1 (a)
(i) $\quad \mathrm{C}_{4} \mathrm{H}_{10}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ \checkmark [1]
(iii) B and E
(iv) A and F
(b) $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow\right) \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O}$
(c) any unambiguous formula:

$\mathrm{CH}_{2} \mathrm{CHCHCH} 2$

buta-1,3-diene
name ecf to the structure only if structure above has formula $\mathrm{C}_{4} \mathrm{H}_{6}$
\checkmark [1]
[Total : 7]

2(a)

Cl^{-}must be shown as a product
(at least 1) lone pair of electrons on the O in the OH^{-}with curly arrow from the lone pair on the OH^{-}to the $\mathrm{C}^{(\delta+)}$
dipoles on the $\mathrm{C}-\mathrm{C} /$ bond
curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to the $\mathrm{C} \dot{\rho}^{-}$

The mechanism below would get all 4 marks.

(b) (i) mark for method/dividing by $\mathrm{A}_{\mathrm{r}} / \mathrm{C}, 3.15 ; \mathrm{H}, 6.3 ; \mathrm{Cl}, 1.58$.	$\checkmark[1]$		
	divide by smallest to get $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}$	$\begin{array}{l}\text { alternative method: } \\ \text { \% of each element } \times 127 \div \mathrm{A}_{\mathrm{r}} \text { of that } \\ \text { element }=\text { molecular formula, hence } \\ \text { deduce empirical formula }\end{array}$	$\checkmark[1]$
(ii)	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$	$\checkmark[1]$	

(iii) any unambiguous form of:

(iv) any unambiguous form of:

ecf to (iii) provided that there are two OH's in (iii)
(c) (i) ethanol/ alcohol
(ii) elimination/dehydrohalgenation/dehydrochlorination
(iii) any unambiguous form of but-1-ene.
(iv) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\left(\mathrm{Na}^{+}\right) \mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O}+\left(\mathrm{Na}^{+}\right) \mathrm{Cl}^{-}$ \checkmark [1]
(d)

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made
(e)(i) reagent J NH_{3}
(ii) product $\mathrm{K} \quad \mathrm{HBr} / \mathrm{NH}_{4} \mathrm{Br} \quad \checkmark$ [1]
(iii) ethanol (as solvent)/high temp(heat) + (high) pressure/heat in a sealed tube \checkmark [1]

3 (a)
Same molecular formula, different structure /displayed formula/ arrangement of atoms/bonds
(Same formula, different structure/displayed formula/arrangement of atoms
(b) (i) 3-methylbut-1-ene and 2-methylbut-2-ene (any unambiguous structure/formula is acceptable)
(ii) 2-methylbut-1-ene/2-methyl-1-butene
(iii)

(c)(i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2dimethylcyclopropane

allow

(ii) cyclopentane
(iii)

(d)(i) homolytic
(ii) $\quad \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$ (need \bullet on the Cl ... penalise only once in the 3 equations)
(iii)

$$
\begin{array}{ll}
\text { I } & \left(\mathrm{C}_{5} \mathrm{H}_{10}\right)+\underline{\mathrm{Cl}} \bullet \rightarrow\left(\bullet \mathrm{C}_{5} \mathrm{H}_{9}\right)+\underline{\mathrm{HCl}} \\
\text { II } & \left(\cdot \mathrm{C}_{5} \mathrm{H}_{9}\right)+\underline{\mathrm{Cl}_{2}} \rightarrow \underline{\mathrm{C}}_{5} \underline{H}_{9} \underline{\mathrm{Cl}}+\underline{\mathrm{Cl} \cdot} \tag{1}
\end{array}
$$

4.(a) (i) Alkene $/ \mathrm{C}=\mathrm{C}$ \checkmark [1]

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH ${ }^{-}$or hydroxide)
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same
(b)
Observation

Molecular formula
decolourisation (of Br_{2}) \checkmark [1]
$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{4}$
$\checkmark \checkmark$ [2]
$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{2}$ gets 1 mark
(c)
reagent
$\mathrm{CH}_{3} \mathrm{COOH}$
\checkmark [1]
catalyst
$\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{HCl}(\mathrm{aq})$ or dilute loses the mark
(d)(i)
$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
1 mark for $\mathrm{H}_{2} \mathrm{O}$ and 1 mark for 2[O]
(ii) The infra-red spectrum was of compound \mathbf{Y}
because absorption between $1680-1750 \mathrm{~cm}^{-1}$ indicates a $\mathrm{C}=\mathrm{O}$
and the absence of a peak between $2500-3300 \mathrm{~cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid

Variation in boiling points. (max = 4 marks)

As chain length increases, boiling point increases
due to increased number of electrons/ surface area/ more van der Waals forces / intermolecular forces/ more surface interactions

As branching increases, boiling point decreases
straight chains can pack closer together/ straight chains have greater surface area/ \checkmark [1] more van der Waals forces /more intermolecular forces/ more surface interactions

Isomerisation

(max $=4$ marks)
(produces) branched chain alkanes
equation to illustrate any isomerisation (of octane) $\mathfrak{\checkmark}$ [1]

Branched chains are better/more efficient fuels/used as additives
because they are more volatile/easier to ignite/burn more easily/higher octane number(rating)/lower boiling points/reduces knocking(pinking)

QWC mark

- use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition
- reasonable spelling, punctuation and grammar throughout

