Question		Expected Answers			Marks	
1	(a)	the energy required to break		✓		
		1 mole of gaseous bonds			[2]	
	(b)	(i)	Enthalpy of bonds broken = $4(410) + 2(500) = 2640$ Enthalpy of bonds made = $2(805) + 4(465) = 3470$ $\Delta H = -830 \text{ (kJ mol}^{-1})$			
			values for bonds broken	✓		
			values for bonds made	✓		
			correct answer	✓	[3]	
		(ii)	The <i>standard</i> enthalpy change of combustion requires H ₂ C liquid, not gaseous <i>or</i> reaction not carried out under standard conditions as band are reliable as a standard condition.			
			conditions <i>or</i> bond energies are average values/ bond energies vary in different environments	✓	[1]	
	(c)	(i)	$C_3H_8(g) + 5 O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$ (balancing \checkmark state symbols \checkmark)		[2]	
	required to successive		The energy for making the bonds in the product exceeds the required to break the bonds in the reactants/the difference successive ΔHc values is ΔH for $-CH_{2^-} + 1\frac{1}{2}O_2 \rightarrow CO_2 + H_2O$			
			this is because C=O bonds are very strong/ reason for increnergy based on specific bond strengths	easing ✓	[2]	

(iii)

$$C_3H_8 \longrightarrow C_2H_4 + CH_4$$
 $-2220 -1410 -890$
 $CO_2 + H_2O$
 $X - 1410 - 890 = -2220$
 $X = (+) 80$

cycle including $3CO_2$ and $4H_2O$

correct data

answer

OR

 $\Delta H^9 = \Delta H$ reactants $-\Delta H$ products

 $\Delta H^9 = -2220 + 890 + 1410$
 $= (+) 80$

Total: 13

2 (a)

labelled line for diamond above graphite

 Δ H/ 1.8 labelled \checkmark [2]

(b) graphite, **because** the change graphite → diamond is endothermic/ changes tend to go in direction of lower energy ✓ [1]

(c) diamond, **because** its density is greater than that of graphite/
reason based on known structures ✓ [1]

(d) (When a system in dynamic equilibrium is subjected to a change in conditions....) the (position of) equilibrium will shift

in the direction that minimises the effect of the change

(e) high pressure ✓

because the volume of 1 mol of diamond is less than that of 1 mol of graphite

high temperature ✓

because the change graphite to diamond is endothermic

Total: 10

[2]

[4]

3 (a) (i) $CI + O_3 \longrightarrow CIO + O_2$ equation 3.1 CIO + O \longrightarrow CI + O₂ equation 3.2 $O + O_3 \longrightarrow 2O_2$ overall equation ✓ [3] (ii) CI is the catalyst it is used up in one step and reformed in a subsequent step \checkmark [2] (b) **Essential point** heterogeneous means catalyst is in a different state /phase from reagents/products then

catalyst works by:

adsorption of gases onto surface/
forming(weak) bonds to catalyst to reactants

this weakens bonds in reactants/ reaction occurs on surface✓
activation energy is lowered/ reaction proceeds by different route✓
desorption of products from surface. ✓ [4max]

Total: 9

acids are H⁺ donors/ proton donors/ electron pair acceptors ✓ 4 (a) (i) [1] (ii) strong = completely ionised/dissociated ✓ [1] (i) 2HCl (aq) + Na₂CO₃ (aq) \longrightarrow 2NaCl (aq) + CO₂ (g) + H₂O (l/aq) (b) [1] (ii) fizzing/effervescence/gas given off [1] $2H^{+} + CO_3^{2-} \longrightarrow CO_2 + H_2O$ (iii) [1]

Total: 5

5	(a)	(i)	curve : starts at (0,0) and has its maximum at a lower ordinate va given curve	nate value than ✓		
			and to the right of the maximum on the given curve	✓	[2]	
		(ii)	more molecules have E > E _a (at higher T)/ shading on graph✓			
			so more collisions are effective in causing reaction/ more successful collisions	✓	[2]	
	(b)	(i)	reaction rate increases with pressure	✓		
			because the molecules are closer together	✓	[2]	
		(ii)	after the reaction has started the temperature/energy/speereactant molecules increases	ed of the		
			allowing $many$ molecules to have $E>E_a$, and thus speeding reaction	g up the	[2]	

Total: 8