Ques	tion	Expected Answers	· · · · · · · · · · · · · · · · · · ·			Marks
1						
(a)		isotope	protons	neutrons	electrons	
		nickel-58	28	30	28	
		nickel-60	28	32	28	
		nickel-62	28	34	28	
			✓	\checkmark	\checkmark	[3]
		For ecf, 3rd column	same as firs	st column.		
(b)	(i) mass spectrometry ✓					
		mass spec /mass	spectromet	er should also	be credited	[1]
	(ii)	average mass/weighted mean mass of an atom ✓ compared with carbon-12 ✓ 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 ✓ mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" ——→ 2 marks (mark lost because of mass units)			[3]	
	(iii)	63.0 x 77.2/100 + 6 = 63.5 (mark for sign			/	[2]
	(iv)	copper/ Cu ✓				[1]
(c)	 (i) mass of Ni = 2.0.g ✓ moles of Ni = 2.0/58.7 mol = 0.0341/0.034 mol ✓ (1 mark would typically result from no use of 25% → 0.136 mol) 2nd mark is for the mass of Ni divided by 58.7 			25% → 0.136	[2]	
		number of atoms of = 2.05 x 10 ²² / 2.1 x Can be rounded dov From 8 g, ans = 8.18 (and other conseque	10 ²² atoms over to 2.1 or 2 8/8.2 x 10 ²²	✓ 2.0 or 2 (if 2.0)	[1]
	***************************************					Total: 13

Question		Expected Answers	Marks	
2 (a)	(i)	⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ positive ions/cations ✓ and negative electrons ✓ Can be described in words only for both marks	[2]	
	(ii)	contain free/mobile/delocalised electrons ✓	[1]	
(b)	(i)	shared pair of ✓ electrons ✓ i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks	[2]	
	(ii)	correct dot-and cross diagram ✓	[1]	
(c)	(i)	electrostatic attraction ✓ between oppositely charged ions ✓ (charged or electrostatic for 1st mark)	[2]	
	(ii)	correct dot-and cross diagram ✓ correct charges ✓	[2]	
	(iii)	Mg \longrightarrow Mg ²⁺ + 2e ⁻ \checkmark F ₂ + 2e ⁻ \longrightarrow 2F ⁻ \checkmark – sign not required with electron	[2]	
	(iv)	solid: ions cannot move /in fixed positions in lattice ✓ solution: ions are free to move ✓	[2]	
			Total: 14	

Question		Expected Answers	Marks	
3 (a)		NaClO, oxidation state = +1 ✓ NaCl, oxidation state = -1 ✓ OR Oxidation number decreases from NaClO → NaCl ✓ by 2 ✓	[2]	
(b)	(i)	84/24000 = 3. 5 x 10 ⁻³ mol ✓	[1]	
1	(ii)	3.5 x 10 ⁻³ mol ✓ ans to (i)	[1]	
Į.	(iii)	$3.5 \times 10^{-3} \times 1000/5 = 0.70 \text{ mol dm}^{-3} \checkmark$ ans to (ii) x 1000/5	[1]	
(c)		molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓ concentration = 0.70 x 74.5 = 52.15 g (dm ⁻³) ✓ ans to (iii) x 74.5 bleach is 5.215 g per 100 cm ³ and the information is correct (as this value exceeds 4.5%) ✓ response depends upon answer to (b)(iii). Could be opposite argument if ans < 4.5% OR molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) ✓ moles of NaOCl = 4.5/74.5 = 0.0604 mol (in 100 cm ³) ✓ bleach is 10 x 0.0604 = 0.604 mol dm ⁻³ which is less than answer to (b)(iii) and therefore label is correct. ✓ response depends upon answer to (b)(iii). Could be opposite argument if ans 0.604	[3]	
(d)		2HCI + NaCIO \longrightarrow Cl ₂ + NaCI + H ₂ O \checkmark \checkmark Award one mark for: HCI + NaCIO \longrightarrow Cl ₂ + NaOH	[2]	
			Total: 10	

Question			Expected Answers	Marks
4	(a)	a) (i) Answer is inclusive of 9 – 14 inclusive ✓		[1]
		(ii)	Ca(s): $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 \checkmark$	
			Ca(OH) ₂ (aq): $1s^22s^22p^63s^23p^6 \checkmark$	[2]
	(b)	(i)	Identity of precipitate A: calcium carbonate / CaCO₃ ✓	
			Equation: $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O \checkmark$ equation alone would score 2 marks unless contradicted by identity	[2]
		(ii)	Formula of solution B: Ca(HCO₃)₂ ✓	
			Equation: $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2 \checkmark$ equation alone would score 2 marks unless contradicted by identity	[2]
		(iii)	CaCl₂ ✓	[1]
	(c)		barium atoms are larger ✓	
l			barium atoms have more shielding ✓	
			this outweighs the increase in nuclear charge ✓	
			barium electrons are lost more easily	
			/less energy required /ionisation energy decreases ✓	[4]
				Total: 12

Question	Expected Answers	Marks	
5 (a)	H ₂ O H bonding from O of 1 molecule to H of another ✓ dipoles shown or described ✓ with lone pair of O involved in the bond ✓	[3]	
	CH₄ van der Waals' forces from oscillating dipoles/ temporary dipoles/ transient dipoles/ instantaneous dipoles ✓		
	leading to induced dipoles ✓ caused by uneven distribution of electrons ✓	[3] sub-total: 6	
(b)	Two properties from: Ice is less dense/lighter than water/floats on water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓	[2]	
	Higher melting/boiling point than expected ✓ Not just high Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken ✓ must imply that intermolecular bonds are broken	[2]	
	High surface tension ✓ explanation strength of H bonds across surface ✓	[2] mark 2 properties only	
	QoWC over whole question — legible text with accurate spelling, punctuation and grammar ✓	[1]	
		Total: 11	