Question	Expected Answers	Marks
1 (a)	isotope protons neutrons electrons nickel-58 28 30 28 nickel-60 28 32 28 nickel-62 28 34 28 \checkmark \checkmark \checkmark For ecf, 3rd column same as first column.	[3]
(b) (i) (ii) (iii) (iv)	mass spectrometry \checkmark mass spec... /mass spectrometer should also be credited average mass/weighted mean mass of an atom \checkmark compared with carbon-12 \checkmark $1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is $12 \checkmark$ mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" $\longrightarrow 2$ marks (mark lost because of mass units) $63.0 \times 77.2 / 100+65.0 \times 22.8 / 100 / 63.456$ $=63.5$ (mark for significant figures) copper/ Cu \checkmark	[1] [3] [2] [1]
(c) (i) (ii)	$\begin{aligned} & \text { mass of } \mathrm{Ni}=2.0 \mathrm{~g} \checkmark \\ & \text { moles of } \mathrm{Ni}=2.0 / 58.7 \mathrm{~mol}=0.0341 / 0.034 \mathrm{~mol} \checkmark \\ & (1 \mathrm{mark} \text { would typically result from no use of } 25 \% \rightarrow 0.136 \\ & \mathrm{mol}) \\ & 2 \mathrm{nd} \text { mark is for the mass of Ni divided by } 58.7 \\ & \\ & \text { number of atoms of } \mathrm{Ni}=6.02 \times 10^{23} \times 0.0341 \\ & =2.05 \times 10^{22} / 2.1 \times 10^{22} \text { atoms } \checkmark \\ & \text { Can be rounded down to } 2.1 \text { or } 2.0 \text { or } 2 \text { (if } 2.0 \text {) } \\ & \text { From } 8 \mathrm{~g}, \text { ans }=8.18 / 8.2 \times 10^{22} \\ & \text { (and other consequential responses) } \\ & \hline \end{aligned}$	[2] [1]
		Total: 13

Question	Expected Answers	Marks
2 (a) (i) (ii)	$\oplus-\oplus-\oplus$ $\oplus-\oplus-\oplus-\oplus$ \oplus positive ions/cations \checkmark and negative electrons \checkmark Can be described in words only for both marks contain free/mobile/delocalised electrons	[2] [1]
(b) (i) (ii)	shared pair of \checkmark electrons \checkmark i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks correct dot-and cross diagram \checkmark	[2] [1]
(c) (i) (ii) (iii) (iv)	electrostatic attraction \checkmark between oppositely charged ions \checkmark (charged or electrostatic for 1st mark) correct dot-and cross diagram \checkmark correct charges \checkmark $\begin{aligned} & \mathrm{Mg} \\ & \mathrm{~F}_{2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \checkmark \\ & 2 \mathrm{~F}^{-} \checkmark \end{aligned}$ - sign not required with electron solid: ions cannot move /in fixed positions in lattice solution: ions are free to move \checkmark	[2] [2] [2] [2]
		Total: 14

Question	Expected Answers	Marks
3 (a)	NaClO , oxidation state $=+1 \checkmark$ NaCl , oxidation state $=-1$ OR Oxidation number decreases from $\mathrm{NaClO} \longrightarrow \mathrm{NaCl} \checkmark$ by 2	[2]
(ii) (iii)	$\begin{aligned} & 84 / 24000=3.5 \times 10^{-3} \mathrm{~mol} \\ & 3.5 \times 10^{-3} \mathrm{~mol} \\ & \text { ans to (i) } \\ & 3.5 \times 10^{-3} \times 1000 / 5=0.70 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { ans to (ii) } \times 1000 / 5 \end{aligned}$	[1] [1] [1]
(c)	$\begin{aligned} & \text { molar mass of } \mathrm{NaClO}=23+16+35.5=74.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & \text { concentration }=0.70 \times 74.5=52.15 \mathrm{~g}\left(\mathrm{dm}^{-3}\right)^{\checkmark} \\ & \text { ans to (iii) } \times 74.5 \end{aligned}$ bleach is 5.215 g per $100 \mathrm{~cm}^{3}$ and the information is correct (as this value exceeds 4.5%) response depends upon answer to (b)(iii). Could be opposite argument if ans < 4.5\% OR molar mass of $\mathrm{NaClO}=23+16+35.5=74.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\vee}$ moles of $\mathrm{NaOCl}=4.5 / 74.5=0.0604 \mathrm{~mol}\left(\right.$ in $\left.100 \mathrm{~cm}^{3}\right) \checkmark$ bleach is $10 \times 0.0604=0.604 \mathrm{~mol} \mathrm{dm}^{-3}$ which is less than answer to (b)(iii) and therefore label is correct. response depends upon answer to (b)(iii). Could be opposite argument if ans 0.604	[3]
(d)	$\begin{aligned} & 2 \mathrm{HCl}+\mathrm{NaClO} \longrightarrow \mathrm{Cl}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark \\ & \text { Award one mark for: } \\ & \mathrm{HCl}+\mathrm{NaClO} \longrightarrow \mathrm{Cl}_{2}+\mathrm{NaOH} \end{aligned}$	[2]
		Total: 10

Question	Expected Answers	Marks
$\begin{array}{lll} \hline 4 & \text { (a) } & \text { (i) } \\ & & \text { (ii) } \end{array}$	Answer is inclusive of $9-14$ inclusive $\begin{array}{ll} \mathrm{Ca}(\mathrm{~s}): & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} \\ \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}): & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark \end{array}$	[1] [2]
(b) (i) (ii) (iii)	Identity of precipitate A: calcium carbonate $/ \mathrm{CaCO}_{3}$ Equation: $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$ equation alone would score 2 marks unless contradicted by identity Formula of solution $\mathrm{B}: \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \checkmark$ Equation: $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \checkmark$ equation alone would score 2 marks unless contradicted by identity $\mathrm{CaCl}_{2} \checkmark$	[2] [2] [1]
(c)	barium atoms are larger \checkmark barium atoms have more shielding this outweighs the increase in nuclear charge \checkmark barium electrons are lost more easily /less energy required /ionisation energy decreases	[4]
		Total: 12

Question	Expected Answers	Marks
5 (a)	$\mathrm{H}_{2} \mathrm{O}$ H bonding from O of 1 molecule to H of another \checkmark dipoles shown or described \checkmark with lone pair of O involved in the bond \checkmark CH_{4} van der Waals' forces from oscillating dipoles/ temporary dipoles/transient dipoles/ instantaneous dipoles \checkmark leading to induced dipoles \checkmark caused by uneven distribution of electrons	[3] [3] sub-total: 6
(b)	Two properties from: Ice is less dense/lighter than water/floats on water/ max density at $4^{\circ} \mathrm{C} \checkmark$ explanation: H bonds hold $\mathrm{H}_{2} \mathrm{O}$ molecules apart / open lattice in ice / H -bonds are longer \checkmark Higher melting/boiling point than expected Not just high Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken \checkmark must imply that intermolecular bonds are broken High surface tension \checkmark explanation strength of H bonds across surface \checkmark	[2] [2] [2] mark 2 properties only $\longrightarrow 4 \text { max }$
	QoWC over whole question - legible text with accurate spelling, punctuation and grammar	[1]
		Total: 11

