| 1(a) | 400 - 550 °C or 670 - 825 K (assume Celsius if no units specified) | ✓ | [1] | |------|---|------------------------------|------------------------------| | (b) | (i) rate/reaction is (too) slow <i>or</i> "time consuming" (ignore ref. to "yield", be mark if candidate states that " equilibrium yield is low") | out don't | award | | | (ii) equilibrium/reaction is pushed over to left hand side or yield is decrea | | | | | or less ammonia is formed (NOT "is expensive") | √ | [1] | | (c) | (i) either the rate or the (equilibrium) yield will increase (or more NH ₃ for | med)
✓ | [1] | | | (ii) costs will be high <i>or</i> safety will be compromised <i>or</i> is dangerous (NOT environmental problems) | ✓ | [1] | | (d) | they are recycled/re-used/put back in/re-reacted | ✓ | [1] | | (e) | any 2 of: as, or to make, fertilisers or refrigerants; to make nitric acid, polyamides, explosives, dyes (NOT "in agriculture", "as a feedstock", "in gunpowder". If mentioned in the appropriate context, deduct [1] max) | √√
"makino | [2]
g" is not
8 | | 2(a) | forward rate/reaction = reverse rate/reaction (a statement that the concentration of reactants and products negates) can be approached from either direction or reversible reaction change from reactants to products and vice versa no change in overall macroscopic properties (or one specified colour/concentration) or appears to have stopped takes place in a closed system | n <i>or</i> (co | nstant) | | (b) | bonds broken: $4 \times (S-CI)$ = 4×255 = 1020
(or $2 \times (S-CI)$ = 2×255 = 510) | | ✓ | | | bonds formed: $2 \times (S-CI) + 1 \times (S-S) + 1 \times (CI-CI) = 2 \times 255 + 266 + 242$
$(or\ 1 \times (S-S) + 1 \times (CI-CI) = 266 + 242$ | 2 = 10
= 50 | 018√
08) | | | $\Delta H = (+)2 \text{ kJ mol}^{-1}$ ans.(i.e. broken – formed) | √(e.c. | .f.) [3] | | | (possible e.c.f values:: $-2 \text{ or } +268 \text{ or } \pm 2038 \text{ or } \pm 1018 \text{ as a result}$ (there may be others!) -268 [1] | of 510 · | + 518 [2]) | | | allow "working" marks for: sum of bonds on l.h.s. ✓ sum of bonds on r.h.s. ✓ | | | | (c) | because is positive or reaction is endothermic equilibrium/reaction will move to right hand side \checkmark (consistent with an but not by very much because ΔH is so small alternative for last 2 marks: $\Delta H \sim 0$ [1], therefore only a slight effect on | ns. in b) | [3] | | 3(a) | (i) the enthalpy change when 1 mole of compound/substance/element/m | olecule | ✓ | |------|---|---------|------------| | | is completely burned or burned in an excess of oxygen | ✓ | | | | at 1 atm + 298 K (or "a stated temperature" – in words) or under standard conditions (of T and P) | ✓ | [3] | | | (ii) $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$ (balancing for 1 mole | propane |) √
[2] | (i) $C(s) + H_2(g)$ do not easily combine (at 298K) or E_{act} is too high (b) or if they did, different hydrocarbons (e.g. CH₄) would be produced as well ✓ [1] [do NOT allow "isomers are formed"] (st. symbols, as long as oxygen is used) [2] (ii) $$\Delta H^{e}_{f}$$ = 3 x $\Delta H_{c}(C)$ + 4 x $\Delta H_{c}(H_{2})$ - $\Delta H_{c}(C_{3}H_{8})$ = -1182 - 1144 + 2220 = -2326 + 2220 = -106 kJ mol⁻¹ (e.c.f. see below) possible e.c.f values: $$+106$$ or -1250 or $+1540$ or ± 4546 [2] $+1250$ or -1540 or ± 2112 or ± 2182 or ± 2258 [1] for other answers see if you can award any of the following "working" marks use of the correct multipliers (3,4,1) allow "working marks" for use of the correct ΔH^{\bullet}_{c} values and the correct signs \checkmark last mark is for "left - right" correctly calculated 4(a) (i) curve starts at (0,0) and then peaks ✓ then falls off more gradually ✓ (it should NOT be symmetrical or meet the x-axis) (ii) the (minimum) energy required by the reacting molecules in order for them to react [1] or (minimum) energy for a reaction to take place or (minimum) energy to produce a reaction or energy barrier to a reaction [NOT just the energy needed to break bonds] (iii) see $E_a(cat)$ on graph above: $E_a(cat)$ must be to the left of E_a [1] catalysts offer an alternative route [or binds substrate or adsorbs reactant] (b) of lower activation energy so more molecules have E > Ea or more molecules can react or more collisions are successful in bringing about a reaction homogeneous - same phase/state, heterogeneous - different phases/states√ examples:(in the examples accept unbalanced equations as long as the starting materials and products are (virtually) correct) (homogeneous) e.g. Cl* in the stratosphere catalysing $2O_3 \longrightarrow 3O_2$ (or two propagation equations) or e.g. H⁺ during esterification or enzymes/zymase in fermentation catalysing $C_6H_{12}O_6 \longrightarrow 2C_2H_6O + 2CO_2$ (heterogeneous) e.g. Pt in catalytic converters catalysing NO + CO $\longrightarrow \frac{1}{2}N_2 + CO_2$ e.g. Fe in Haber or catalysing $N_2 + 3H_2 \longrightarrow 2NH_3$ identity of catalyst √ equation (in general: (deduct [1] if the stated catalysts are not described in the right homo-heterogeneous context) 8 marking points max[7] Q of w C:At least two clauses/sentences that express a logical sequence of ideas.✓ [1] (ii)(As H⁺(aq) is used up by reaction with CaCO₃(s)) **the equilibrium continually moves** (to the r.h. side) So eventually all the HCO₂H reacts or same concentration/no of moles of reactant give the same amount of product [2] [2]