarrow \mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet} 11 / 2 \mathrm{Cl}_{2} \longrightarrow \mathrm{Cl}^{\bullet}$
		(iii)	homolytic (fission)/ \checkmark	1	allow homolysis/ homolytic cleavage
		(iv)	$\begin{aligned} & \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{Cl}^{\bullet} \longrightarrow{ }^{\bullet} \mathrm{C}_{7} \mathrm{H}_{15}+\mathrm{HCl} \checkmark \\ & { }^{\circ} \mathrm{C}_{7} \mathrm{H}_{15}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}+\mathrm{Cl}^{\bullet} \checkmark \end{aligned}$	2	allow $\mathrm{C}_{7} \mathrm{H}_{15}{ }^{-}$ no other alternatives
		(v)	${ }^{\bullet} \mathrm{C}_{7} \mathrm{H}_{15}+{ }^{\bullet} \mathrm{C}_{7} \mathrm{H}_{15} \longrightarrow \mathrm{C}_{14} \mathrm{H}_{30}$ or $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{C}_{7} \mathrm{H}_{15} \checkmark$	1	allow $2^{\circ} \mathrm{C}_{7} \mathrm{H}_{15} \longrightarrow \mathrm{C}_{14} \mathrm{H}_{30}$ or $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{C}_{7} \mathrm{H}_{15} \checkmark$

Mark Scheme

	c	(i)	compound E has 6 isomers \checkmark	1	no other acceptable answer
		(ii)	compound G has 3 isomers \checkmark	1	no other acceptable answer
				$\mathbf{1 1}$	

Question			Expected Answers	Marks	Additional Guidance
4	a	(i)	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$	1	no other acceptable answer
		(ii)	secondary \checkmark	1	allow $2^{\text {nd }}$ ary/circle or underline "secondary" on the paper $/ 2^{\circ}$
	b	(i)	 and	2	allow and
		(ii)	ester \checkmark	1	no other acceptable answer
	C	(i)	reagent $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ \checkmark conditions $\mathrm{H}^{+} \&$ heat \checkmark	2	allow dichromate/ sodium or potassium dichromate/ $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ allow KMnO_{4} and then corresponding colour change in (ii) conditions mark dependent on a reasonable attempt at the reagent acidified/ sulfuric acid/sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ warm/reflux/heat under reflux/distil
		(ii)	orange to green \checkmark	1	allow orange to black/dark green do not allow green allow purple to green/brown/pink/colourless if KMnO_{4} used in (i) but do not allow orange to green. mark as "x con"

	(iii)		1	allow
	(iv)	lack of peak in range 3230-3550 (cm ${ }^{-1}$)	1	allow lack of broad peak at about $3000\left(\mathrm{~cm}^{-1}\right)$ do not allow range quoted as $2500-3300\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$)/approx $3000\left(\mathrm{~cm}^{-1}\right)$ ignore any reference to $\mathrm{C}-\mathrm{O} / 1000-1300\left(\mathrm{~cm}^{-1}\right)$ ignore any reference to discussion of $\mathrm{C}=\mathrm{O}$ peak
			10	

Question			Expected Answers	Marks	Additional Guidance
5	a		Crude oil can be separated by fractional distillation because the compounds/fractions have different boiling points \checkmark (AW) fractionation produces insufficient quantities of the 'petrol' fraction \checkmark (AW) balanced equation to illustrate cracking \checkmark alkenes which are used to produce alcohols or polymers \checkmark (AW) balanced equation to illustrate isomerisation \checkmark balanced equation to illustrate reforming to obtain cycloalkanes (and arenes) \checkmark and $\mathrm{H}_{2} \checkmark$ which promote more efficient combustion/ better fuels/increases octane number/reduces knocking/ reduces pre-ignition \checkmark * (AW) (*credited once)	8	allow different volatilities/ condenses at different temperatures not allow more demand allow alternate wording (AW) throughout 4 marks for equations - if equations not linked to process, allow max of 3 out of 4 do not allow just "more usefup" can award two marks for balanced equation for reforming if both a cyclic compound and H_{2} shown. 1 mark if H_{2} absent but cyclic compound structure shown not allow word equations
			- ethanol is renewable \checkmark - obtained from plants/ named plant - equation for fermentation $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ $\rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$ - oil-based fuels are finite/take millions of years to form	4	not allow obtained from sugar not allow oil is non-renewable allow an alternative argument based on carbon emission - ethanol is carbon neutral - obtained from plants which photosynthesise \checkmark - oil based fuels are net carbon emitters
			$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ not allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

	(ii)	propan-1-ol \checkmark and propan-2-ol \checkmark	2	allow any unambiguous formula not allow $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ or propanol do not allow bond linkage must be correct. The bond must clearly go to the O do not allow if Hs are not shown
			20	

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Question			Expected Answers	Marks	Additional Guidance
1	(a)	(i)	respiration (1)	1	Ignore aerobic/anaerobic
		(ii)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(1)$	1	ignore state symbols allow $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ if specified aerobic/anaerobic in (i), must match in (ii)
	(b)	(i)	(enthalpy change) when 1 mole of a compound/substance/product/molecules is formed (1) from its (constituent) elements (1) in their standard states/ under standard conditions (1)	3	reject 1 mole of element ignore required/produced if standard conditions are quoted, they must be correct do not award this mark if standard AND gaseous
		(ii)	$\begin{aligned} & \text { cycle }(1) \\ & x-1367=2(-394)+3(-286)(1) \\ & x=-279\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	3	
		(iii)	diagram to show $2 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ at lower enthalpy than $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $3 \mathrm{O}_{2}$ (1) E_{a} marked correctly (1) ΔH marked correctly (1)	3	reject products ignore state symbols for E_{a} and ΔH allow lines or double headed arrows single headed arrows must point in the correct direction
	(c)	(i)	(when pressure is increased) more ethene is converted/ equilibrium moves to RHS (1) because there are more (gas) moles on LHS/ ora (1)	2	ignore rate arguments reject volumes

| | (ii) | when temperature is increased less ethene is converted/
 equilibrium moves to LHS(1)
 (this means that the forward reaction is exothermic/produces
 heat/ increases the temperature) the sign of ΔH is negative (1) | $2^{\text {nd }}$ mark dependent on $1^{\text {st }}$ mark
 ecf possible | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | (iii) | sends equilibrium to RHS (1) | $\mathbf{2}$ | allow makes reaction goes to completion
 allow increase yield/maximum conversion |
| | | Total | $\mathbf{1 6}$ | |

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	$\text { energy }=m c \Delta T(1)$ $=400 \times 4.18 \times 13.6=22.7(\mathrm{~kJ})(1)$	2	need not be actually stated - can be awarded if numbers used correctly if $m=200$, allow first mark ignore extra sig figs
		(ii)	number of moles $=0.4(1)$ ΔH neut $=56.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ sign ie negative (1)	3	ecf possible from (i) and number of moles in (ii) watch - if 1 used in (i) gives 56.8 stand alone mark
	(b)		$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ (1)	1	
	(c)		result same for experiments 1 and 2 because the ionic equation/reaction is the same/ both acids are completely dissociated (1) the result for experiment 3 (is less because) ethanoic acid is weak/ not completely dissociated (1) energy is needed to break the bond (and release the H^{+}) (1)	3	both acids strong is insufficient idea of another ΔH as part of overall reaction must be included
			Total	9	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		$\left.\begin{array}{l} \text { bonds broken }=2(\mathrm{C}=\mathrm{S})+3(\mathrm{Cl}-\mathrm{Cl}) \\ =1086+3(\mathrm{Cl}-\mathrm{Cl})(1) \\ \text { bonds made }=4(\mathrm{C}-\mathrm{Cl})+2(\mathrm{~S}-\mathrm{Cl})+(\mathrm{S}-\mathrm{S}) \\ =2084(1) \\ 1086+3(\mathrm{Cl}-\mathrm{Cl})-2084=-272 \\ \mathrm{Cl}-\mathrm{Cl}=242(\mathrm{~kJ} \mathrm{~mol} \\ \\ =1 \end{array}\right)(1)$	3	ecf possible on values of bonds broken and bonds made
	(b)		$\mathrm{C}(\mathrm{~s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})+11 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CFCl}_{3}(\mathrm{~g})$ formulae and balancing (1) state symbols (1)	2	Allow state symbols for species even if formula is not correct/reverse equation
	(c)	(i)	chlorine BUT NO MARK because the $\mathrm{C}-\mathrm{Cl}$ bond is weaker (than the $\mathrm{C}-\mathrm{F}$ bond) (1)	1	accept the bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ is less than that of $\mathrm{C}-\mathrm{F} /$ it is easier to break the $\mathrm{C}-\mathrm{Cl}$ bond (than the $\mathrm{C}-$ F bond reject easier to form Cl free radical some comparison has to be made
		(ii)	homogeneous (1) because the catalyst and the reagents are in the same phase/ same physical state (1)	2	can be scored even if homogeneous not given
			Total	8	

Question		Expected Answers	Marks	Additional Guidance
$\mathbf{4}$	diagram labelled with axes and E_{a} marked (1) curve shape correct - starting at origin and approaching x axis asymptotically (1) curve at higher temperature starting at origin and to RHS and with lower peak than the one at lower temperature (1) statement that, in order to react, the collision energy/ energy of molecules must (be equal to) or exceed $E_{a}(1)$	y axis can be number/ fraction/ percentage of molecules/particles x axis can be energy/ enthalpy		

Question			Expected Answers	Marks	Additional Guidance
5	a		a strong acid is totally dissociated/ ionised (1) $\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}(1)$	2	ignore state symbols ignore equilibrium arrow
	B	(i)	$\mathrm{MgCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1)	1	
		(ii)	fizzing/solid disappears/solid dissolve/ gas evolved/ gas given off (1)	1	
		(iii)	$\begin{aligned} & \mathrm{MgCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{Ol} \\ & \mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}(1) \end{aligned}$	1	Ignore state symbols reject spectator ions
	C	(i)	ammonia is a base/ is a proton acceptor	1	allow is an alkali reject has a pair of electrons
		(ii)	$\begin{aligned} & M_{\mathrm{r}} \text { of } \mathrm{NH}_{4} \mathrm{NO}_{3}=80(1) \\ & \% \mathrm{~N}=35(1) \end{aligned}$	2	ecf possible from M_{r}
			Total	8	

2813/03 How Far? How Fast? /Experimental Skills 1 Practical ExaminationPlan: 16 marks maximum (out of 19 marks available)
A Gravimetric method-7 marks
A1 Crucible weighed empty then crucible weighed with washing soda [1]
Crucible or evaporating dish/basin (but not a test tube) must be used Ignore any reference to use of a lid when awarding A1
A2 Heat gently at first and reason (to avoid spitting/frothing) or heat gently at first then heat more strongly [1]
A3 Allow crucible (and contents) to cool with lid on or allow to cool in a desiccator (or a vacuum container) or cool before weighing so that convection currents don't affect balance reading [1]
A4 (After cooling) weigh the crucible with the anhydrous sodium carbonate in it [1]
Candidate must use the word "anhydrous" in a correct context somewhere
A5 Re-heat, cool and re-weigh until mass stays same for complete reaction/dehydration Note - Simple description of and reason for the procedure is required. [1]
A6 Equation for thermal decomposition of washing soda crystals [1]
$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+x \mathrm{H}_{2} \mathrm{O}$ (Allow $x=10$)
A7 Shows clearly and correctly how \boldsymbol{x} is calculated from gravimetric data and the value for M_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3}(=106)$ must be stated/shown [1]
The calculation must start from the three weighings that would be recorded
B Gas collection method - $\mathbf{8}$ marks
B1 Reacts weighed/stated mass of washing soda with excess of acid [1]
B2 Equation for reaction of sodium carbonate with the acid specified [1]
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
or $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+(x+1) \mathrm{H}_{2} \mathrm{O}$
B3 Calculation of suitable mass of washing soda for the gas collection procedure [1] Candidate must link the calculation explicitly to the capacity of collector.
B4 Specimen calculation of [minimum] quantity of acid to use in procedure [1]
B5 Draws a neat diagram of correct apparatus (with some evidence of use of a ruler, if hand drawn), including a suitable method of collection and measurement for the gas [1] Downloaded/ photocopied diagrams are only allowed if the labelling is relevant

B6 Records (final) volume of gas once fizzing has stopped/when syringe stops moving Visual observation is required to indicate the completion of reaction

B7+B8 Two accuracy precautions (any two from the three below)

- Aware of problem of solubility of CO_{2} in water and gives a remedy

Accept use of gas syringe to avoid gas being in contact with [as much] water Accept collection over warm/hot water

- Use of "inner" ignition tube/ partitioned flask and suitable reason

Two points are needed - both the practical precaution and a reason for it

- Repeat entire experiment until results are consistent/take mean of results

B8 may be awarded in expt A (provided the whole procedure is repeated)

S Sources etc - 4 marks
S1 Researches hazard of sodium carbonate and states a safety precaution
[Solid] sodium carbonate is irritant
Accept one routine precaution - safety specs, lab coat, gloves, wash if spilt
S2 Two secondary sources quoted in the text or as footnotes or at end of plan.
Book reference(s) must have chapter or page numbers Internet reference(s) must go beyond the first slash of web address
Accept one specific reference to a "Hazcard" (by name or number) Allow one reference to a specific past paper (but not to teaching notes etc)

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Award S3 if there are fewer than six errors in legibility, spelling, punctuation or grammar.
S4 QWC: information is organised clearly and coherently
Is the answer to all three of the following questions positive?

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly - allow one error
- Are both methods described logically and without excessive repetition?

Practical Test (B)

Page 3: Part 1

Recording and calculation [5 marks]

All six mass readings shown in table form as two pairs of three
Table must be drawn (minimum two vertical and two horizontal grid lines)
All mass readings shown to 2 d.p. and unit given (somewhere)
Allow readings to 3 d.p., provided that this done consistently
Correct subtractions to obtain both initial masses of $\mathrm{MCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Mean mass of $\mathrm{MCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ used, correctly calculated
Mean mass of anhydrous MCl_{2} residue correctly calculated and mean mass of water lost (= "W") correctly calculated

Accuracy [6 marks: $4+2$]
For the supervisor, record the mean mass loss to the nearest 0.005 g ,
For the candidate, check the mean mass loss " W ", and note it to nearest 0.005 g
Calculate the difference between supervisor's and candidate's mean mass losses.

- If candidate's mass loss is within $\mathbf{0 . 0 2 0} \mathbf{g}$ of supervisor's, award $\mathbf{4}$ marks
- If candidate's mass loss is within 0.030 g of supervisor's, award $\mathbf{3}$ marks
- If candidate's mass loss is within 0.040 g of supervisor's, award $\mathbf{2}$ marks
- If candidate's mass loss is within $\mathbf{0 . 0 6 0} \mathbf{g}$ of supervisor's, award $\mathbf{1}$ mark

Self consistency of candidate's results.
Check the calculation of mass loss (due to water) in both experiments

- If mass loss for expt 1 is within $\mathbf{0 . 0 2 (0)} \mathbf{g}$ of mass loss in expt 2 , award $\mathbf{2}$ marks
- If mass loss for expt 1 is within $\mathbf{0 . 0 3 (0)} \mathbf{g}$ of mass loss in expt 2 , award $\mathbf{1}$ mark

Safety [1 mark]

Adding water (or diluting) reduces the level of hazard
Pages 4+5: Part 2
Mark ecf wherever possible from one part of an answer to the next (but not within a part). Answers, when required for a mark, should be quoted to $\mathbf{3}$ significant figures
(a) No of moles = mean mass of water $/ 18$

This is a method mark for dividing the appropriate mean mass from page 2 by 18
No of moles of water, correctly calculated and expressed to 3 sig fig
(b) $\mathrm{MCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{MCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

If formulas and balancing are correct
State symbols correct (mark is conditional on all three formulae being correct)
(c) Answer (a) is multiplied by 0.5 [1]
There is no ecf if the mole ratio shown in the equation is $1: 1$
(d) $M_{\mathrm{r}}=$ mass of anhydrous salt $/$ no of moles [1]
Candidate earns this mark by quoting the correct figures.M_{r} correctly calculated (to 3 sf) from candidate's own data[1]
(e) $\quad A_{r}=$ answer (d) -71 [1]
(f) $\quad \mathbf{M}$ must be in Group 2 [1]
M is barium because its A_{r} is the closest to 137 (or ecf to the answer to "e")[1]
No ecf is allowed for a metal incapable of showing oxidation state +2
Pages 6+7: Part 3
(a) (i) white precipitate/solid/suspension [1]
(ii) silver chloride (named) [1]
(iii) $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$ [1]
(b) (i) white precipitate/solid/suspension [1]
(ii) aq, aq, aq, s (all four state symbols correct) [1]
(iii) insoluble [in water] [1]
(c) (i)+(ii) white precipitate of MCO_{3}NB - Correct answers to both (i) and (ii) are required for this mark[1]
(iii) $\mathrm{MCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{MCO}_{3}+2 \mathrm{NaCl}$ [1]
Pages 8-10: Part 4 (Evaluation)
(a) A lid would prevent/reduce absorption of water [vapour while cooling] [1]
No mark for reference to spitting or frothing when heated: it doesn't!
(b) Re-heating makes sure that all the water has been removed [1]
Do not allow a vaguer reference to "reaction being finished"[When all water had been removed] final mass would not change/ stay the same[1]
(c) Yellow flame is not hot/strong enough [to drive off the water [1]
Yellow flame is sooty or it would deposit carbon (or a black residue) on crucible [1]

(d)(i) 3 marks

Since two weighings are needed, possible total error in mass $\mathrm{H}_{2} \mathrm{O}$ lost $=0.02 \mathrm{~g}$

$$
\begin{aligned}
& \text { Method mark: candidate uses } 0.01 \text { (or 0.02) and mean mass of water lost } \\
& \text { Mean mass must be correctly selected from data on page } 3 \text {. }
\end{aligned}
$$

$\%$ error $=0.02$ or $0.01 /$ mass $\times 100$, correctly worked out to the number of sig fig quoted
(d)(ii) 5 marks max (but only 4 on Qn paper) - mark the best two strands

- Use a larger mass of hydrated salt (or mass used was too small)

This reduces the percentage error [in measuring masses]

- Use a balance that records to 3 (or "more") decimal places

Do not allow a "more accurate" balance or equivalent phrases.
This reduces the percentage error [in measuring masses]
Do not award a mark twice for this statement, even if used in different contexts.
Candidate uses his/her data to work out the \% error in any "improved" reading Specimen calculation is needed to score this mark.

- Cool the residue in a desiccator

Desiccator contains a drying agent or it contains air that is free of moisture
Prevents absorption of water [vapour] by the residue
(e) If both of candidate's mass losses were close/ within 0.01 g , this shows reliability Mark is awarded for the opposite conclusion if the candidate's readings justify it
(f) 2 marks max (but only 1 on Qn paper)

Award any two marks from the five ideas below
Covalent compounds have low melting/boiling points
or a correct reference to weak intermolecular forces

The solid being heated might evaporate
or the residue obtained might evaporate

Hydrated covalent chlorides don't exist
Hydrolysis/decomposition of covalent chloride occurs [when heated]
Hydrogen chloride would be produced [when the covalent chloride was heated]

2814 Chains, Rings and Spectroscopy

(a)

Qu.	Expected Answers	Marks
4 (a) (i)		[5]

Qu.	Expected Answers	Marks
5 (a) (i)	ammonia which is ethanolic/heated in a sealed tube \checkmark	[1]
(ii)	$\mathrm{CH}_{3} \mathrm{CHClCOOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{HCl} \downarrow$ or with any ionisation of the amino groups - eg $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CHClCOOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{3} \mathrm{Cl}\right) \mathrm{COOH} \text { I } \\ & \mathrm{CH}_{3} \mathrm{CHClCOOH}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl} \end{aligned}$	[1]
(b) (i)	structure of zwitterion $\checkmark \mathrm{eg}$	[1]
(ii)	structure of organic product \checkmark equation $\checkmark \mathrm{eg}$	
	allow -CONH- for the peptide linkage	[2]
(c) (i)	 brackets not essential	[1]
(ii)	hydrolysis \checkmark allow aqueous (reflux/heat with) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4}$ with some $\mathrm{NaOH} / \mathrm{KOH}$ or a evidence of water eg dil/(aq)/6M \checkmark protease enzyme	[2]
(d)	two peaks \checkmark	
	relative areas $3: 1 \checkmark$ allow ecf on the second and third marks if extra peaks are given for COOH and NH_{2} due to the $-\mathrm{CH}_{3}$ and $-\mathrm{CH} \checkmark$ ([3]

[Total: 11]
(c) (a) (i)

Qu.	Expected Answers	Marks
8	molecular formula from \% data and mass spectrum $\begin{aligned} & M_{\mathrm{r}}=88 \checkmark \\ & { }^{54.5 / 12.0}=4.54 \quad 9.1 / 1.0=9.1 \quad 36.4 / 16.0=2.28 \\ & \text { ratio }=2: 4: \quad 1 / \text { empirical formula }=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \\ & \left(M_{\mathrm{r}} \text { of } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=44=88 / 2, \text { so }\right) \text { molecular formula }=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \end{aligned}$ alternative method for the $2^{\text {nd }}$ mark calculating mass out of 88 for each element: $88 \times{ }^{54.5} / 100=48 \quad 88 \times 9.1 / 100=8 \quad 88 x^{36.4} / 100=32$ ${ }_{48 / 12}^{88}=4 \mathrm{C} \quad 8 / 1=8 \mathrm{H} \quad{ }_{32 / 16}=2 \mathrm{O}$ structural formula from n.m.r. spectrum X is an ester \checkmark X is ethyl ethanoate $/ \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} \checkmark$ the part of the molecule responsible for each peak identified - eg splitting of one of the peaks is explained in terms of the n + 1 rule - eg '1:2:1 as next to CH_{2} ' \checkmark Well organised answer with any two of the following technical terms used correctly: singlet, triplet, quadruplet/quartet allow any method to identify which peak is being referred to the $-\mathrm{CH}_{3}$ mark is available if methyl propanoate is chosen	[9] [1]

2815/01 Trends and Patterns

Qu.	Expected Answers	Marks	Additional Guidance
1 (a)	(Enthalpy change of/energy change of) atomisation (1) $\mathrm{Ba}(\mathrm{g}) \rightarrow \mathrm{Ba}^{+}(\mathrm{g})+\mathrm{e}^{-}$(1) Second electron affinity (1) $\mathrm{Ba}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaO}(\mathrm{~s})(1)$	4	Ss must be correct throughout No multiples
(b)	Impossible/difficult to get gaseous ions (without them reacting)/difficult to vapourise ions and measure the enthalpy change at the same time/AW (1)	1	
(c)	Oxide ion is smaller than carbonate ion/oxide ion has a higher charge/electron density/ora (1) (So) stronger attraction between ions in barium oxide/ora (1)	2	Must use correct particle but only penalise once
(d)	$\mathbf{R b}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}(\mathbf{1})$ and Any two from Idea that polarising power depends on ionic radius and ionic charge/idea that polarising power depends on charge density of ion (1) Rb^{+}is larger than $\mathrm{Na}^{+} / \mathrm{Na}^{+}$is larger than $\mathrm{Mg}^{2+} / \mathrm{Mg}^{2+}$ is larger than $\mathrm{Al}^{3+} / \mathrm{Al}^{3+}$ smallest radius $/ \mathrm{Rb}^{+}$largest radius ora (1) Rb^{+}is less charged than $\mathrm{Mg}^{2+} / \mathrm{Na}^{+}$is less charged than $\mathrm{Mg}^{2+} / \mathrm{Mg}^{2+}$ is less charged than $\mathrm{Al}^{3+} / \mathrm{Al}^{3+}$ highest charge ora (1)	3	
		10	

Qu.	Expected Answers	Marks	Additional Guidance
2 (a) (i)	Giant ionic/ionic lattice (1)	1	
(ii)	Two sodium ions with empty or full outer shell or 2.8 and $\mathrm{Na}^{+}(1)$ Oxide ion with full outer shell or correct 2.8 and O^{2-} (1)	2	Allow empty or full shell for Na^{+} Allow $2 \mathrm{Na}^{+}$ Allow one mark for either correct charges for both ions or correct electronic structures for both ions Not $[\mathrm{Na}]_{2}{ }^{+} /\left[\mathrm{Na}_{2}\right]^{2+}$
(iii)	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} / \mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}(1)$ Water has behaved as a proton donor/ $/ \mathrm{H}^{+}$donor (1)	2	
(b) (i)	$\mathrm{H}_{2} \mathrm{SO}_{3}(1)$	1	
(ii)	Silicon(IV) oxide has a giant covalent structure/giant molecular/macromolecular (1) Sulphur dioxide has simple structure with van der Waals' forces/simple molecular /simple covalent (1) Covalent bonds are (much) stronger than van der Waals' forces/intermolecular forces/temp dipoletemp dipole/induced dipole - induced dipole (1)	3	Allow comparison of forces mark only if associated with the correct forces
		9	

Qu.	Expected Answers	Marks	Additional Guidance
3 (a)	```moles of \(\mathrm{MnO}_{4}^{-}=0.000571\) (1) moles of \(\mathrm{H}_{2} \mathrm{O}_{2}=0.00143\) (1) concentration (of diluted \(\mathrm{H}_{2} \mathrm{O}_{2}\) is 0.143 and of) undiluted is \(1.43 \mathrm{~mol} \mathrm{dm}^{-3}\) (1) Concentration \(=48.5 \mathrm{~g} \mathrm{dm}^{-3}(1)\) (accept range \(48.45-48.63 \mathrm{~g} \mathrm{dm}^{-3}\))```	4	Allow ecf within the question Allow 2 or more sig figs for first three marking points Allow 3 or 4 for the last marking point
(b)	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} /$ Unbalanced full equation with all correct species (1) but $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Fe}^{3+}(2)$	2	Allow full marks for the correct ionic equation between $\mathrm{H}_{2} \mathrm{O}_{2}$ and Fe^{2+} Allow correct multiples of equation Ignore state symbols
(c)	There is no longer a green precipitate/green solid $\begin{aligned} & (1) \\ & \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(1) \end{aligned}$ or There is now a red-brown precipitate/orangey brown/brown/rusty solid (1) $\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(1)$	2	Allow precipitate mark if state symbol given in equation Ignore state symbols
(d) (i)	-1/1-/- (1)	1	Allow $\mathrm{O}_{2}{ }^{-}$
(ii)	Oxygen from -1 to $-2 / 0$ to -2 which is reduction (1) Oxygen from -1 to $0 /-2$ to 0 which is oxidation (1)	2	Allow 1 mark for either 2 correct ON changes (1 ox and 1 red) OR correct reference to oxidation and reduction from their ON changes
(iii)	$\begin{array}{\|l} \hline \text { Moles of } \mathrm{KO}_{2}=14.1(1) \\ \text { Moles of } \mathrm{CO}_{2}=7.05(1) \\ \text { Volume of } \mathrm{CO}_{2}=168.8 \mathrm{dm}^{3}(1) \\ \text { Allow range } 168 \text { to } 169.2 \end{array}$	3	Allow ecf within question Allow 2 or more sig figs for first two marking points Allow 3 or 4 sig figs for answer
		14	

Qu.	Expected Answers	Marks	Additional Guidance
4	Properties 3 from Coloured (ions)/coloured (compounds) (1) Catalysts (1) Several oxidation states (1) Paramagnetic (1)	3	
	Complex ion Octahedral/clear three dimensional drawing (1) Ligand donates a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)	4	Allow tetrahedral or square planar and correct bond angles from a correct example Allow bonding marks (2 and 3) from an incorrect complex ion
	Ligand substitution Involves swapping of one ligand for another/exchange of ligands/displacement of ligands (1) Example (1) eg reaction of aqueous iron(III) ions with thiocyanate ions Equation (1) eg $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{SCN}^{-} \rightarrow$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{SCN})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$ Observation (1) eg red coloration	4	Correct equation also scores the description of ligand substitution Wrong metal in complex ions can score the description and equation mark
	Quality of Written Communication (1) Use of at least three of the following technical words in the correct context - Catalyst/catalytic - Dative/coordinate - Lone pair/electron pair - Oxidation state/oxidation number - Octahedral/tetrahedral/square planar	1	
		12	

2815/02 Biochemistry

Qu.	Expected Answers	Mark
2) (a)(i)	Either OCO group or the phosphate \checkmark	[1]
(ii)	Two of: $\checkmark \checkmark$ - They allow movement of chemicals(AW) in and out of cells/ selectively permeable - They separate contents of cells from surrounding/hold in cell contents - They allow separate compartments to be formed in cells - Allow some proteins to attach AW throughout	[2]
	van der Waals' (IDID) forces. \checkmark	[1]
(iii)	Reducing the number of van der Waals' forces would make the bilayers more flexible at low temperature \checkmark.	[2]
(b)	This could be achieved by one of the following: \checkmark - Shortening the hydrocarbon chain - Introducing branches to the chain - Introducing double bonds to the chain	
(c)	Carbohydrates are partially oxidised \checkmark Formation of carbon dioxide and water is exothermic/ gives off energy ${ }^{\text {r }}$ Formation of $\mathrm{CO} / 0 \mathrm{H}$ bonds is exothermic/ provides energy \checkmark Allow C-O in this last point	[3]

\begin{tabular}{|c|c|c|}
\hline Question No. \& Expected Answers \& Mark \\
\hline 4) (a) \& \begin{tabular}{l}
Two reasons from \\
- It has 1,6 (glycosidic) links/bonds \\
- Because it is a branched structure, Give this mark if both 1,6 and 1,4 links are mentioned \\
- \(\quad \alpha\)-glucose \\
Give the reason marks independently of the name. \\
With 1,6 and 1,4 glycosidic links \(\checkmark\) \\
Then the name : amylopectin/ glycogen \\
Glucose has many sites/OH groups for hydrogen bonding to water \({ }^{\text {r }}\) \\
Diagram such as \(\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}_{2} \quad\) (beware use of \(\mathrm{C}-\mathrm{H}\)) \\
Must not be two water molecules. \\
In C many OH groups are tied up in glycosidic links \(\downarrow\) Many OH groups are involved in hydrogen bonding between chains/ within helical regions/intermolecularly. AW
\end{tabular} \& [3]

[4]

\hline
\end{tabular}

2815/03 Environmental Chemistry

Qu.	Expected Answers	Mark
2) $\begin{aligned} & \text { (a)(i) } \\ & \\ & \text { (ii) } \\ & \\ & \text { (b) }\end{aligned}$		[3]
	Water and/or carbon dioxide is given off \checkmark by le Chatelier's principle \checkmark Equilibrium moves to right \checkmark Producing more insoluble calcium carbonate	
	$100,000 \mathrm{dm}^{3} \text { contains } 100,000 \times 0.096 \mathrm{~mol} \text { of }$ $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	
	$=9.6 \times 10^{3} \mathrm{~mole} \checkmark$ M_{r} for $\mathrm{CaCO}_{3}=100.1 \checkmark \mathrm{Accept} 100$ and follow through. This will weigh $100.1 \times 9.6 \times 10^{3}=9.6 \times 10^{5} \mathrm{~g} \checkmark \mathrm{ecf}$	[3]
	Aluminium ions: to flocculate/coagulate solid particles \checkmark	
	Either negative charge on surface of particles \checkmark is neutralised \checkmark Or A precipitate of aluminium hydroxide/formula is formed \checkmark which absorbs other ions/ solid particles \checkmark. Chlorine gas : It forms HClO or $\mathrm{ClO}^{-} /$equation \checkmark $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HOCl}+\mathrm{HCl}$ removal of bacteria by oxidation \checkmark.	[5]

3) (a)(i)	In equations or words: Oxygen molecules split into oxygen atoms \checkmark photochemically/ with UV \checkmark Oxygen atoms react with oxygen molecules to form ozone \checkmark Ozone breaks down (photochemically) to oxygen \checkmark	[4]
(ii)	草市ö:ọ̈: ignore bond angles or versions based on ring	[1]
(b)(i)	Increases amount of UV reaching the earth's surface/ increases chance of skin cancer etc. AW \checkmark	[1]
(ii)	Any two points $\checkmark \checkmark$ from: - Ease of breakdown in troposphere/ by UV - Presence of C-H bond - Residence time/greenhouse factor - Flammability (lack of) AW	[2]
(c)(i)	In breaking a covalent bond one electron is left with one atom and one with the other \checkmark	[1]
(ii)	Two points from: - Ozone adds to/reacts with double bonds - And breaks them/ forms carbonyl compounds - The rubber cracks/perishes/becomes brittle	[2]
(iii)	By using catalytic convertors in cars etc \checkmark Equation such as $2 \mathrm{NO}+2 \mathrm{CO}=\mathrm{N}_{2}+2 \mathrm{CO}_{2}$	[2]

Qu.	Expected Answers	Mark
4)	Find nine marks from: - In 1:1 clays each layer comprises one aluminate/octahedral sheet and one silicate/tetrahedral sheet \checkmark - These sheets are joined by Al-O-Si links \checkmark - The layers are attracted to each other by hydrogen bonding \checkmark - between O atoms on the silicate/tetrahedral sheet and H atoms attached to the aluminate/octahedral sheet \checkmark. - Water and cations cannot easily get in between the layers \checkmark (Water is not readily absorbed) - In 2:1 clays each layer consists of two silicate/tetrahedral sheets with one aluminate/octahedral sheet in between (or diagram) \downarrow - The layers are not hydrogen bonded together/are only held together by weak forces of attraction \checkmark - Water can easily penetrate between the layers \checkmark (water is readily absorbed - swelling the clay). - Cations can also enter between the layers and become attracted to the negatively charged oxygen atoms within \checkmark - This negative charge is increased by the replacement of $\mathrm{Si}(\mathrm{IV})$ by Al^{3+} in the original structure (or Al^{3+} by Mg^{2+}) \downarrow - Much larger surface for ion exchange in a 2:1 clay \checkmark (and therefore greater cation exchange capacity than 1:1 clay) The QWC mark should be given for a well organised answer which shows accurate use of two of the following terms in context: hydrogen bonding, sheet, layer, replacement (or substitution), cation.	[10]

2815/04 Methods of Analysis and Detection

Qu.	Expected Answers	Mark
1(a) (i)	$\begin{aligned} & \text { mobile phase }=(\text { carrier }) \text { gas } \quad \\ & \text { stationary phase }=(\text { non-volatile }) \text { liquid } \end{aligned}$	2
(ii)	time taken for the component to emerge (after sample injected)	1
(b)	peak $1=$ pentane peak 2 = hexane	2
(c) (i)	(structural feature that) absorbs UV/visible light/energy	1
(ii)	conjugation/extended delocalised electrons decrease gap between energy levels hence absorbs at lower energy/longer λ /in visible region	3
		9

Qu.	Expected Answers	Mark
2(a)	gaps between energy levels are fixed/quantised \checkmark hence produce fixed lines corresponding to movement between the fixed energy levels	2
(b) (i)	(lines converge because) the fixed/quantised energy levels get closer at high energy	1
(ii)	C correctly labelled and lines getting closer together at shorter $\lambda \checkmark$	2
(c)	converts kJ to $\mathrm{J} / E=3.38 \times 10^{-19} \mathrm{~J} \quad \checkmark$ calculates $f=5.10 \times 10^{14}\left(\mathrm{~s}^{-1}\right) \quad \checkmark$ calculates wavelength $/ \lambda=5.88 \times 10^{-7}(\mathrm{~m}) \checkmark$ $=588 \mathrm{~nm} \checkmark$ (must be to 3 sig figs) (allow one mark for using formulae $E=h f$ and $c=\lambda f$)	4
(d)	```calibration graph needed/plot intensity ~ known conc./ [Na+] \checkmark measure intensity of sample } deduce concentration/[[\mp@subsup{Na}{}{+}] of sample from the graph }```	3
		12

Qu.	Expected Answers	Mark
3(a) (i)	${ }^{13} \mathrm{C} \quad \checkmark$	1
(ii)	uses equation $n=100(M+1) \div 1.1 \mathrm{M} \checkmark$ $n=10$	2
(iii)	$M_{\mathrm{r}}=134$ $10 \mathrm{Cs}=120$, therefore must be $14 \mathrm{H} \checkmark$ $\mathrm{C}_{10} \mathrm{H}_{14} \quad \checkmark$ Allow ecf 2 marks for incorrect M_{r} peak	3
(iv)	$\mathrm{C}_{6} \mathrm{H}_{5}^{+}$,	1
(b) (i)	there must be $3 \mathrm{CH}_{3} \mathrm{~s}$ to account for the other 9 Hs and each CH_{3} must be joined to a C with no Hs	1
(ii)	$\mathrm{C}_{6} \mathrm{H}_{5} /$ benzene (ring)/aromatic \checkmark	1
(c)	 arene \checkmark substituent \checkmark	2
		11

Qu.	Expected Answers	Mark
4(a) (i)	molecular ion $/ \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}{ }^{+} / \mathrm{CH}_{3}^{+} / \mathrm{CO}^{+} / \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \quad \checkmark$	1
(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} / \quad \mathrm{C}_{3} \mathrm{H}_{7}^{+} / \quad \mathrm{CH}_{3} \mathrm{CH}_{2}^{+} / \quad \mathrm{C}_{2} \mathrm{H}_{5}^{+} / \mathrm{CH}_{2}^{+} / \mathrm{COO}^{+} /$ $\mathrm{COOH}^{+} \checkmark$ In parts (i) and (ii) penalise lack of charge once	1
(b)	isomer B isomer B would have OH peak in range 3230-3550 $\left(\mathrm{cm}^{-1}\right)^{\checkmark}$	2
(c)	peaks labelled left to right: $H_{c} H_{b} \quad H_{d} \checkmark \checkmark$ if two are the wrong way round \checkmark	2
(d)	Similarities - same number of peaks (4)/proton environments - same peak areas $3: 2: 2: 1$ r same relative heights - One comment about splitting the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ chain Differences - The acidic proton,- COOH (11.0-11.7) and the aldehyde proton, - CHO (9.5-10) protons can be distinguished by their chemical shifts/ isomer \mathbf{D} would have (singlet) at $9.5-10 \mathrm{ppm}$ but isomer C would have (singlet) at 11.0-11.7 ppm - in isomer \mathbf{C} the acidic proton would disappear if run in $\mathrm{D}_{2} \mathrm{O} \checkmark$ terminal CH_{2} in the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - would have different chemical shifts ?/C at 2.0-2.9 and \mathbf{D} at $3.3-4.3 \mathrm{ppm} \checkmark$	6
QWC	SPAG - two sentences in which the meaning is clear in answer to part(d)	1
		13

2815/06 Transition Elements

Qu.	Expected Answe				Mark
1 (a)	ion	$\mathrm{VO}^{2+}(\mathrm{aq})$	$\mathrm{V}^{3+}(\mathrm{aq})$	$\begin{gathered} \mathrm{VO}_{2}{ }^{+} \mathrm{I} \\ \mathrm{VO}_{3}^{-} \end{gathered}$	
	colour	blue	green	yellow	
	oxidation state	+4	+3	+5	
(b) (i)	$2 \mathrm{~V}^{3+}+\mathrm{Zn} \rightarrow 2 \mathrm{~V}^{2+}+\mathrm{Zn}^{2+}$ (allow multiples but not electrons)				1
(ii)	lilac/mauve/purple/violet/magenta				1
(c)	Vanadium(V) oxide/vanadium pentoxide $/ \mathrm{V}_{2} \mathrm{O}_{5}$ and Contact process/producing sulphuric acid/oxidation of SO_{2} to SO_{3} $2 \mathrm{SO}_{2}+\mathrm{O}_{\mathbf{2}} \rightleftharpoons \mathbf{2} \mathrm{SO}_{3}$ (allow multiples and a forward arrow)				1
					1
					Total: [7]

Qu.	Expected Answers	Mark
2. (a) (i)	Orange to yellow.	1
(ii)	(Named) acid/ H^{+}	1
(iii)	All oxidation numbers worked out for both sides of equation.	1
(b)	ie $\mathrm{Cr}=+6, \mathrm{O}=-2, \mathrm{H}=+1$ Moles $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ used $=0.000348 \mathrm{~mol}$ 1 Moles $\mathrm{Fe}^{2+}=6 \times 0.000348=0.002088 \mathrm{~mol}$ $250 \mathrm{~cm}^{3} \mathrm{Fe}^{2+}=10 \times 0.00209=0.02088 \mathrm{~mol}$ 1 Mass Fe $=0.02088 \times 55.8=1.165104 \mathrm{~g}$ $\%$ Fe in sample $=1.165104 / 1.20 \times 100=97.1 \% ~(3 \mathrm{sf})$ 1 Allow consequential marking throughout If candidates use 3 sf from the start then answer is 97.5% 1 Allow range from $97.0-97.5 \%$	Total: [8]

Qu.	Expected Answers	Mark
3. (a) (i)	Emf/voltage/potential difference (of a half cell) (not potential)	1
	Combined with a standard hydrogen half cell	1
(ii)	$298 \mathrm{~K} / 25^{\circ} \mathrm{C}, 10^{5} \mathrm{~Pa} / 1 \mathrm{Atm}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ (all 3 needed)	1
(b)	Voltmeter, salt bridge and complete circuit (salt bridge must be in contact with a solution)	1
	Platinum electrode in the $1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}$half cell (labelled)	1
		1
(c) (i)	$\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{Br}^{-} \rightleftharpoons 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	
	correct species	1
	balanced	1
(ii)	Yellow/orange/brown (solution) (not ppt or solid or gas)	1
(d)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ has a more positive electrode potential than Br_{2} but less positive than $\mathrm{Cl}_{2} / \mathrm{Cl}_{2}$ is a better oxidising agent than $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ but Br_{2} is poorer	1
	Credit the working out of cell emf - positive (+0.26) for bromide, negative	
	(-0.03) for chloride	
		Total: [10]

Qu.	Expected Answers	Mark
4. (a) (i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathbf{p}^{6}$	1
(ii)	White	1
(b) (i)	No d-electrons (to absorb visible light) (not does not have a partially filled d-sub shell)	1
(ii)	Dative covalent/co-ordinate 1 partially filled d-orbitals (accept a suitable diagram) (Ligands cause) splitting of d-orbital energy levels/lower \& higher energy d-orbitals/implication of a gap/d-electrons promoted Particular frequency of visible light is absorbed to promote electrons (need to have idea that only part of visible light is absorbed)	1

2816/01 Unifying Concepts in Chemistryl Experimental Skills 2 Written Paper

Qu.	Expected Answers	Mark
1(a)(i)	mole fraction x total pressure / contribution of a gas to the total pressure / pressure that a gas would have alone \checkmark	1
1(a)(ii)		1
1(a)(iii)	 Brackets not required. Brackets can be around formulae.	1
1(a)(iv)	Use of $K_{\mathrm{p}}=\frac{33^{2}}{\left(29^{2}\right.}$ to generate a correct calculated value of K_{p} of $K_{p}=0.015$ (to 2 significant figures) \checkmark Response of 0.015 would automatically score 1 st two marks units from K_{p} expression in (iii): $\mathrm{kPa}^{-1} \checkmark$ ALLOW ECF for alternative response to 1(a)(ii) and (iii) for calculated value and units	3
1(b)	K_{p} decreases \checkmark	2
	The equilibrium goes to the left/more reactants/less products because the (forward) reaction is exothermic OR argument based on K_{p} and numerator/denominator Allow reverse argument based on endothermic reverse reaction.	
1(c)	high pressures: equilibrium moves to (right-hand) side with fewer moles \checkmark high pressures are expensive to generate/have safety problems/yield is high enough without increasing pressure	2
1(d)(i)	$3.27 \times 10^{x} \checkmark$ accept 3 up to calculator value of 3.27217 3.27×10^{5} tonnes/327,000 tonnes/300,000 tonnes $/ 3.27 \times 10^{11} \mathrm{~g} \checkmark$ ie 1st mark is number at start 2nd mark is for correct powers of 10 AND correct units to match	2
1(d)(ii)	$2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$ ALLOW multiples, eg PbS $+11 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{PbO}+\mathrm{SO}_{2}$ Do not allow S as product	1
	Total:	13

Qu.	Expected Answers	Mark
2(a)(i)	OH^{-}: When $\left[\mathrm{OH}^{-}\right]$increases by 2.5 , rate increases by $2.5 \checkmark$, so order $=1$ (with respect to OH^{-}) \downarrow ClO_{2} : When $\left[\mathrm{ClO}_{2}\right]$ increases by 3 , rate increases by $9 / 3^{2} \checkmark$, so order $=2\left(\right.$ with respect to $\left.\mathrm{ClO}_{2}\right) \checkmark$ For both OH^{-}and ClO_{2}, explanation and order to be marked independently	4
2(a)(ii)	$\begin{aligned} & \text { rate }=k\left[\mathrm{OH}^{-}\right]\left[\mathrm{ClO}_{2}\right]^{2} \checkmark \\ & \text { ALLOW } r=k\left[\mathrm{OH}^{-}\right]\left[\mathrm{ClO}_{2}\right]^{2} \\ & \text { ALLOW ECF from (a)(i) } \\ & \text { rate }=\text { is essential } \end{aligned}$	1
2(a)(iii)	$\begin{aligned} & k=\frac{r a t e}{\left[\mathrm{OH}^{-}\right]\left[\mathrm{ClO}_{2}\right]^{2}} \text { OR } \frac{6.00 \times 10^{-4}}{0.0300 \times 0.0100^{2}} \\ & \checkmark \\ & =200 \checkmark \\ & 200 \text { without working scores the first } 2 \text { marks } \\ & \text { ALLOW ECF from an incorrectly rearranged equation } \end{aligned}$ units: $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark$ ALLOW ECF from rate equation (a)(ii) but the units must be derived from the rate equation	3
2(b)(i)	rate equation shows ($2 \mathrm{ClO}_{2}$ and) $1 \mathrm{OH}^{-}$and overall equation shows ($2 \mathrm{ClO}_{2}$ and) $2 \mathrm{OH}^{-}$ OR Rate equation has a different number of moles of OH^{-}from overall equation \checkmark	1
2(b)(ii)	$\begin{aligned} & 2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\ & 1 \text { mark for } \mathrm{ClO}_{3}^{-} \checkmark \\ & 1 \text { mark for total equation (conditional on 1st mark) } \checkmark \end{aligned}$	2
	Total:	11

Qu.	Expected Answers	Mark
3(a)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \square \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \checkmark$ Accept $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \checkmark$ Accept molecular formulae, ie $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \square \quad \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$ Equilibrium sign essential	1
3(b)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$	1
3(c)	$\text { concentration }=\frac{3.40}{122} \checkmark=0.0279\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Accept 0.028 up to calculator value of 0.027868852(46) (first mark for M_{r} of benzoic acid - incorrect answer here will give ecf for remainder of question) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{\left(\mathrm{K}_{a} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]\right)} \text { OR } \sqrt{\left(6.30 \times 10^{-5} \times 0.0279\right)^{\vee}}} \\ & =1.33 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.33 \times 10^{-3}=2.89 \end{aligned}$ answer $=2.88$ if no rounding. DO NOT ALLOW 2.9 unless more d.p. shown elsewhere pH must be greater than 1 and less than 7 If no square root, $\mathrm{pH}=5.76$ 4 marks If $\mathrm{g} \mathrm{dm}^{-3}$ used instead on $\mathrm{mol} \mathrm{dm}^{-3}, \mathrm{pH}=1.83-1.84 \quad 3$ marks Watch out for evidence of correct M_{r} as there may be another mark	5
3(d)	buffer minimises pH changes \checkmark DO NOT ALLOW pH is constant HA discussion is OK here $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ reacts with added alkali $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} /$ added alkali reacts with $\mathrm{H}^{+} / \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$ $\rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \square \quad \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \rightarrow$ right (counteracts change) \checkmark $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$reacts with added acid or $\mathrm{H}^{+} \checkmark$ $\rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \square \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \rightarrow$ left (counteracts change) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}} \\ & =6.30 \times 10^{-5} \times \frac{0.105}{0.125} \text { OR } 5.292 \times 10^{-5} \end{aligned}$ $\mathrm{pH}=-\log \left(5.292 \times 10^{-5}\right)=4.28 \checkmark$ (calculator: 4.276380164) ALLOW 4.3 OR ALTERNATIVE APPROACH USING H.H. EQUATION: $\mathrm{p} K_{\mathrm{a}}=-\log 6.30 \times 10^{-5}=4.20 \checkmark$	

$\begin{aligned} & \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \text { OR } \mathrm{pH}=-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \\ & \mathrm{pH}=4.20+0.08=4.28 \checkmark \end{aligned}$ QWC: correct equilibrium shift discussed at least once \checkmark	1
Total:	16

Qu.	Expected Answers	Mark
4(a)(i)	$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$	1
4(a)(ii)	final pH (approximately) 11/equivalence point <7 \checkmark ALLOW correct reference to shape of curve: ie No vertical part after 7/starts to curve at 7	1
4(a)(iii)	$\begin{aligned} & \mathrm{NH}_{4} \mathrm{NO}_{3} \checkmark \\ & \text { ALLOW } \mathrm{N}_{2} \mathrm{H}_{4} \mathrm{O}_{3} \end{aligned}$	1
4(a)(iv)	resazurin \checkmark	1
4(a)(v)	sharp rise after addition of $12.5 \mathrm{~cm}^{3} /$ half the volume of $\mathrm{NH}_{3} \checkmark$ final pH higher \checkmark For 'sharp rise', ALLOW neutralisation/equivalence/end point	2
4(b)(i)	$\begin{aligned} & \mathrm{Mg}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \checkmark \\ & \mathrm{Mg}+2 \mathrm{H}^{+} \xrightarrow{\longrightarrow} \mathrm{Mg}^{2+}+\mathrm{H}_{2} \checkmark \end{aligned}$ IGNORE state symbols DO NOT ALLOW $2 \mathrm{NO}_{3}{ }^{-}$added to both sides of ionic equation	2
4(b)(ii)	With dilute $\mathrm{HNO}_{3}:$ \mathbf{H} (reduced) from +1 to $0 \checkmark$ With conc. $\mathrm{HNO}_{3}:$ \mathbf{N} (reduced) from +5 to $+4 \checkmark$	2
	Total:	10

Qu.	Expected Answers	Mark
5(a)	moles $\mathrm{CaSO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}=\frac{500}{145.2}$ or 3.44 mol mass $\mathrm{H}_{2} \mathrm{O}=1.5 \times 3.44 \times 18=92.88 / 92.9 / 93 \mathrm{~g} / 92.98 \mathrm{~g}$ with no rounding \checkmark Correct units of \mathbf{g} required ALLOW $3.44 \times 27=92.88$ (watch ECF) ALLOW 1 mark for 78.4 g (2nd mark above from 500/172.2 x 1.5 x 18) ALLOW M $\left(\mathrm{CaSO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)=145 \mathrm{~g} \mathrm{~mol}^{-1}$	2
5(b)	M_{r} unknown gas $=\frac{28 \times 1.52}{0.60}=71$ molecular formula $=\mathrm{Cl}_{2} \checkmark$ ALLOW any gas that exists with an M_{r} of 71 (if you can think of one) If M_{r} is incorrect then gas chosen must have this value for $M_{r} B U T C_{2}$ will always automatically score 2nd mark irrespective of what has come before.	2
5(c)(i)	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	1
5(c)(ii)	Moles NaOH amount of NaOH in titration $=\frac{0.00425 \times 21.35}{1000}$ or $9.07 \times 10^{-5} \mathrm{~mol} \checkmark$ (calc: 9.07375×10^{-5}) Moles citric acid amount of citric acid in $25.0 \mathrm{~cm}^{3}=\frac{\mathrm{mol} \mathrm{NaOH}}{3}$ or $3.02 \times 10^{-5} \mathrm{~mol} \checkmark$ (calc: $3.024583333 \times 10^{-5}$) Scaling amount of citric acid in $250 \mathrm{~cm}^{3}=10 \times 3.02 \times 10^{-5}$ or $3.02 \times 10^{-4} \checkmark$ Molar mass molar mass of citric acid $=192 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$ (or M_{r} of citric acid is 192) Allow ECF from incorrect molecular formula in 5(c)(i) Mass of citric acid in drink mass citric acid in $250 \mathrm{~cm}^{3}$ of drink $=3.02 \times 10^{-4} \times 192=0.0580 \mathrm{~g}$ If calculator value held throughout, mass $=0.0581 \mathrm{~g}$ allow ECF throughout	5
	Total:	10

2816/03 Unifying Concepts in Chemistryl Experimental Skills 2 Practical Examination

PLAN (Skill P)16 marks (out of 19 available)
G Gas collection-8 marks
G1 Candidate states meaning of the ' 100 -volume' concentration descriptionand proves, by giving a calculation, that its concentration is $8.3 \mathrm{~mol} \mathrm{dm}^{-3}$and gives equation for its decomposition: $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$[1]
G2 Pipettes justified volume of diluted $\mathrm{H}_{2} \mathrm{O}_{2}$ into reaction vessel [1]
(i) quantity of gas produced must be related to the capacity of the collecting vessel.
(ii) specimen calculation of suitable dilution factor (practical detail not needed)(iii) use of pipette or burette to measure diluted $\mathrm{H}_{2} \mathrm{O}_{2}$ into reaction vessel
G3 Add manganese(IV) oxide (dioxide) as catalystand mass of MnO_{2} doesn't matter because it is a catalystor catalysts work by reducing activation energy for the reaction[1]
Alternative named catalyst or a named enzyme are acceptable.G4 A diagram of apparatus with flask, connecting tube and correct collection.[1]No mark if the diagram drawn would not work because of a serious error (eg no bung)Downloaded/ photocopied diagrams are acceptable only if the labelling is relevantNo G4 if Bunsen burner (or high temperature) used.
G5 Use of ignition tube or a boat for MnO_{2} (or a divided flask) and reasonReason: stops loss of gas before apparatus has been fully assembledor prevents reaction starting (or stops chemicals mixing) before bung is put on.
G6 Records (final) volume of gas when fizzing ceases/when syringe stops movingVisual precaution to ensure completion of reaction is required
G7 Repeat whole procedure and work out average gas volume or obtain consistent readings
G8 Calculation of the concentration of 100 vol $\mathrm{H}_{2} \mathrm{O}_{2}$ from specimen data

T Titration-7 marks

T1 Quantitative dilution of aqueous hydrogen peroxide - practical details
Requires use of pipette, distilled water and a volumetric/standard flask
T2 KMnO_{4} of specified concentration used in the burette
Concentration specified must lie between $0.010-0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ Making up aqueous KMnO_{4} from solid solute is not required.
T3 Equation for the reaction
$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
or $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$

T4 Redox theory: $\mathrm{H}_{2} \mathrm{O}_{2}$ is the reducing agent or $\mathrm{H}_{2} \mathrm{O}_{2}$ is oxidised (by KMnO_{4}) and justification, using oxidation states or by quoting the ionic half-equation

T5 Dilution factor for $\mathrm{H}_{2} \mathrm{O}_{2}$ that will give a titre between 15 and $40 \mathrm{~cm}^{3}$
This must be clearly justified by a numerical calculation
T6 Pipette hydrogen peroxide into a flask and acidify with excess sulphuric acid
T7 No indicator required (this may be implied)
and the final/end-point colour is pink
and titrate until two consistent/concordant accurate titres are obtained
Accept "titres within $0.05 / 0.1 \mathrm{~cm}^{3 "}$ (unit needed) as alternative to "consistent"

S Sources etc - 4 marks

S1 Researches hazard of sodium carbonate and states a safety precaution
[Solid] sodium carbonate is irritant
Accept one routine precaution - safety specs, lab coat, gloves, wash if spilt

S2 Two secondary sources quoted in the text or as footnotes or at end of plan.
Book reference(s) must have chapter or page numbers
Internet reference(s) must go beyond the first slash of web address
Accept one specific reference to a "Hazcard" (by name or number)
Allow one reference to a specific past paper (but not to teaching notes etc)
S3 QWC: text is legible and spelling, punctuation and grammar are accurate
There must be fewer than six errors in legibility, spelling, punctuation or grammar.
S4 QWC: information is organised clearly and coherently
Is the answer to all three of the following questions positive?

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly - allow one error
- Are both methods described logically and without excessive repetition?

A2 Practical Test (Part B)

Page 3 (Part 1 - Skill I)

Presentation of titration data
Check the following four bullet points: all must be correct.

- Correctly labelled table (initial, final and difference - aw) used to record burette data
- A table grid, showing at least three grid lines, must be drawn.
- All accurate burette data and titres (including $0.00 \mathrm{~cm}^{3}$ at start) are quoted to $0.05 \mathrm{~cm}^{3}$
- All subtractions are correct (these must be checked)

Self-consistency of titres (all three bullets must be correct)

- Both of the candidate's two accurate titres agree within $0.10 \mathrm{~cm}^{3}$.
- Units, cm^{3} or ml , must also be given (once in or alongside the table is sufficient).
- Three titres are shown.

Mean titre correctly calculated

- The mean should normally be calculated using the two accurate titres.

However the trial may be used if it is closer than one of the accurate readings.

- \quad The mean must be correctly quoted either to 2 d.p or to $0.025 / 0.075$
- Unit must be given, with the answer.

Accuracy - [6 marks]

- Write down the supervisor's mean titre, rounded to $0.05 \mathrm{~cm}^{3}$ and ringed.

Check that supervisor's subtractions are correct

- The candidate's own mean should normally be used for assessment of accuracy.

Use candidate's mean to nearest $0.05 \mathrm{~cm}^{3}$

- Compare the supervisor's mean titre with the candidate's mean titre.

Put " $\delta=$ __" on the script to show the difference between these two mean titres.

- Use the conversion chart below to award the mark out of 6 for accuracy.

Candidate's mean titre is within $1.20 \mathbf{~ c m}^{3}$ (incl) of supervisor's mean titre Candidate's mean titre is within $0.90 \mathbf{~ c m}^{3}$ (incl) of supervisor's mean titre Candidate's mean titre is within $0.70 \mathbf{c m}^{3}$ (incl) of supervisor's mean titre Candidate's mean titre is within $0.50 \mathbf{c m}^{3}$ (incl) of supervisor's mean titre Candidate's mean titre is within $0.30 \mathbf{~ c m}^{3}$ (incl) of supervisor's mean titre Candidate's mean titre is within $\mathbf{0 . 2 0} \mathbf{~ c m}^{\mathbf{3}}$ (incl) of supervisor's mean titre
[1 mark]
[2]
[3]
[4]
[5]
[6 marks]

Spread penalty

("Spread" relates to the titres used by the candidate to calculate his/her mean)
If the titres have a spread of more than $0.30 \mathrm{~cm}^{3}$, deduct 1 mark from accuracy mark.
If the titres have a spread of more than $0.70 \mathrm{~cm}^{3}$, deduct 2 marks from accuracy mark.
If the titres have a spread of more than $1.20 \mathrm{~cm}^{3}$, deduct 3 (max) from accuracy mark.

Safety [1 mark]

Any two precautions stated, from the six listed below

- wash off with [plenty of] water after use (or if spilt)
- dilute before use
- keep off the skin [of the scalp]
- wear an apron or overall or lab coat
- wear [plastic/latex] gloves
- wear eye protection/safety spectacles (but not "keep away from eyes")
(a) $\quad M_{r}$ of hydrated sodium thiosulphate $=248.2($ or 248 $)$

No M_{r} attempted $=$ no marks at all in (a)
No of moles used $=15.5 / 248.2 \times$ mean titre $/ 1000$
This is a method mark for correct use of 15.5, an M_{r} and the mean titre/1000
(b)(i) Correct balancing: $\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(ii) No of moles of $\mathrm{I}_{2}=0.5 \times$ answer (a)
(c)(i) $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
(ii) $2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-} \rightarrow \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } + \mathrm { I } _ { 2 } (\text { ie } 1 \mathrm { mol } \mathrm { H } _ { 2 } \mathrm { O } _ { 2 } \rightarrow 1 \mathrm { mol } \mathrm { I }}$) or correct use of electrons to demonstrate $1: 1$ mole ratio or correct "molecular" equation: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
(d) No of moles $\mathrm{H}_{2} \mathrm{O}_{2}=$ answer (b)(ii)
(e) Conc ${ }^{n}$ of undiluted $\mathrm{H}_{2} \mathrm{O}_{2}=$ answer (d) $x^{250} / 25 x^{1000 / 10}$

This is a method mark, for multiplying answer (d) by a factor of 1000
Conc ${ }^{n}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$, correctly calculated from data, expressed to 3 sig fig
Award this mark for obtaining correct final answer, $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=$ mean titre $/ 32$

Page 6 (Part 3 - Skill I)

Readings: presentation-1 mark (All four bullets must be correct)

- Table grid drawn (minimum of one line drawn horizontally and one line vertically)
- Initial and final temperatures clearly labelled
- All four temperatures recorded to $0.5^{\circ} \mathrm{C}$ (ie one decimal place shown, 0.0 or 0.5)
- Readings recorded as two pairs within one table

No reading titles must be repeated/duplicated
Calculations - $\mathbf{1}$ mark (All three bullets must be correct)

- Unit of temperature given for each of the four readings
- Correct subtractions to give each temperature rise (both written as 0.0 or 0.5)
- Mean temperature rise correctly calculated (to nearest $0.5,0.25$ or $0.1^{\circ} \mathrm{C}$)

Accuracy - 4 marks ($3+1$):
Write supervisor's mean temp rise (to nearest $0.1^{\circ} \mathrm{C}$) in a ring on the script Use the candidate's mean temperature rise calculated to nearest $0.1^{\circ} \mathrm{C}$.

- If candidate's mean temperature rise is within $1.0^{\circ} \mathrm{C}$ of supervisor's $\rightarrow \mathbf{3}$ marks
- If candidate's mean temperature rise is within $1.5^{\circ} \mathrm{C}$ of supervisor's $\boldsymbol{\rightarrow} \mathbf{2}$ marks
- If candidate's mean temperature rise is within $2.3^{\circ} \mathrm{C}$ of supervisor's $\boldsymbol{\rightarrow} \mathbf{1}$ mark
- If both candidate's temperature rises are within $1.0^{\circ} \mathrm{C}$ of each other $\boldsymbol{\rightarrow} \mathbf{1}$ mark

Page 7 (Part 4 - Skill A)

(a) Heat produced $=25 \times 4.2 \times$ mean temp rise

Method mark awarded for correct figures (or check answer if no working shown
(b) $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
(c)(i) $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ used $={ }^{\mathrm{cV}} / 1000=$ concentration of $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{x}^{25} / 1000$

This is a method mark for using appropriate figures (but nothing else)
(ii) Enthalpy change calculation: working shown, using candidate's own data
$\Delta H\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)=$ heat produced $/ 1000 \times$ no of moles of H 2 O 2
This is a method mark, but the mark is for appropriate figures, not the words
Negative sign given for ΔH and answer correctly calculated to 2 or 3 sig fig

Answer should be approximately $-90 \mathrm{~kJ} \mathrm{~mol}^{-1}=4.2 \times$ temp rise $]_{[H 2 O 2}$

Pages 8+9: Part 5 (Skill E - Evaluating)

[14 marks max (out of 17)]
(a) 7 marks (but only 6 on the question paper. The extra mark is available in (ii))
(i) Excess KI ensures that all the $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$ reacts

Using excess KI speeds up the reaction [with hydrogen peroxide] or it prevents precipitation of iodine
(ii) $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ used $={ }^{10} / 1000 \times 0.88=0.0088 \mathrm{~mol}$
$n(\mathrm{KI})$ used $=80 / 1000 \times 0.5=0.040 \mathrm{~mol}$
Use of mole ratio: $\mathrm{H}_{2} \mathrm{O}_{2}$ reacts with 0.0176 mol of KI (or $35.2 \mathrm{~cm}^{3}$ of KI)
and this is less than $0.04 \mathrm{~mol}\left(\mathrm{or} 80 \mathrm{~cm}^{3}\right.$) of KI , so excess KI was used
If wrong mole ratio (or no mole ratio) is used, maximum 2 marks are available
(iii) Titration was repeated
Reference to any factor related to accuracy negates this mark

It is reliable since the titres are consistent (or vice versa)
Mark this according to whether student's titres were within $0.10 \mathrm{~cm}^{3}$
(b) Use a lid/cover for the cup

Using thicker plastic/ use two cups/ put lagging around cup/ use Dewar flask
(c) 8 marks maximum (but 6 on question paper)

Mark the best three strands.
C1 The 100 volume solution would react more rapidly/vigorously
C2 There would be more spitting /frothing /spray out of the cup
D1 The temperature rise would be greater or reaction would be more exothermic
D2 The percentage error in measuring the temperature rise would be reduced
D3 Justification of reduced \% error (= greater accuracy) using specimen calculation
E1 Heat losses would be [much] greater

E2 The temperature rise reached during reaction would be [much] greater
or reaction would be more exothermic or mixture would get hotter
Award of E2 is conditional on award of E1

E3 Rate of cooling depends on temp difference between solution and surroundings
F1 The heat produced [in the reaction] would be ten times as great
F1 must refer to the heat produced, not the temperature rise
F2 The solution would boil or some of the solution/water would evaporate

Grade Thresholds

Advanced GCE Chemistry (3882/7882)
June 2009 Examination Series
Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2811	Raw	60	49	44	39	34	29	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	44	38	32	27	22	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	91	80	70	60	50	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	70	61	52	44	36	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	73	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	72	65	58	51	44	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	73	66	59	52	46	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	75	68	61	54	48	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	91	80	69	59	49	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 2}$	32.9	57.4	75.3	88.9	97.9	100	2936
$\mathbf{7 8 8 2}$	31.7	56.6	74.8	87.6	96.3	100	11875

14811 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

