Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)
Advanced Subsidiary GCE Chemistry (3882)
MARK SCHEME FOR THE UNITS
Unit/Content Page
2811 Foundation Chemistry 1
2812 Chains and Rings 7
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper 19
2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination 23
2814 Chains, Rings and Spectroscopy 29
2815/01 Trends and Patterns 36
2815/02 Biochemistry 42
2815/04 Methods of Analysis and Detection 47
2815/06 Transition Elements 51
2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper 55
2816/03 Unifying Concepts in Chemistry/ Experimental Skills 2 Practical Examination 60
Grade Thresholds 65

2811 Foundation Chemistry

Question			Expected Answers		Marks	Additional Guidance
1	(a)	i	$20 \checkmark$		1	
		ii	$2 \checkmark$		1	
		iii	$5 \checkmark$		1	
	(b)	i	$69.8 \checkmark$		1	
		ii	$96.0 \checkmark$		1	Allow 96
		iii	$\begin{aligned} & \text { moles of } \mathrm{NaNO}_{3}=0.05 \checkmark \\ & \text { mass }=0.05 \times 85=4.25(\mathrm{~g}) \end{aligned}$		2	4.8 g worth 1 (wrong M_{r}) Accept 4.3 but not 4.2 (ecf for calculated moles $\times 85$)
		iv	$2.51 \times 10^{21} \checkmark$		1	Allow 2.5×10^{21} Calc: $2.508333333 \times 10^{21}$ Allow calc value and any degree of correct rounding down to 2.5×10^{21}
	(c)		(+)7 \downarrow		1	Sign not required but do not credit ' -7 ' Accept VII
				Total	9	

| Question | | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | (a) | Energy change when each atom in 1 mole \checkmark
 of gaseous atoms \checkmark
 loses an electron \checkmark (to form 1 mole of gaseous 1+ ions) | Not 'element' alone
 Compensate missed marks from correct equation | |
| (c) | Si \checkmark
 Sharp rise in successive ionisation energy between 4th and
 5th IE \checkmark
 marking a change to a new shell / there are 4 electrons in
 the outer shell \checkmark | 3 | Not consequential | |
| atomic radii increases/ there are more shells/atoms get | | | | |
| bigger \checkmark | | | | |
| there is more shielding/ more screening \checkmark | | | | |
| ionisation energy decreases because the | | | | |
| Increased shielding and distance outweigh the increased | | | | |
| nuclear charge / | | | | |
| the nuclear attraction decreases \checkmark | | | | |

Question			Expected Answers	Marks	Additional guidance
3	(a)		$\mathrm{Ca}^{2+}: 20$ protons; 18 electrons \checkmark $\mathrm{Cl}^{-}: 17$ protons; 18 electrons \checkmark	2	
	(b)		cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots \checkmark Correct charges on both ions \checkmark	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. Circles not required Ignore inner shell electrons For charges, Allow: $2\left[\mathrm{Cl}^{-}\right] 2[\mathrm{Cl}]^{-}\left[\mathrm{Cl}^{-}\right]_{2}$ (brackets not required except for last one) Do not allow: for $\mathrm{CaCl}_{2},\left[\mathrm{Cl}_{2}\right]^{2-}\left[\mathrm{Cl}_{2}\right]^{-}[2 \mathrm{Cl}]^{2-}[\mathrm{Cl}]$ Max 1 if only one Cl^{-}
	(c)		solid: ions are fixed (AW) \checkmark aqueous: ions are free (to move) (AW) \checkmark	2	If charge carriers are wrong but comparison is given, then award one mark, e.g. solid: electrons are fixed in lattice AND aqueous: electrons are free to move \checkmark (1 mark
	(d)	i	$\begin{aligned} & \text { molar mass } \mathrm{CaCO}_{3}: 100.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark} \\ & 4.85 / 100.1=0.0485 \mathrm{~mol} \checkmark \end{aligned}$	2	Not 100 for molar mass calc. 0.048451548 Allow rounding of calculator value back to 2 sig figs allow 0.048-0.049 ECF If working shown for an incorrect molar mass, then the 2nd mark can be awarded as 4.85/calculated molar mass
		ii	5.38 or 5.39 g or $5.4 \mathrm{~g} \checkmark$	1	For information: $\begin{aligned} & 0.0485 \times 111.1=5.39 \\ & 0.048451548 \times 111.1=5.38 \end{aligned}$

Question		Expected Answers	Marks	Additional guidance	

Question			Expected Answers	Marks	Additional Guidance
4	(a)		down group/from Cl to I , number of electrons/shells increases more/ stronger/ van der Waals'/ intermolecular forces/ induced dipoles/ instantaneous dipoles greater forces to break/more energy has to be put in to break forces \checkmark	3	Answers involving ionisation energies score 0
	(b)		$\begin{aligned} & \mathrm{I}_{2} \rightarrow \mathrm{IO}^{-}, 0 \text { to }+1 \checkmark: \text { oxidised } \\ & \mathrm{I}_{2} \rightarrow \mathrm{I}^{-}, 0 \text { to }-1 \checkmark: \text { reduced } \end{aligned}$ correct 'oxidised' and 'reduced' above/l is both oxidised and reduced / disproportionation	3	Sign not required but do not credit ' -1 ' '-' Sign required here
	(c)	i	goes orange/red/yellow $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \checkmark$	2	Ignore brown Ignore spectator ions
		ii	$\begin{aligned} & \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s}) \\ & \text { correct equation } \checkmark \text { correct state symbols } \checkmark \end{aligned}$	2	Allow state symbols for (slightly) incorrect equations
	(d)	i	attraction of an atom for electrons \checkmark in a (covalent) bond/ bonding pair \checkmark	2	
		ii	correct 3-D tetrahedral shape shown showing one outward wedge and 1 inward wedge; 3 bonds below horizontal correct dipoles: $\delta+$ on C and δ - on each $\mathrm{CI} \checkmark$	2	For bond into paper, accept: Allow correct shape with no atom labels: Only need to show one dipole
		iii	the polarities/ dipoles cancel out / the molecule is symmetrical	1	
			Total	15	

2812 Chains and Rings

Question		Expected Answers	Marks	Additional Guidance
	(ii)	$\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ 1 mark if all formulae are correct both marks if correctly balanced	2	allow $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$ allow structural, displayed or skeletal formula of $\mathrm{C}_{8} \mathrm{H}_{18}$.
(e)	(i)	(feedstock is obtained) from plants \checkmark which can be re-grown \checkmark	2	allow made from sugar cane/beet/biomass for 1 mark not allow just sugar allow made from sugar because it can be re-grown for 2 marks not allow just fermentation allow fermentation from/of plants for first marking point
	(ii)	CO_{2} used in photosynthesis is balanced by CO_{2} released in combustion/ it is carbon neutral	1	not allow does not produce greenhouse gases allow doesn't emit any oxides of nitrogen/sulphur not allow doesn't produce toxic gases/acid rain If two statements are made and one is incorrect the mark is lost e.g. is carbon neutral and does not produce greenhouse gases this gets x con
		Total	10	

Question		Expected Answers	Marks	Additional Guidance
2 (a)	i	1,1-dibromomethylpropene \checkmark	1	allow 1,1-dibromo-2-methylpropene allow 2-methyl-1,1-dibromopropene allow methyl-1,1-dibromopropene also allow any of the above with prop-1-ene
	ii	$\begin{aligned} & M_{r}=213.8 \checkmark \\ & \%=(159.8 / 213.8) \times 100 \\ & =74.7 \end{aligned}$	2	not allow $M_{r}=214$ for first mark allow any of: $\%=75 / 74.74$ or any correct rounding up to and including the calculator value of 74.74275023 allow ecf for correct rounding of 74.76635514 if used $M_{r} 214$ ecf for correctly calculating percentage from incorrect M_{r} 37.4% scores 1 mark
	(iii)	any dibromobut-1-ene any dibromobut-2-ene (except 2,3-dibromobut-2-ene) any dibromomethylpropene (except 1,1-dibromomethylpropene) any dibromocyclobutane any dibromomethylcyclopropane	1	see page 10 at end of question for skeletal formulae of acceptable isomers Most common incorrect response is trans-2,3-dibromobut-2-ene
(b)	i	decolourised \checkmark	1	not allow goes clear / discoloured allow turns colourless/orange colour disappears ignore "clear" if "decolourises and goes clear" i.e. not 'CON'
	ii	electrophilic addition \checkmark	1	
	iii	$\begin{aligned} & \text { molecular formula }=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{4} \checkmark \\ & \text { empirical formula }=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}_{2} \checkmark \end{aligned}$	2	allow ecf from molecular formula $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{Br}_{\mathrm{z}}$

Question		Expected Answers	Marks	Additional Guidance
(c)		 Ni/Pt \checkmark	2	Ignore bond linkage
(d)	i	B is symmetrical \checkmark	1	allow A isn't symmetrical ignore A is asymmetric
	ii		2	Ignore bond linkage
e)	i		1	Do not allow bond linkage to H in the OH , bond must clearly go to the O
	ii	reagent: steam $/ \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \checkmark$ conditions: phosphoric acid \checkmark	2	allow $\mathrm{H}_{2} \mathrm{O}$ but only if temp is quoted above $100^{\circ} \mathrm{C}$ allow sulphuric acid not allow acid catalyst allow reagent: phosphoric acid \checkmark allow conditions: steam \checkmark mention of alkali \boldsymbol{x} con acid mark

Question
dibromobut-2-ene

1,1-

1,1-

Br

1,2-
Br dibromobut-1-ene

Br

dibromomethylpropene

1,3

1,3-

1,3-

1,4-

1,4-
3,3-

3,4-
dibromocycloalkanes

Q3a should be marked as a complete question NOT by item response

Question		Expected Answers				Marks	Additional Guidance
(b)	i	(peak between) 3230-3550 $\left(\mathrm{cm}^{-1}\right) \checkmark$ which shows presence of OH				2	do not allow $2500-3500\left(\mathrm{~cm}^{-1}\right)$ For OH allow peak within stated range Ignore any reference to $\mathrm{C}-\mathrm{O}$ peak
	ii	Na	H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	RCOOH and conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\begin{aligned} & \mathrm{PCl}_{5} / \\ & \mathrm{SOCl}_{2} \end{aligned}$	1	allow RCOCI with observation of white fumes and product same as carboxylic acid
		bubbles/fizzes/effervesces not allow hydrogen gas/ gas evolved	orange to green	if RCOOH observation mark is not available	white fumes	1	If manganate(VII) used as oxidising agent then allow marks for observation (purple to colourless/green/brown) and product of cyclohexanone only
	iii	 charges not essential but do not allow				1	not allow $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{ONa} / \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OOCR} / \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$ product mark must be related to correct reagent. If no reagent then no product mark is possible allow one mark for bromocyclohexane as product if HBr used as reagent but no marks for reagent or observations not allow
					Total	10	

Question			Expected Answers	$\begin{array}{\|l\|} \hline \text { Marks } \\ \hline 2 \end{array}$	Additional Guidance
4	(a)		 bond angle $109^{\circ} 28^{\prime} \checkmark$		$\begin{aligned} & \hline \text { allow } \\ & 109 \cdot 5 / 109-110 \end{aligned}$
	(b)	i	electron pair donor \checkmark	1	allow lone pair (of electrons) donor
		ii	Step 1 curly arrow from lone pair on N to $C \quad \checkmark$ curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl	2	not allow any incorrect charges on reagents $x_{\text {con }} 1$ mark
		iii	$\mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{Cl} \checkmark$	1	$\begin{aligned} & \text { allow } \\ & \mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\ & \text {not allow } \\ & \text { CH3 } \mathrm{Cl}+\mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCl} \\ & \text { not allow } \\ & \mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCl}+\mathrm{NH}_{3} \\ & \hline \end{aligned}$
		iv	methylamine/aminomethane \checkmark	1	allow even if equation in (b)(iii) is incorrect.

Quest	Expected Answers	Marks	Additional Guidance
(c)	reaction would be faster C-I bond is weaker/has lower bond enthalpy (than $\mathrm{C}-\mathrm{Cl}$ bond)	2	second mark is dependent on first mark e.g. reaction is slower because C-I bond is weaker scores no marks. not allow iodomethane / CH_{3} I has lower/weaker bond energy/enthalpy not allow C-I bond is longer allow C-I bond is longer, therefore weaker not allow iodine bond is weaker
	Total	9	

Question		Expected Answers	Marks	Additional Guidance
5	(a)	alkanes are non-polar \checkmark nucleophiles/electrophiles are attracted to polar substances $\mathrm{C}-\mathrm{H}$ bonds are strong \checkmark allow max of 2 from 3	2	allow C-H bonds have little/no polarity/no dipoles allow no regions of high or low electron density allow nucleophiles/electrophiles/reagents are not attracted to non-polar substances not allow attacks/reacts as an alternative to attracts allow bonds in alkanes are strong
	(b)	Free radical substitution balanced equation $\mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}+\mathrm{HBr}$ mechanism $\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br} \bullet$ $\mathrm{Br} \bullet+\mathrm{C}_{5} \mathrm{H}_{12} \longrightarrow \mathrm{HBr}+\bullet \mathrm{C}_{5} \mathrm{H}_{11}$ $\cdot \mathrm{C}_{5} \mathrm{H}_{11}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}+\mathrm{Br} \bullet$ any two free radicals to show termination step conditions: uv \checkmark bond fission: homolytic fission \checkmark mixed products due to: - multiple substitution of H (in $\mathrm{C}_{5} \mathrm{H}_{12}$) - several isomers of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ - different products could be formed in termination step* any two from three $\checkmark \checkmark$	10	if a different alkane is used do not allow mark for either propagation step but the rest can be marked ecf If error in first propagation step ecf can be awarded for second propagation step allow any one of: $\begin{aligned} & 2 \mathrm{Br} \bullet \longrightarrow \mathrm{Br}_{2} \\ & \mathrm{Br} \bullet+\bullet \mathrm{C}_{5} \mathrm{H}_{11} \longrightarrow \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br} \\ & \bullet \mathrm{C}_{5} \mathrm{H}_{11}+\bullet \mathrm{C}_{5} \mathrm{H}_{11} \longrightarrow \mathrm{C}_{10} \mathrm{H}_{22} \end{aligned}$ If $\mathrm{H} \bullet$ formed in propagation allow ecf for a termination equation using the $\mathrm{H} \bullet$ allow sunlight/high temperature allow homolysis/homolytic cleavage do not allow free radicals are very reactive/difficult to control * must be stated not just assumed if they write more than one termination step.

Question		Expected Answers	Marks	Additional Guidance
QWC	Well structured answer and uses all three of initiation, propagation and termination correctly \checkmark	1		
		Total	$\mathbf{1 3}$	

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Question			Expected Answers	Marks	Additional Guidance
1	(a)	i	reaction slows \checkmark	1	Not becomes constant
		ii	because there are less particles per unit volume (as the reaction proceeds)/particles further apart/ the concentration decreases (rate) of collision decreases \checkmark	2	marks are stand alone allow successful collisions
	(b)		sketch to show graph starting more steeply \checkmark finishing at same level	2	
			Total	5	

Question			Expected Answers	Marks	Additional Guidance
2	(a)	i	energy/enthalpy change to break 1 mole of a (covalent) bond in the gaseous state	2	do not allow first mark: if energy released if break and make if ionic if heat 2nd mark is stand alone ignore 'under standard conditions'
		ii	energy is put in to break the bond/ energy is needed to overcome the attraction (between electrons and nuclei) in the bond	1	not attraction between oppositely charged ions endothermic alone does not score.
	(b)		bonds broken $=1(\mathrm{H}-\mathrm{H})+1(\mathrm{~F}-\mathrm{F})=436+(\mathrm{F}-\mathrm{F})$ and bonds made $=2(\mathrm{H}-\mathrm{F})=1136$ $436+(F-F)-1136=-542$ bond enthalpy $=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	3	ecf possible
	(c)		enthalpy change is ΔH for $1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{HCl} \checkmark$ bonds broken $=218+121=339$ and bonds made $=-432 \Delta H=-93\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	2	
	(d)	i	a weak acid is partially dissociated \checkmark to form H^{+}ions/ protons \checkmark	2	allow partially ionised can be shown in an equation
		ii	the $\mathrm{H}-\mathrm{F}$ bond is stronger ora \checkmark	1	accept harder to break the bond.
		iii	$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HF} \rightarrow 2 \mathrm{NaF}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ignore state symbols; allow $\mathrm{H}_{2} \mathrm{CO}_{3}$
		iv	$\begin{aligned} & \mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \rightarrow . \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1	ignore state symbols do not allow the inclusion of spectator ions
		v	hydrochloric acid bubbles faster / solid disappears faster concentrations (of acids) must be the same	2	allow conditions must be the same
			Total	15	

Question			Expected Answers	Marks	Additional guidance
3	(a)		high temperature needed (to send equilibrium to RHS) \checkmark since (forward) reaction is endothermic low pressure needed (to send equilibrium to RHS) \checkmark since fewer moles of gas on LHS \checkmark	4	all stand alone marks
	(b)		high temperature (gives a fast rate of reaction) \checkmark because a higher proportion of collisions exceed Ea \checkmark high pressure (gives a fast rate of reaction) \checkmark because molecules are closer together and collide at a faster rate/ because particles are more concentrated and collide at a faster rate \checkmark	4	all stand alone marks accept because a 'higher proportion of collisions have enough energy to cause a reaction' do not accept 'more collisions' or 'more energetic collisions' not answer based on E_{a}
	(c)		would use high temperature - for rate and yield \checkmark but compromise on pressure because high pressure gives a fast rate but poor yield \checkmark	3	compromise must be on pressure not temperature both rate and yield needed
	(d)	i	the (total) enthalpy change for a reaction is the same whichever route is taken \checkmark owtte	1	
		ii	$\begin{aligned} & \text { cycle } \Sigma \Delta H \text { (products) }-\Sigma \Delta H \text { (reactants) } \checkmark \\ & -75-242+210=\Delta H_{\mathrm{f}} \checkmark \\ & \Delta H_{\mathrm{f}}=-107\left(\mathrm{kJmol}^{-1}\right) \checkmark \end{aligned}$	3	cycle need not be drawn correctly/ drawn at all -107 scores 3
			Total	15	

Question		Expected Answers	Marks	Additional Guidance
4	(a)	enthalpy profile diagram y axis labelled energy/enthalpy and one curve drawn to include either horizontal lines or reactants and products labelled \checkmark second curve included to start and finish at same energy level and one curve labelled (catalysed or uncatalysed) \checkmark Boltzmann distribution axes labelled x as energy and y as number/ fraction or \% of particles/ molecules/atoms \checkmark shape of curve catalysed and uncatalysed E_{a} shown as vertical lines touching or crossing the curve and labelled \checkmark explanation to increase the rate of reaction more collisions/particles/molecules have to exceed $E_{a} /$ have enough energy to react \checkmark a catalyst acts by lowering E_{a} by allowing the reaction to proceed via a different route \checkmark	8	1 max for enthalpy profile diagram if diagrams are reversed for x axis allow kinetic energy/ KE/ velocity/ enthalpy do not allow activation energy/ E_{a} must start at 0,0 and at higher energies must not touch or cross the x axis if 2 graphs are drawn, this mark does not score if candidate says catalyst gives molecule more energy, this mark does not score
	(b)	equilibrium position unchanged rate of forward and reverse reaction increased by same amount \checkmark	2	
		Total	10	

2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination

Skill P: $\mathbf{1 6}$ marks (out of 19 available)

A Analysis of the acids - 8 marks
Four different chemical tests must be described, one for each acid.

- If the same reagent is used twice, award zero on the second occasion.
- If the test described is ambiguous, the first two correct bullets are not credited.
- For each test, two or three bullets correct = 1 mark: four bullets correct = 2 marks

1. Test for sulphuric acid (marks A1, A2)

Use of CuO (giving blue solution) scores 1 mark (max) as test for sulphuric acid

- Add aqueous barium nitrate/chloride Aq or solution is needed, but do not penalise twice in the Plan
- White precipitate indicates that the solution tested is sulphuric acid
- The precipitate is barium sulphate (can be credited from 's' state symbol in the equation)
- Equation or ionic equation for reaction $-\mathrm{Ba}(\mathrm{NO} 3) 2+\mathrm{H} 2 \mathrm{SO} 4 \rightarrow \mathrm{BaSO} 4+2 \mathrm{HNO} 3$

2. Use of AgNO3 (marks A3, A4)

- Add aqueous silver nitrate
- Cream/off-white precipitate obtained indicates HBr or white/milky precipitate indicates HCl
- Precipitate is silver chloride/bromide (can be scored from 's' state symbol in an equation)
- Equation or ionic equation for reaction (ignore state symbols)

3. Test for the other hydrohalic acid (marks A5, A6)

Option (a) For HBr

- Add chlorine or concentrated sulphuric acid
- Goes orange (or appropriate observation)

Do not allow brown as the colour of aq bromine
Accept any reasonable colour if an organic solvent is used to show Br2 colour

- Chlorine is more reactive than bromine or chlorine displaces bromine (owtte)
- Equation or ionic equation for reaction

Option (b) For either HCl or HBr

- [Add silver nitrate] - then add ammonia to the precipitate formed
- Use excess aqueous ammonia and shake the tube

All three points required (excess, aqueous/solution, invert/shake/stir)

- For HCl , the precipitate dissolves/ goes clear
- For HBr , the precipitate is insoluble/ partially soluble/ does not dissolve or precipitate is soluble in concentrated ammonia

4. Test for ethanoic acid (marks A7, A8)

Option (a)

- Add magnesium, a named metal carbonate or NaHCO_{3}
- Fizzing, bubbling or effervescence observed
- Test for gas outlined or reference to the slow reaction [compared to the other acids]
- Equation or ionic equation for reaction

Option (b)

- Add any named alcohol
- Heat with concentrated sulphuric acid
- [Sweet/fruity] smell of ester obtained
- Equation for chosen reaction

Accept molecular formulae, but the -COO- ester linkage must be shown
Option (c) - 1 mark available, only, for these tests

- Add a named indicator or add PCl_{5} (or similar reagent) or aq FeCl_{3}
- Correct final colour of indicator or steamy/ acidic fumes produced or red colour

I Titration procedure - 7 marks

T1 Makes up accurately a known solution of KOH
Detail needed: weighed mass of $\mathrm{KOH}+$ distilled water + volumetric flask
T2 Quantitative dilution of acid chosen using suitable pipette and volumetric flask
The dilution must make the concentration of acid to $0.04-0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
T3 Correct equation for neutralisation reaction used
T4 Uses equation to justify mass of alkali to make up the solution
$T 4$ cannot be awarded if the acid used was $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
T5 Outline description of use of burette and pipette in titration procedure
T6 At least two consistent titres (or within $0.1 \mathrm{~cm}^{3}$) obtained and suitable indicator chosen and correct end-point/final colour stated

T7 Specimen calculation to determine \% purity of KOH from the mean titre.

S Safety, Sources and QWC - 4 marks

S1 Safety:
Solid/pure potassium hydroxide is corrosive/ burns the skin:
wear gloves or face mask or if spilt on skin wash with plenty of water
Hazard and precaution are both required
No credit for references to hazard of the acids
S2 Two sources quoted in the text or at end of Plan.
S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Accept no more than five different errors in legibility, spelling, punctuation or grammar.

S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly and are chemical formulae correct?
- Are the four tests described in a logical sequence without excessive repetition?

Practical Test (B)

Part 1

Presentation of titration data

Six bullets correct $\mathbf{=} \mathbf{2}$ marks: five bullets correct $=\mathbf{1}$ mark

- Table grid drawn (at least three lines) and all burette data is shown in the table, including first/trial.
- \quad Correctly labelled table (initial, final and difference - aw) for burette data
- Three (or more) titres are shown
- All "accurate" burette data and subtractions are quoted to two decimal places, ending in .00 or .05
- No readings recorded above $50 \mathrm{~cm}^{3}$
- \quad All subtractions are correct (these must be checked and indicated by a dot)

Two subtraction errors count as two bullet errors, ie scores 0 for presentation

Self-consistency of titres

Four bullets correct = $\mathbf{2}$ marks: three bullets correct $=\mathbf{1}$ mark

- The titres for any two accurate experiments are within $0.20 \mathrm{~cm}^{3}$.

For this bullet, assume that the first reading is a trial, whether labelled as such or not.

- The ticked titres (or the titres used to calculate the mean) are all within $0.10 \mathrm{~cm}^{3}$ If three titres are ticked, award the self-consistency on the spread of all three.
- Two or three titres are ticked
- Units, cm^{3} or ml , must be given somewhere (once in the table is sufficient).

Mean titre correctly calculated

- The mean should normally be calculated using the closest two accurate titres. However, a candidate may use the trial/first reading if appropriate, without penalty.
- The mean must be quoted to 1 or 2 d.p (but not to 3 d.p. except for 0.025 and 0.075).
"Rounding up" must be done correctly if it is needed.

The supervisor's mean titre is rounded to nearest $0.05 \mathrm{~cm}^{3}$
Compare the mean supervisor's titre with the candidate's mean titre (T).
Put " $\delta=$ \qquad " on the script to show the difference between these two titres.

Use the chart below to award the mark out of 7 for accuracy.
T is within $0.25 \mathrm{~cm}^{3}$ of mean supervisor's value

[7 marks]

\boldsymbol{T} is within $0.40 \mathrm{~cm}^{3}$ of mean supervisor's value
\boldsymbol{T} is within $0.60 \mathrm{~cm}^{3}$ of mean supervisor's value
\boldsymbol{T} is within $0.80 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $1.00 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $1.20 \mathrm{~cm}^{3}$ of mean supervisor's value
T is within $1.50 \mathrm{~cm}^{3}$ of mean supervisor's value

Spread penalty

("Spread" is defined by the titres used by the candidate to calculate his/her mean)
If these titres have a spread $=0.40 \mathrm{~cm}^{3}$ or more, deduct 1 accuracy mark.
If these titres have a spread $=0.60 \mathrm{~cm}^{3}$ or more, deduct 2 marks.
If these titres have a spread $=1.00 \mathrm{~cm}^{3}$ or more, deduct 3 marks (max spread penalty)

Safety

Diluted W will have no hazard symbol
Diluting the acid/ adding water reduces the [level of] hazard or adding water makes the acid safer (owtte)
The second mark is independent of the first

Part 2

[10 marks]
Mark ecf from one part of the question to the next, but not within a part.
When a mark is awarded for the answer, it must be quoted to 3 significant figures
(a) Dilution factor was ${ }^{250} / 10=25$, so concentration $=1.00 / 25=0.0400$

Minimum "proof" needed is figures 1.0, 10 and 250 suitably used.
(b) Answer (a) is multiplied by mean titre $/ 1000$

This is a method mark; check that the candidate's mean titre was actually used
Correct answer was obtained from candidate's own mean titre
(c) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HX}(\mathrm{aq}) \rightarrow \mathrm{CaX}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

State symbols are correct (mark is conditional on $\mathrm{H}_{2} \mathrm{O}$ shown as by-product)
(d) Answer (b) is multiplied by 0.5
(e) Answer (d) is multiplied by $40\left(\right.$ or $\left.^{1000} / 25\right)$
[Ca(OH) $)_{2}$] correctly calculated
Candidate's answer should be $20 \times(\mathrm{b})$ unless ecf has been applied
(f) 2 marks
M_{r} of calcium hydroxide $=74.1$
Mass $=$ answer (e) $\times 74.1$
Use of 74 as the M_{r} can score 1 mark out of 2 in (f)

Part 3

(a) White/milky precipitate/solid formed
(b) Precipitate disappears or solid dissolves
or colourless solution formed or [mixture] goes clear
(c) Identity: HX is HCl or hydrochloric acid

Reason: Chlorides give a white precipitate with $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+}$, soluble in ammonia
Reference to correct evidence from both tests is required for this mark
(d) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HX}($ or HCl$)(\mathrm{aq}) \rightarrow \mathrm{AgX}($ or AgCl$)(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq})$
or $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
For getting all formulae correct
Mark ecf if HX was identified as HBr or HI
For absence of any balancing figures and all state symbols correct

Part 4: (Skill E)

(a)(i) To ensure that all HX reacts
(a)(ii) Number of moles of HX used $=0.01(0) \mathrm{mol}$

Number of moles of Mg used $={ }^{0.15} / 24.3=0.0062 \mathrm{~mol}$
Use of 2:1 mole reacting ratio to show clearly that Mg is in excess
There are alternative methods of doing this calculation.
(a)(iii) There would be solid/magnesium left in the tube at the end of the experiment.
(b) No of moles of HX used $=0.01$

Volume of gas produced $=0.005 \times 24000=120 \mathrm{~cm}^{3}$
This volume exceeds the capacity of the cylinder, so too much acid was used
Maximum 1 mark awarded for the calculation if 1:1 mole ratio is used
There are alternative methods of doing this calculation.
(c)(i) 4 marks (Mark the best two strands given by the candidate)

C1 Gas would escape before the bung could be fitted
C2 Put one reagent into an ignition tube inside the flask (or similar precaution)
D1 Reaction might still be taking place [after one minute]
D2 Take final reading when fizzing/bubbling stops or wait until the volume of gas [in cylinder] stops increasing

E1 Use a burette instead of a measuring cylinder for gas collection Allow use of a gas syringe for E1, but this improvement cannot score E2

E2 Burette is more accurately calibrated/manufactured or has narrower stem or burette can be read to $0.05 / 0.1 \mathrm{~cm}^{3}$ [whereas measuring cylinder to $1 \mathrm{~cm}^{3}$]

F1 Remove oxide layer on Mg before use by scraping/ sandpapering [1]
F2 The MgO would react with the acid without producing any gas
(c)(ii) Gas collection experiment was carried out only once / was not repeated

Titration was repeated to obtain consistent results/titres so it is [more] reliable The reliability must be clearly linked to the consistency (not to accuracy)

2814 Chains, Rings and Spectroscopy

Question	Expected Answers	Marks
$2(\mathrm{a})(\mathrm{i})$ (ii) (iii) (iv) (b)	orange solid / ppt (when added to) 2,4-DNPH / Brady's Reagent (when warmed) with ammoniacal silver nitrate or no green colour (solution) / Tollens' Reagent \checkmark with acidified no silver (mirror) / reaction \checkmark dichromate allow 'no reaction' only if a suitable reagent used dipole on $\mathrm{C}=\mathrm{O} \quad \checkmark$ curly arrow breaking bond \checkmark curly arrow from lone pair on N in the direction of the carbonyl $C \checkmark$ M_{r} caprolactam $=113$ mass of cyclohexanone needed $=98 / M_{r}=0.867$ tonnes or ecf \checkmark scale for 99% yield $=$ mass * 100/99 $=\mathbf{0 . 8 8}$ tonnes or ecf \checkmark (or any number rounding to 0.876 tonnes) a single molecule with six carbon atoms in a straight chain correct end groups on a straight chain \checkmark - e.g.	2 3 3 2

Question

Question	Expected Answers	Marks
6 (a)(i)		1
(ii)	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{PCl}_{5} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{HCl} \\ +\begin{array}{c} +\mathrm{POCl}_{3} \\ + \\ \text { reagent } \\ \text { balanced equation } \checkmark \end{array} \end{gathered}$	2
(b)	ester eg $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{HCl}$ alcohol / correct name/formula of a suitable example equation amide eg $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHC}_{2} \mathrm{H}_{5}+\mathrm{HCl}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}$ amine / ammonia / correct name/formula of a suitable example \checkmark equation	4
(c) (i)	$\mathrm{FeCl}_{3} / \mathrm{AlCl}_{3}$	1
(ii)	electrophilic substitution	1
Total: 9		

Total: 16

2815/01 Trends and Patterns

Question	Expected Answers	Marks	Additional
1 (a)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}(1)$	1	
(b) (i)	Correct formula of a copper(II) complex ion e.g. $\mathrm{CuCl}_{4}{ }^{2-} /\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (1)	1	
(ii)	Correct colour (1) e.g. $\mathrm{CuCl}_{4}{ }^{2-}$ green/yellow, $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ dark blue and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ blue	1	Allow ecf from a known copper compound
(iii)	Coordinate bond / dative bond (1) Lone pair donated by ligand / lone pair accepted by copper (1)	2	
(c) (i)	Blue precipitate / blue solid	1	Can get credit for ppt from state symbol of correct product in part (ii)
(ii)	$\begin{aligned} & \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \\ & \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \\ & \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}(1) \end{aligned}$	1	Allow correct multiples Ignore state symbol
(d) (i)	$\begin{aligned} & \text { Mole ratio C:Cu:K:N }= \\ & 0.0320: 0.00800: 0.0240: 0.0320 \text { (1) } \\ & \mathrm{K}_{3} \mathrm{CuC}_{4} \mathrm{~N}_{4}(1) \end{aligned}$	2	Allow the four masses appropriate A_{r} if mole ratio not calculated Allow any order of atoms Can award formula mark if given in part (ii) Allow ecf from wrong mole ratio
(ii)	$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} / \mathrm{CuC}_{4} \mathrm{~N}_{4}{ }^{3-}(1)$	1	Allow any order of atoms with or without brackets Allow ecf from wrong formula
	Total	10	

Question	Expected Answers	Marks	Additional Guidance
2 (a) (i)	Magnesium 2.8 or diagram with 8 or 0 electrons in outer shell and two chloride ions of 2.8 .8 or diagram with 8 electrons in outer shell (1) Correct charge Mg^{2+} and $\mathrm{Cl}^{-}(1)$ Mark independently from dot and cross	2	Allow one mark for a correct magnesium ion with charge / two correct chloride ions with charge Not $\left[\mathrm{Cl}_{2}\right]^{2-}$
(ii)	Giant structure (1) Strong attraction between ions / lots of energy needed to overcome attraction between ions / lots of energy needed to break ionic bonds (1)	2	Allow strong ionic bonds
(b)	$\mathrm{Si}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{SiCl}_{4}(1)$	1	Allow any correct multiples Ignore state symbols
(c)	Correct outer shell of phosphorus (five bond pairs) (1) Rest of structure correct (1) independent of outer shell of phosphorus mark so that $\mathrm{PCl}_{4}, \mathrm{PCl}_{3}$ or PCl_{6} could get this mark if all chlorine atoms are correct	2	Rest of structure of mark
(d) (i)	$\begin{aligned} & \mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl} \\ & \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}(1) \end{aligned}$	1	Allow any correct multiples Allow H^{+}and Cl^{-} instead of HCl Ignore state symbols
(ii)	Hydrolysis (1)	1	
(e)	Covalent (1)	1	Allow simple molecule / dative bond / has considerable covalent character
(f) (i)	(orange, brown, rusty or yellow) to (blood) red (1)	1	Allow (deep) red Not green / blue to red Not precipitate
(ii)	Ligand substitution / ligand exchange (1)	1	Allow ligand displacement/ ligand replacement
	Total	12	

Question	Expected Answers	Marks	Additional Guidance
3 (a)	$2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}_{2}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}_{2} \mathrm{O}$ Correct reactants and products (allow e- and OH^{-} on both left and right) and correct molar ratio of Cr^{3+} and $\mathrm{H}_{2} \mathrm{O}_{2}$ (1); Balanced (1)	2	For the second mark the OH^{-} and e^{-}must be cancelled down
(b)	Moles $\mathrm{MnO}_{4}^{-}=0.000463$ (1) Moles $\mathrm{Fe}^{2+}=5 \times$ moles $\mathrm{MnO}_{4}^{-} / 0.002315$ (1) $M_{r}=392 / 391.8(1)$ $x=6$ (1) dependent on M_{r} given	4	Allow ecf within the question ecf is $0.907 \div$ moles of Fe^{2+} Allow three marks for 392 / 391.8 with no working ecf is $\left(M_{r}-\right.$ 283.8) $\div 18$ Allow one mark for 6 with no working
	Total	6	

Question	Expected Answers	Marks	Additional Guidance	
4	(a) (i)	Any three from Magnesium ion smaller than barium ion / magnesium ion has a higher charge density / ora (1);	3	Must use correct particle but only penalise once
	Magnesium ion is more polarising / ora (1): Magnesium ion distorts the carbonate ion more than barium ion / ora (1); So carbon-oxygen bond (in carbonate) is weaker / so covalent bond in carbonate is weaker (1)	Assume carbonate refers to an ion Allow $\mathrm{CO}_{3}{ }^{-}$		
(ii)	Contains Na+ which has a low charge density / contains Na ${ }^{+}$which is not very polarising (1)	Only need one comparative statement in the last three marking points		
	Ignore Na^{+}is a large ion Allow Na is a large ion than Mg ${ }^{2+}$ Allow Na^{+}has a smaller charge than Mg^{2+}			

$\left.\begin{array}{|c|l|c|l|}\hline \text { Question } & \text { Expected Answers } & \text { Marks } & \begin{array}{l}\text { Additional } \\ \text { Guidance }\end{array} \\ \hline \text { (b) } & \begin{array}{l}\text { Definitions } \\ 2 \mathrm{Na}^{+}+\mathrm{O}^{2-} \rightarrow \mathrm{Na}_{2} \mathrm{O} \text { (1) } \\ 2 \mathrm{Na}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O} \text { (1) }\end{array} & \begin{array}{l}\text { If given state } \\ \text { symbols must be } \\ \text { correct }\end{array} \\ \hline & \begin{array}{l}\text { Lattice enthalpy is the enthalpy change when one } \\ \text { mole (of ionic solid) is made from its constituent } \\ \text { gaseous ions but formation from its constituent } \\ \text { elements (1) }\end{array} & \begin{array}{l}\text { Allow energy } \\ \text { released } \\ \text { Not energy } \\ \text { absorbed } \\ \text { Allow states } \\ \text { from equations }\end{array} \\ \hline & \begin{array}{l}\text { Correct state symbols for the formulae given (1); }\end{array} & 6 & \begin{array}{l}\text { Formula must } \\ \text { have correct } \\ \text { state symbol at }\end{array} \\ \text { least once in the } \\ \text { cycle }\end{array}\right\}$

Question	Expected Answers	Marks	Additional Guidance
4	Lattice enthalpy magnesium oxide, sodium chloride and potassium bromide (1) Any two from Comparison of charge density or ionic radius of cation (1) e.g. ionic radius decreases from $\mathrm{K}^{+}, \mathrm{Na}^{+}$ to Mg^{2+} / charge density increases from $\mathrm{K}^{+}, \mathrm{Na}^{+}$to Mg^{2+} (1) Comparison of charge density or ionic radius of anion (1) e.g. e.g. ionic radius decreases from Br^{-}, Cl^{-}to $\mathrm{O}^{2-} /$ charge density increases from $\mathrm{Br}^{-}, \mathrm{Cl}^{-}$to O^{2-} (1) Comparison of charge on ions (1) Na^{+}but $\mathrm{Mg}^{2+} /$ O^{2-} but Cl^{-}	3	Allow Mg^{2+} but Na^{+}(1) and Na^{+} is smaller than $K^{+}(1)$ Allow O^{2-} but Cl^{-} (1) and Cl^{-}is smaller than Br^{-} (1)
	Quality of Written Communication (1) At least two complete sentences with correct spelling, punctuation and grammar that address the question set	1	
	Total	17	

2815/02 Biochemistry

2815/04 Methods of Analysis and Detection

| Question | Expected Answers | Marks |
| :--- | :--- | :--- | :--- | :--- |
| 1(a) | (i) | |

Question	Expected Answers	Marks
2 (a)	(electrons excited to higher energy levels) and fall back to lower levels \& emit energy/light \checkmark	2
(b)	excited electrons fall back to different energy levels / in a series, each electron falls back to the same energy level \checkmark	1
(c)	1 mark for each transition. If arrows point upwards, credit one mark only	2
(d)	uses correct formulae $f=c / \lambda$ and $E=h f$ or $E=h c / \lambda$ $\mathrm{f}=3.29 \times 10^{15}$ (calculator value $3.289473684 \times 10^{15}$) $E=h \times f=2.18 \times 10^{-18} \mathrm{~J} / 2.18 \times 10^{-21} \mathrm{~kJ}$ (calculator value $2.180921053 \times 10^{-18}$) 1313/1310/1312.9 (allow ecf throughout the calculation)	4
	Total	9

Question	Expected Answers	Marks
3(a) (i)	$R_{\mathrm{f}}=\frac{\text { distance moved by solute/spot }}{\text { distance moved by solvent }}$	1
(ii)	they have similar $R_{\text {f }}$ values/similar solubilities (AW) \checkmark	1
(iii)	run another chromatogram with a different solvent/use two way chromatography because it is unlikely that two substances have similar R_{f} values in two different solvents	2
(iv)	distribution/relative solubility of the solute/spot/component / differences in solubility between the mobile and the stationary phase	2
(b)	uses (an applied) voltage \checkmark movement depends on mass \& charge \checkmark pH controlled by buffer pH must be controlled because charge changes with $\mathrm{pH} \checkmark$ example of how charge changes by showing cation $\left(-\mathrm{NH}_{3}{ }^{+}\right)$at low pH or anion $\left(-\mathrm{COO}^{-}\right)$at high $\mathrm{pH} \quad \checkmark$ pH changes may affect direction of movement of amino acids \checkmark 6 marking points - maximum $=5$	5
QWC	At least two sentences that shows legible text with accurate spelling, punctuation and grammar so that the meaning is clear.	1
	Total	12

Question	Expected Answers	Marks
4(a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ yes due to lone pair on N $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ yes due to delocalised benzene ring $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ no because contains no lone pairs or multiple bonding/is a saturated molecule $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ yes due to $\mathrm{C} \equiv \mathrm{N} /$ unsaturated/ π-bonding	4
(b) (i)	more conjugation / larger chromophore decreases energy gap shifts absorption (to longer λ) into visible region	3
(ii)	likely to absorb in UV region \checkmark	1
	Total	8

Question	Expected Answers	Marks
5(a) (i)	$M=164$ (from mass spec) empirical mass of $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}=82$, therefore molecular formula $=$ $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \checkmark$	2
(ii)	carbonyl identified from IR (at about $1700 \mathrm{~cm}^{-1}$) ring identified from nmr: $\mathrm{C}_{6} \mathrm{H}_{5}$ at $\delta=7.3 \mathrm{ppm}$ or from peak $\mathrm{m} / \mathrm{e}=$ 77 in mass spectrum methyl groups identified from nmr: $2 \times \mathrm{CH}_{3} \mathrm{~s}$ at $\delta=1.2 \mathrm{ppm} \checkmark$ Single H identified from nmr by peak at $\delta=4.0 \mathrm{ppm} /$ doublet at δ $=1.2 \mathrm{ppm}$ indicates next to a $\mathrm{CH} \checkmark$	5
	Total	7

2815/06 Transition Elements

Question	Expected Answers	Marks
$1 \text { (a) (i) }$	H_{2} and H^{+}(state symbols not required) Voltmeter and salt bridge [if no liquid levels lose this mark] Both Platinum electrodes labelled $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}\left(/ \mathrm{H}^{+}\right.$not needed for mark) Temp 298 K or $25^{\circ} \mathrm{C}+$ Pressure $1 \mathrm{Atm} / 100 \mathrm{kPa} / 101 \mathrm{KPa} / 1 \mathrm{bar} / 10^{5} \mathrm{~Pa}$ + concentration $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (can take from diagram) or equimolar mixture of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}$	1 1 $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	E° would be lower than +1.33 V Equilibrium would move from right to left / backwards	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	Total	8
2 (a)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ E^{\ominus} for $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{e}^{-} \rightleftharpoons\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is more positive This reaction is more likely to proceed from left to right / $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is more likely to accept electrons / be reduced	1
(b)	Pink	1
(c)	$2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{Fe} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{Fe}^{2+}$ idea that E^{Q} is positive / idea of cobalt complex equilibrium tending to go from left to right whilst Fe^{2+} / Fe equilibrium goes from right to left / calculation of cell emf $((+) 0.55 \mathrm{~V})$.	1
	Total	6

Question	Expected Answers	Marks
3 (a) (i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$	1
(ii)	Colour requires electrons in d-orbitals and a space for promotion / colour results from transitions of electrons between d-orbitals / colour results from a partially filled d-subshell Cu^{+}has a full set of 3 d orbitals / is $3 \mathrm{~d}^{10} /$ has a full d-subshell	1 1
(b)	Energy levels of d-orbitals are split Different ligands interact differently with d-orbitals / ΔE changes for different ligands Size of ΔE determines frequency / wavelength / colour of visible light absorbed	1 1 1
(c)	Disproportionation or explained eg copper(I) goes to copper(II) and copper / copper(I) is oxidised and reduced. $2 \mathrm{CuCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{Cu} / 2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$ $\mathrm{CuCl}_{2} / \mathrm{Cu}^{2+} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{CuCl}_{4}{ }^{2-}$ is blue-green and Cu is reddishpink (both needed for 1 mark)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(d)	Moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=0.00198 \mathrm{~mol}$ 1 mole $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=1 \mathrm{~mole} \mathrm{Cu}^{2+} / 25 \mathrm{~cm}^{3} \mathrm{Cu}^{2+}$ contains 0.00198 moles $250 \mathrm{~cm}^{3}$ of Cu^{2+} contains 0.0198 moles 0.0198 moles Cu has a mass of $0.0198 \times 63.5 \mathrm{~g}=1.26 \mathrm{~g}$ (1.2573) $\% \mathrm{Cu}=1.26 / 1.65 \times 100=76.2 \%$ (allow $76.0 \%-76.4 \%$) Allow ecf after each stage of the calculation	1 1 1 1 1

2816/01 Unifying Concepts in Chemistryl Experimental Skills 2 Written Paper

Question	Expected Answers	Marks
1(a)	$K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}} \checkmark$	1
1(b)(i)	$\begin{aligned} & \mathrm{HI}: 0.28 \checkmark \\ & \mathrm{H}_{2}: 0.11 \quad \end{aligned}$	2
1(b)(ii)	Use of $K_{\mathrm{c}}=\frac{0.11 \times 0.11}{0.28^{2}}$ to generate a calculated value \checkmark $=0.15 \checkmark$ (2 significant figures) (calc. value: 0.154336735) no units \checkmark There must be some response here, not left blank. If $[\mathrm{HI}]=0.39 \mathrm{~mol} \mathrm{dm}^{-3}$ (common mistake), $K_{\mathrm{C}}=0.07955292571$ (calc value) $=0.080$ to 2 sig figs Do NOT accept $0.08 \mathrm{~mol} \mathrm{dm}^{-3}$ (1 significant figure)	3
1(c)	K_{c} doesn't change \checkmark Composition stays the same OR equilibrium does not move	2
1(d)	K_{c} increases (forward) reaction is endothermic OR reverse reaction is exothermic	2
1(e)	$\mathrm{I}: \mathrm{CI}=\frac{78.15}{127}: \frac{21.85}{35.5}$ OR $0.615: 0.615 \checkmark$ A: ICI OR any multiple, eg $\mathrm{I}_{2} \mathrm{Cl}_{2}$, etc \checkmark ICI with no working scored 2 marks. $\mathrm{HI}+\mathrm{Cl}_{2} \longrightarrow \mathrm{ICl}+\mathrm{HCl} \checkmark$ ACCEPT $2 \mathrm{HI}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{ICl}+\mathrm{H}_{2}$ Accept multiples from identification of \mathbf{A}. Accept equation based on an incorrect formula for A but ONLY if a compound of I and Cl B: $\mathrm{I}_{2} \mathrm{Cl}_{6} \checkmark$ $2 \mathrm{HI}+4 \mathrm{Cl}_{2} \longrightarrow \mathrm{I}_{2} \mathrm{Cl}_{6}+2 \mathrm{HCI} \checkmark$ ACCEPT $2 \mathrm{HI}+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{I}_{2} \mathrm{Cl}_{6}+\mathrm{H}_{2} \checkmark$ Accept equation based on an incorrect formula for B but ONLY if a compound of I and Cl	5
	Total:	15

Question	Expected Answers	Marks
2(a)	$3 \checkmark$	1
2(b)	$\begin{aligned} & k=\frac{6.90 \times 10^{-7}}{\left(2.80 \times 10^{54}\right)^{2} \times 1.44 \times 10^{53}} \checkmark \\ & =6.11 \times 10^{3} \checkmark\left(\text { calculator } 6.111819728 \times 10^{3}\right) \\ & \text { units: } \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark \\ & \text { ACCEPT } 6.1 \times 10^{3} \text { up to calculator value } \end{aligned}$ If expression is upside down, calculated value $=1.636173913$ 1.6 up to calculator value would score 1 mark for the numerical value ECF units $\mathrm{dm}^{-6} \mathrm{~mol}^{2} \mathrm{~s}^{1}$ If square is missed, calculated value $=1.711309524$ 1.7 up to calculator value would score 1 mark for the numerical value ECF units $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	3
2(c)(i)	Curve downwards with slope gradually levelling off \checkmark	1
2(c)(ii)	Measure its gradient OR slope \checkmark (Tangent) at $t=0$ OR at start \checkmark Either mark could be from triangle shown on graph with y / x	2
2(c)(iii)	Half-life is constant \checkmark	1
2(d)(i)	Curve upwards with slope gradually getting steeper \checkmark	1
2(d)(ii)	$\text { rate } \times 9 \text { OR } 3^{2} \checkmark$ order $=2$ (with respect to NO) \checkmark Each marking point is independent	2
2(d)(iii)	rate $\times 2^{2} \times 3=\times 12 \checkmark$	1
	Total:	12

Question	Expected Answers	Marks
3(a)	$\mathrm{p} K_{\mathrm{a}}=2.82 \checkmark$ calculated value $=2.823908741$ ACCEPT 2.8 up to calculator value	1
3(b)(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HSO}_{3}^{s}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]}$	1
3(b)(ii)	$\begin{aligned} & 1.50 \times 10^{0^{53}} \approx \frac{\left[\mathrm{H}^{+}\right]^{2}}{0.0265} \checkmark\left({ }^{\prime}=\prime \text { sign is acceptable }\right) \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{1.50 \times 10^{53} \times 0.0265}=6.30 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 6.30 \times 10^{-3}=2.20 \end{aligned}$ (Stand alone mark; ie $\mathrm{pH}-\log (0.0265)=1.58$ can be awarded 1 mark) If all figures kept in calculator, value $=2.200331434$ ACCEPT 2.2 up to calculator value If no square root, $\mathrm{pH}=.4 .40$	3
3(b)(iii)	a small amount of second dissociation OR it is a diprotic acid \checkmark ACCEPT equilibrium concentration $\mathrm{H}_{2} \mathrm{SO}_{3}$ is less than the initial concentration.	1
3(c)(i)	ionic product (of water) \checkmark	1
3(c)(ii)	$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]^{\checkmark}$	1
3(d)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{514}}{0.0265} \text { OR } 3.77 \times 10^{-13} \mathrm{OR} \mathrm{pOH}-\log (0.0265)=1.58 \checkmark} \\ & \mathrm{pH}=-\log \left(3.77 \times 10^{-13}\right) \text { OR } 14-1.58=12.42 \checkmark \\ & \text { calculated value }=12.42324587 \\ & \text { ACCEPT } 12.4 \text { up to calculator value } \end{aligned}$	2
3(e)	C: $\mathrm{KHSO}_{3} \checkmark$ $\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{KHSO}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$ D: $\mathrm{K}_{2} \mathrm{SO}_{3} \checkmark$ $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{KOH}+\mathrm{KHSO}_{3} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$ If \mathbf{C} and \mathbf{D} are the wrong way around award 3 max by ECF If $\mathrm{H}_{2} \mathrm{SO}_{4}$ used throughout, award 3 max by ECF	4
	Total:	14

Question	Expected Answers	Marks
4(a)	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3} \checkmark$	1
4(b)	Stage 1: $\mathrm{ClCH}_{2} \mathrm{COOH}+2 \mathrm{NaOH} \longrightarrow \mathrm{HOCH}_{2} \mathrm{COONa}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ scores two marks $\mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{HOCH}_{2} \mathrm{COONa}+\mathrm{HCl}$ scores one mark \checkmark $\mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{ClCH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ scores one mark $\mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{NaCl}$	3
4(c)	buffer minimises OR resists pH changes \checkmark $\mathrm{HOCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{HOCH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \checkmark$ For explanation below, accept HA and A^{-}OR other weak acid added alkali reacts with $\mathrm{H}^{+} / \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$ $\rightarrow \mathrm{HOCH}_{2} \mathrm{COO}^{-} /$Equil \rightarrow right (to counteract change) \checkmark $\mathrm{HOCH}_{2} \mathrm{COO}^{-}$reacts with added acid or $\mathrm{H}^{+} \checkmark$ $\rightarrow \mathrm{HOCH}_{2} \mathrm{COOH} /$ Equil \rightarrow left (to counteract change) \checkmark $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.4}=3.98 \times 10^{-5} \checkmark$ $\frac{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COO}^{\Phi}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}$ OR $\frac{\left[\mathrm{HOCH}_{2} \mathrm{COO}^{\delta}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]} \checkmark$ $\frac{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COO}^{\text {s. }}\right]}=\frac{3.98 \times 10^{\text {s5 }}}{1.48 \times 10^{54}}$ OR 0.27 OR $\frac{\left[\mathrm{HOCH}_{2} \mathrm{COO}^{s}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}=\frac{1.48 \times 10^{\delta 4}}{3.98 \times 10^{s 5}}$ OR $3.7 \checkmark$	2

Question	Expected Answers	Marks
4(d)	moles $\mathrm{CO}_{2}=\frac{5.119}{44}=0.116 \checkmark$	
moles $\mathrm{H}_{2} \mathrm{O}=\frac{1.575}{18}=0.0875$ OR moles $\mathrm{H}=2 \times 0.0875=0.175 \checkmark$		
moles $\mathrm{A}=\frac{4.362}{150}=0.0291 \checkmark$		
Molar ratio $\mathrm{A}: \mathrm{C}: \mathrm{H}=1: \frac{0.116}{0.0291}: \frac{0.175}{0.0291}=1: 4: 6 \checkmark$		
$\mathrm{O}=150-(4 \times 12+6 \times 1)=96$		
moles $\mathrm{O}=\frac{96}{16}=6$		
molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \checkmark$		
ACCEPT suitable alternatives methods		
e.g.		
moles $\mathrm{C}=\frac{5.119}{44}=0.116 \checkmark$		
moles $\mathrm{H}=2 \times \frac{1.575}{18}=0.175 \checkmark$		
(mass $\mathrm{C}=1.396 \mathrm{~g} ;$ mass $\mathrm{H}=0.175 \mathrm{~g} ;$ mass $\mathrm{O}=2.791 \mathrm{~g})^{\text {moles } \mathrm{O}=\frac{2.791}{16}=0.174 \checkmark}$empirical formula $=\mathrm{C}: \mathrm{H}: \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \checkmark$ molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$ (related to 150$) ~$	5	

2816/03 Unifying Concepts in Chemistryl Experimental Skills 2 Practical Examination

Skill P: $\mathbf{1 6}$ marks (out of up to 19 available)
The "expected" solution to the problem involves the following two stage procedure.
KMnO_{4} titration (for $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$) followed by adding Mg and gas collection, or precipitation (for both acids)

I Titration-6 marks

T1 Equation for the redox reaction
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
or $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
T2 Use KMnO_{4} of concentration $0.0250-0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ in the burette and a verbal statement that KMnO_{4} is an oxidising agent (owtte)
If $10 \mathrm{~cm}^{3}$ pipette is used for acid, then concentration is $0.0100-0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$
Concentration does not need to be justified, but must give a titre $15-40 \mathrm{~cm}^{3}$
T3 Pipette a known volume of acid mixture into a [conical] flask
and acidify with extra sulphuric acid (or reference to sulphuric acid in the mixture) and heat the mixture.

T4 No indicator is required (implied)
and end colour change in titration is from colourless/decolorised to [pale] pink
Allow pink or pale purple as the final colour
T5 Titrate until two consistent/concordant accurate titres are obtained
Accept "titres within $0.1 \mathrm{~cm}^{3 "}$ (unit needed).
T6 Calculate concentration of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the solution from specimen titration data.

G Gas collection-9 marks

G1 Pipette known volume of acid mixture and add Mg
No mark for selection of any other metal or of a metal carbonate
Thereafter mark ecf for other metals or a metal carbonate or NaHCO_{3}
G2 Precaution: Use Mg in excess
and in the form of powder/turnings or sandpaper/remove oxide layer before use
Reason: to ensure that both acids in the mixture react completely or speed reaction up or reference to MgO reacting to produce no gas
Two precautions and one reason are required

$$
\begin{aligned}
& \text { G3 Equations for reaction of both acids } \\
& \mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \text { and } \mathrm{Mg}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{MgC}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \\
& \mathrm{No} \mathrm{G3} \text { if metal carbonate produces an insoluble sulphate }(\text { eg CaCO }
\end{aligned}
$$

G4 Calculation of suitable maximum volume of acid mixture to use

Calculation must relate explicitly to the capacity of the syringe/collecting vessel.

G5 Calculation of suitable minimum mass of Mg (or other reagent) to use
G6 Collect gas in a gas syringe/ inverted burette/ inverted measuring cylinder and use of inner tube (or similar arrangement) to keep reagents apart at start
Marks can be scored from a neat labelled diagram, if drawn
If a metal carbonate was used, collection must be in a gas syringe
G7 Record final volume of gas (when fizzing ceases/when syringe stops moving)
G8 Repeat procedure and take mean of gas volumes/until volumes are consistent
G9 Specimen calculation of the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in mixture
Calculation must use volume of gas collected and the answer from strand T

P Precipitation (P) - 7 marks (maximum)

P1 Add excess aqueous barium nitrate/chloride to known volume (measured by pipette/ burette) of mixed acid.
P2 Equation for precipitation reaction(s), with state symbols and justification of volume (or mass) of aq barium compound used
P3 Filter using reduced pressure filtration with pre-weighed filter paper
P4 Two precautions from
o Wash all solid on to the filter funnel with distilled water
o Use of fine grade (or multiple sheets of) filter paper
o Wash solid on filter paper [to remove impurities]
o Repeat whole experiment and take mean results
P5 Dry in desiccator or in an oven until constant mass is achieved [1]
P6 Specimen calculation of concentration of sulphuric acid
M_{r} of sulphate (for $B a=233 ; C a=136$) must be shown in working

P7 A clear discussion of the solubility of barium ethanedioate or calculation of mass of barium ethanedioate precipitated

S Safety, Sources and QWC - 4 marks

S1 Safety:
Sulphuric acid is irritant/corrosive (depending on context of use in Plan): use safety spectacles or lab coat or wash with plenty of water if spilt

S2 Two sources quoted in the text or at end of Plan.

- Book references must have chapter or page numbers
- Internet reference must go beyond the first slash of web address
- Accept one reference to "Hazcards" without any qualification

S3 QWC: text is legible and spelling, punctuation and grammar are accurate

QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450-1050 words?
- Are scientific language used and chemical formulae quoted correctly?
- Are both experiments described in a logical sequence?

Practical Test (B)

Page 3 : Part 1

[17 marks]

Presentation of titration data

- Table grid drawn (at least three lines) and all burette data shown in the table, including first/trial.
- One correctly labelled table - three burette volumes clearly indicated and recorded "Reversed" data (eg final $=0.00$ and initial $=27.30$) forfeits this bullet
- Three (or more) sets of titration readings are shown
- All "accurate" burette data are quoted to two decimal places, ending in . 00 or .05 The 2 d.p. rule does not apply to the trial (if labelled as trial) but it does apply to " $0.00 \mathrm{~cm}^{3 \text { " }}$
- \quad No readings recorded above $50 \mathrm{~cm}^{3}$
- All subtractions are shown and are correct

Six bullets correct = 2 marks
 Five bullets correct = 1 mark
 Self-consistency of titres

- The two selected titres are within $0.10 \mathrm{~cm}^{3}$ at the first end-point
- The two selected total titres are within $0.10 \mathrm{~cm}^{3}$ at the second end-point

If 3 titres are used to calculate mean, assess on the spread of all three accurate titres.
For incorrect subtraction, award these marks using the candidate's own values.
The candidate may choose the trial titre if its value makes it appropriate to do so

- Units, cm^{3} or ml , must be given somewhere (once in the table is sufficient).

Three bullets correct = 2 marks: two bullets correct = 1 mark

Mean titres (A, B and C) calculated

- A may be calculated using either the closest two titres or the two accurate titres.

A candidate may use three titres if all are within $0.10 \mathrm{~cm}^{3}$.
e.g. if titres are 26.00, 26.10, 26.00-means of $26.00,26.03$, or 26.05 are all correct

Give the candidate the benefit of any legitimate doubt.

- B may be calculated using either the closest two titres or the two accurate titres.

A candidate may use different experiments to calculate \mathbf{A} and \boldsymbol{B}

- Correct subtraction to give C
- Units are shown at least once in this section
- \quad The means must be quoted correctly to 1 or 2 d.p (or to 3 d.p. only for . 025 or .075)

Five bullets correct = 2 marks: four bullets correct = 1 mark

Accuracy

Write down the supervisor's mean titres $(A$ and $B)$ next to the candidate's table.
Check the candidate's mean titres (A and B).

- Use the candidate's own means to assess accuracy, where suitable.
- Round the candidate's mean to the nearest $0.05 \mathrm{~cm}^{3}$
- Compare the mean supervisor's titres with the candidate's titres.
- Use the conversion chart below to award the marks for accuracy.

The accuracy for each mean titre is marked out of 5
(A is phenolphthalein end-point and B is methyl orange end-point)
A / B is within $0.25 \mathrm{~cm}^{3}$ of mean supervisor's value
[5]
A / B is within $0.40 \mathrm{~cm}^{3}$ of mean supervisor's value
A / B is within $0.60 \mathrm{~cm}^{3}$ of mean supervisor's value
A / B is within $0.90 \mathrm{~cm}^{3}$ of mean supervisor's value
A / B is within $1.20 \mathrm{~cm}^{3}$ of mean supervisor's value

Spread penalty

("Spread" is defined by the titres used by the candidate to calculate the mean)
If the titres have a spread of $0.40 \mathrm{~cm}^{3}$ or more, deduct 1 mark.
If the titres have a spread of $0.90 \mathrm{~cm}^{3}$ or more, deduct 2 marks (max on each titration).

Safety

Phenolphthalein contains ethanol since it has flammable hazard symbol or phenolphthalein, since methyl orange contains water which is not flammable.

Pages 4-6: Part 2

Mark ecf wherever possible from one part of an answer to the next.
Answers should be quoted to three significant figures (if the answer is a marking point)
(a) Concentration $=2.50 \times 10 / 250=0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
(b) Answer (a) is multiplied by difference between mean titres/ $/ 1000$

This is a method mark but the correct mean C must be used
(c) Answer quoted must be the same as that given in (b)
(d) 1 mark

Second chemical equation shows that $1 \underline{\mathrm{~mol}_{\mathrm{Na}} \mathrm{Na}_{3}}$ gives $1 \underline{\mathrm{~mol}} \mathrm{NaHCO}_{3}$
(e)(i) Answer is 40 times that given in (c)
(e)(ii) 2 marks
M_{r} of sodium carbonate $=106$
Correct answer obtained by candidate
No ecf allowed
(f)(i) Volume correctly calculated, $(\mathrm{A}-\mathrm{C})$, to one or two d.p.
(f)(ii) No of moles of HCl used $=\operatorname{answer~(i)~} \times$ answer (a) $/ 1000$
(f)(iii) Concentration of $\mathrm{NaOH}=$ no of moles of $\mathrm{HCl} \times 40$

Concentration of NaOH used, correctly worked out
(f)(iv) M_{r} of NaOH is 40

Mass of NaOH (= $40 \times$ iii), correctly calculated

(a)(i) 3 marks

Correct volumes used in both calculations - $10 \mathrm{~cm}^{3}$ and $250 \mathrm{~cm}^{3}$
$\%$ error in pipette $=0.30 \%($ or 99.70% accuracy $)$
\% error in vol flask $=0.080$ \% (or 99.92\% accuracy), so flask is more accurate
(ii) 2 marks

Burette reads to $0.05 / 0.1 \mathrm{~cm}^{3}$ so is less accurate than pipette [reads to 0.03]
Burette must be read twice, so error is increased/ accuracy reduced further
(b) 2 marks

Idea that reliable end points are consistent (or vice versa)
This mark not awarded if accuracy ideas are discussed (apparatus or indicator)
Candidate uses his/her own titre values appropriately to decide which end-point was more reliable or less reliable (or justifies that both were equally reliable)
(c) 5 marks (max) - but only 4 on question paper

Mark the best two strands

- Methyl orange or phenolphthalein end-point is indistinct /difficult to judge

Colour change at the end of each stage is gradual
Reference to specific end colour of chosen indicator is needed

- Double indicator titration involves more burette readings

There is cumulative error or increased \% error in the titration [1]
Sensible attempt made to calculate a combined \% error in expt

- Volume C is small/ only c13 cm^{3} [compared to a normal mean titre]

The \% error in measuring this volume is higher than in a titre of about $25 \mathrm{~cm}^{3}$

- Indicators interfere with each other
(d) 3 marks (max) Credit any three points from the following

Sodium carbonate is a base/ alkali or both chemicals contain OH^{-}ions
The pH of the mixed solution is higher than that of NaOH alone
However, the effect on pH is small since $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is a weak alkali or $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$

Correct concentration of NaOH corresponding to any stated pH value or equation(s) linking the pH to the hydroxide ion concentration or logarithmic scale increases \% error in measurement of concentration

Grade Thresholds

Advanced GCE Chemistry (3882/7882)
January 2009 Examination Series
Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2811	Raw	60	51	45	40	35	30	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	49	44	39	34	29	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	98	88	78	69	60	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	98	88	78	69	60	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	94	84	74	64	55	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	73	65	57	49	42	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	74	68	62	56	50	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	75	68	61	54	47	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	77	70	63	56	49	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	100	90	80	70	61	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	100	90	80	70	61	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	92	82	72	62	53	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 2}$	10.0	35.9	60.7	84.1	98.4	100	1206
$\mathbf{7 8 8 2}$	14.9	49.3	78.0	92.9	98.1	100	288

1694 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

