June 2004	
√ [1]	
✓ [1]	
✓ [1]	
✓ [1]	

(b)
$$(C_4H_9OH \rightarrow) C_4H_8 + H_2O \qquad \checkmark [1]$$

(c) any unambiguous formula:

buta-1,3-diene \checkmark [1] name ecf to the structure only if structure above has formula C_4H_6

[Total : 7]

Final	Mark	Scheme	
-------	------	--------	--

June 2004

√[1]

√[1]

C/
$$\sim$$
 must be shown as a product \sim [1]

(at least 1) lone pair of electrons on the O in the OH $\overline{}$ with curly arrow from the lone pair on the OH $\overline{}$ to the C^(δ +)

curly arrow from C-C/ bond to the
$$Cl^{\flat-}$$
 \checkmark [1]

The mechanism below would get all 4 marks.

(b) (i)	mark for method/dividing by Ar/	C, 3.15; H, 6.3; Cl, 1.58.	√ [1]
	divide by smallest to get C_2H_4CI	alternative method: % of each element x 127 ÷ A _r of that	√[1]
(ii)	C₄H ₈ Cl₂	element = molecular formula, hence deduce empirical formula	√[1]

(iii) any unambiguous form of:

$$\begin{array}{cccccccccc}
H & H & H & H & & \checkmark [1] \\
H - C - C - C - C - O H & & & \\
H & H & H & H & & \\
H & O H H & H & & & \\
\end{array}$$

(iv) any unambiguous form of: $\begin{array}{cccc}
H & H & H \\
H & -C & -C & -C \\
H & C & H \\
H & C & H \\
\end{array}$ (iv) any unambiguous form of: $\begin{array}{cccc}
H & H & H \\
H & -C & -C & -C \\
H & C & -C & -C \\
H & C & -C & -C \\
\end{array}$ (iv) any unambiguous form of: $\begin{array}{cccc}
H & H & H \\
H & -C & -C & -C \\
H & -C & -C & -C \\
\end{array}$

ecf to (iii) provided that there are two OH's in (iii)

Final Mark Scheme			2812/01	June 2004
(c) (i)	ethanol/ alcohol			✓ [1]
(ii)	elimination/dehydroh	algenation/deh	nydrochlorination	√[1]
(iii)	any unambiguous for	m of but-1-ene	9.	✓ [1]
(iv)	C₄H ₉ Cl + (Na⁺)OH⁻	$\rightarrow C_4H_8$ + F	H₂O + (Na ⁺)Cl⁻	√ [1]
(d)	H C ₂ H ₅ H C ₂ CCC H H H H	^H ₅ 1 mark is consists o attempt ha	available if the backbone f 4 C atoms and a reasonable as been made	√√ [2]
(e)(i)	reagent J	NH ₃		√ [1]
(ii)	product K	HBr/NH₄Br		✓ [1]

(iii) ethanol (as solvent)/high temp(heat) + (high) pressure/heat in a sealed tube ✓ [1]

[Total : 18]

Final Mark Scheme		2812/01	June 2004
3 (a)	Same molecular formula arrangement of atoms/b	a, different structure /displayed formi oonds	ula/ ✓ ✓ [2]
	(Same <u>formula</u> , differe	ent structure/displayed formula/arrang	gement of atoms ✓ [1])
(b) (i)	3-methylbut-1-ei (any unambiguo	ne and 2-methylbut-2-ene us structure/formula is acceptable)	√√[2]
(ii)	2-methylbut-1-ei	ne/2-methyl-1-butene	√ [1]
(iii)			√ [1]
			[']

(c)(i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2-dimethylcyclopropane

Final Mark Scheme		2812/01				June 2004	
4 .(a)	(i)	Alkene/C=C					√ [1]
		Alcohol/ROH/	hydroxy/h	iydroxyl/OF	I (not OH ⁻ or hydro	oxide)	✓ [1]
(ii)		One of the C in both C=C is joined to two atoms or groups that are					e the same ✓ [1]
(b)	Obser	vation	decolour	risation(of E	Br ₂)		√ [1]
	Moleci	ular formula	C ₁₀ H ₁₈ O	Br ₄			√√ [2]
			C	$C_{10}H_{18}OBr_2$	gets 1 mark		
(c)		reagent	C	CH₃COOH			√ [1]
		catalyst	F	I₂SO₄/H⁺/H	Cl (aq) or dilute lo	ses the mark	√ [1]
(d)(i)		C ₁₀ H ₁₈ O +	2[O] →	$C_{10}H_{16}O_2$	+ H ₂ O	•	✓ [2]
			1 mark fo	or H_2O and	1 mark for 2[O]		
(ii)	The in	fra-red spectru	m was of	compound	Y		
	becau	se absorption t	etween 1	680 – 1750) cm ⁻¹ indicates a (C=0	√ [1]

and the absence of a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid \checkmark [1]

[Total : 12]

√[1]

5 Variation in boiling points. (max = 4 marks) As chain length increases, boiling point increases

due to increased number of electrons/ surface area/ more van der Waals forces / intermolecular forces/ more surface interactions \checkmark [1]

As branching increases, boiling point decreases \checkmark [1] straight chains can pack closer together/ straight chains have greater surface area/ \checkmark [1] more van der Waals forces /more intermolecular forces/ more surface interactions

Isomerisation

(max = 4 marks)

(produces) branched chain alkanes √[1]

equation to illustrate any isomerisation (of octane)√[1]

or any other branched isomer of octane

Branched chains are better/more efficient fuels/used as additives <a>[1]

because they are more volatile/easier to ignite/burn more easily/higher octane number(rating)/lower boiling points/reduces knocking(pinking)

QWC mark

- use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition
- reasonable spelling, punctuation and grammar throughout
 ✓[1]

[Total : 9]