Abbreviations, annotations and conventions used in the Mark Scheme		/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question		Expected Answers	Marks
1 (a)	(i)	atoms of same element/same atomic number with different numbers of neutrons/different masses ✓	[1]
	(ii)	isotope protons neutrons electrons ⁴⁶ Ti 22 24 22 ✓ ⁴⁷ Ti 22 25 22 ✓	[2]
(b)		$A_{r} = \frac{(46 \times 8.9) + (47 \times 9.8) + (48 \times 81.3)}{100} / 47.724 \checkmark$ $= 47.7 \checkmark$	[2]
(c)		1s²2s²2p ⁶ 3s²3p ⁶ 3d²4s² ✓	[1]
(d)	(i)	⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ positive ions ✓ electrons ✓ (must be labelled)	[2]
	(ii)	electrons move ✓	[1]
(e)	(i) (ii)	moles Ti = $1.44/47.9 = 0.0301$ mol/0.03 mol (accept use of answer from (b)) mass of Cl = $5.70-1.44 = 4.26$ g \checkmark moles Cl = $4.26/35.5 = 0.120$ mol \checkmark $5.70/35.5 = 0.161$ mol gets 1 mark Ti:Cl = $0.0301 : 0.12 = 1:4$.	[2]
	(iii)	Empirical formula = TiCl₄ ✓ 0.0301 : 0.161 mol gives TiCl₅ for 1 mark	[1]
	(iv)	Ti + 2Cl₂ → TiCl₄ ✓ (ecf possible from (iii) covalent ✓	[1]
	(v)	simple molecular ✓	[2] Total: 16

۷.			
breviation	ıs,	/ = alternative and acceptable answers for the same marking	point
notations	and	; = separates marking points	
nventions		NOT = answers which are not worthy of credit	İ
ed in the N		() = words which are not essential to gain credit	j
heme		= (underlining) key words which <u>must</u> be used to gain credit	İ
Pilottio		ecf = error carried forward	
		AW = alternative wording	
		ora = or reverse argument	T .
uestion		Expected Answers	Marks
		RaCl₂ ✓	[1]
(a)		NaOl ₂ V	17
(b)		Reduction is gain of electrons/decrease in oxidation number	
		✓	
		Ra²⁺ gains 2 electrons ——→ Ra/	
		Oxidation state goes from +2 in RaCl₂ —→ 0 in Ra ✓	[2]
(c)	(i)	effervescence/bubbles ✓	
(-)	\- /	Ra disappears/dissolves ✓	[2]
			•
	(ii)	8-14 ✓	[1]
	(11)		• • •
(d)	(i)	First ✓ ionisation (energy) ✓	[2]
(4)	1.7	is not removed (energy)	•
<u>{</u>		$Ra(g) \longrightarrow Ra^{+}(g) + e^{-} \checkmark \checkmark$	
		1 mark for equation	
		1 mark for state symbols	
		I ▼	
		'-' not required on 'e'	[2]
		atomic radii of Ra > atomic radii of Ca/]
	(ii)	Ra has electrons in shell further from nucleus than Ca/	
	• •		
		Ra has more shells ✓	
		Ra has more shielding than Ca ✓	
		:'more' is essential	
		. More is essential	
		Ra electron held less tightly/less attraction on electron√	
		Ra election neid less tightly/less attraction on electrons	
			[3]
			Total: 13

used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
3 (a)	$Mg(OH)_2(s) + 2HCl(aq) \rightarrowMgCl_2(aq) + 2H_2O(l)$	[1]
(b) (i)	moles HCI = 0.108 x 500/1000 = 0.054 ✓	[1]
(ii)	moles $Mg(OH)_2 = \frac{1}{2} \times moles HCI = 0.027 \checkmark$ molar mass of $Mg(OH)_2 = 24.3 + 17x2 = 58.3 \checkmark$ (do not penalise 24)	
	mass Mg(OH) ₂ = 58.3 x 0.027 = 1.57 g / 1.5741 g ✓ (accept ans from (ii) x 0.027 = 1.566 g) (mass Mg(OH) ₂ of 3.15 g would score 2 marks as 'ecf' as molar ratio has not been identified)	[3]
(iii)	Too much if 2.42 g (dose) > ans to (ii) ✓ (If answer to (ii) > 2.42 g then 'correct' response here would be 'Not enough'	[1]
(c)	CaCO₃ reacts with (or neutralises) HCl ✓ (or CaCO₃ + HCl in an equation)	
	CaCO ₃ + 2HCl → CaCl ₂ + H ₂ O + CO ₂ ✓ (correct equation would score both marks)	[2]
		Total: 8

bbreviations, nnotations and onventions sed in the Mark cheme	/ = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
uestion	Expected Answers	Marks
(a)	Cl₂(g) → NaOCl(aq) : Cl(0) → Cl(+1) ✓ Cl₂(g) → NaCl(aq) : Cl(0) → Cl(-1) ✓ Cl is both oxidised (in forming NaOCl) and reduced (in forming NaCl)/disproportionation Cl reduces Cl to form NaCl AND Cl oxidises Cl in forming NaOCl ✓	[3]
(b) (i)	Cl ₂ + 2l ⁻ → l ₂ + 2Cl ⁻ ✓ ✓ 1 mark for species. 1 mark for balancing	[2]
(ii)	Cl atom is smaller/has less shells ✓ electron to be captured will be attracted more ✓	[2]
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
5 (a) (i)	H bonding from O of 1 H₂O molecule to H of another ✓ dipoles shown ✓ with lone pair involved in bond ✓	[3]
(ii)	Two properties from: Ice is lighter than water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓	
	Higher melting/boiling point than expected ✓ explanation: strength of H bonds that need to be broken ✓ must imply that intermolecular bonds are broken	
	High surface tension/viscosity ✓ explanation strength of H bonds across surface ✓	[4]
(b)	NH₃: 107° ✓ (range 106 – 108°) electron pairs repel other electron pairs ✓ lone pair has more repulsion ✓ electron pairs get as far apart as possible ✓	[4]
(c)	N has less protons than O (ora) ✓ electrons are in same shell /have same or similar shielding ✓ weaker nuclear attraction in N (ora) ✓ shell drawn in less by nuclear charge in N (ora) ✓ watch for distinction between nuclear attraction and nuclear charge in candidates' scripts.	[4]
	QoWC: links together two statements in at least two of the sections (a)(ii), (b) and (c) ✓	[1]
		Total: 16