1(a) $400-550^{\circ} \mathrm{C}$ or $670-825 \mathrm{~K}$ (assume Celsius if no units specified) $\checkmark \quad$ [1]
(b) (i) rate/reaction is (too) slow or "time consuming" (ignore ref. to "yield", but don't award mark if candidate states that "equilibrium yield is low")
(ii) equilibrium/reaction is pushed over to left hand side or yield is decreased or less ammonia is formed (NOT "is expensive")
(c) (i) either the rate or the (equilibrium) yield will increase (or more NH_{3} formed)
(ii) costs will be high or safety will be compromised or is dangerous (NOT environmental problems)
(d) they are recycled/re-used/put back in/re-reacted
(e) any 2 of: as, or to make, fertilisers or refrigerants;
to make nitric acid, polyamides, explosives, dyes
(NOT "in agriculture", "as a feedstock", "in gunpowder". If "making" is not mentioned in the appropriate context, deduct [1] max)

2(a) any 2 of:

- forward rate/reaction = reverse rate/reaction (a statement that the concentration of reactants and products are equal negates)
- can be approached from either direction or reversible reaction or (constant) change
from reactants to products and vice versa
- no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped
- takes place in a closed system
(b) bonds broken: $4 \times(\mathrm{S}-\mathrm{Cl})=4 \times 255=1020 \quad \checkmark$

$$
\text { (or } 2 \times(S-C l)=2 \times 255=510)
$$

bonds formed: $2 \times(\mathrm{S}-\mathrm{Cl})+1 \times(\mathrm{S}-\mathrm{S})+1 \times(\mathrm{Cl}-\mathrm{Cl})=2 \times 255+266+242=1018 \mathrm{r}$ $(\operatorname{or} 1 \times(\mathrm{S}-\mathrm{S})+1 \times(\mathrm{Cl}-\mathrm{Cl})=266+242=508)$
$\Delta H=(+) 2 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ ans.(i.e. broken - formed) $\quad \checkmark$ (e.c.f.) [3]
(possible ϵ. c.f values:: -2 or +268 or ± 2038 or ± 1018 as a result of $510+518$ [2]) (there may be others!) -268 [1]
allow "working" marks for: sum of bonds on I.h.s. \checkmark sum of bonds on r.h.s.
(c) because is positive or reaction is endothermic $\quad \checkmark$ (consistent with ans. in b) equilibrium/reaction will move to right hand side \checkmark (consistent with ans. in b) but not by very much because ΔH is so small \checkmark

3(a) (i) the enthalpy change when 1 mole of compound/substance/element/molecule is completely burned or burned in an excess of oxygen
at $1 \mathrm{~atm}+298 \mathrm{~K}$ (or "a stated temperature" - in words) or under standard conditions (of T and P)
(ii) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ (balancing for 1 mole propane) (st. symbols, as long as oxygen is used)
(b) (i) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$ do not easily combine (at 298 K) or $\mathrm{E}_{\text {act }}$ is too high or if they did, different hydrocarbons (e.g. CH_{4}) would be produced as well \checkmark [1] [do NOT aliow "isomers are formed"]
(ii) $\Delta H^{\ominus}=3 \times \Delta H_{c}(C)+4 \times \Delta H_{c}\left(H_{2}\right)-\Delta H_{c}\left(\mathrm{C}_{3} H_{8}\right)$

$$
=-1182-1144+2220
$$

$$
\begin{equation*}
=-2326+2220=-106 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \text { (e.c.f. see below) } \tag{3}
\end{equation*}
$$

possible e.c.f values: +106 or -1250 or +1540 or ± 4546

$$
\begin{equation*}
+1250 \text { or }-1540 \text { or } \pm 2112 \text { or } \pm 2182 \text { or } \pm 2258 \tag{2}
\end{equation*}
$$

for other answers see if you can award any of the following "working" marks
allow "working marks" for use of the correct multipliers $(3,4,1)$ use of the correct ΔH° calues and the correct signs \checkmark last mark is for "left - right" correctly calculated
 curve starts at $(0,0)$ and then peaks \checkmark then falls off more gradually (it should NOT be symmetrical or meet the x-axis)
(ii) the (minimum) energy required by the reacting molecules in order for them to react
or (minimum) energy for a reaction to take place or (minimum) energy to produce a reaction or energy barrier to a reaction [NOT just the energy needed to break bonds]
(iii) see E_{a} (cat) on graph above: $E_{a}(c a t)$ must be to the left of E_{a}
(b) catalysts offer an alternative route [or binds substrate or adsorbs reactant] \checkmark of lower activation energy
so more molecules have $E>E_{a}$ or more molecules can react or more collisions are successful in bringing about a reaction homogeneous - same phase/state, heterogeneous - different phases/states \checkmark
examples:(in the examples accept unbalanced equations as long as the starting materials and products are (virtually) correct)
(homogeneous) e.g. Cl^{\bullet} in the stratosphere $\quad \checkmark$
or e.g. H^{+}during esterification catalysing $\mathrm{RCO}_{2} \mathrm{H}+\mathrm{ROH} \longrightarrow \mathrm{RCO}_{2} \mathrm{R}+\mathrm{H}_{2} \mathrm{O}$
or enzymes/zymase in fermentation catalysing $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{CO}_{2}$
(heterogeneous) e.g. Pt in catalytic converters catalysing $\mathrm{NO}+\mathrm{CO} \longrightarrow 1 / 2 \mathrm{~N}_{2}+\mathrm{CO}_{2}$
or e.g. Fe in Haber
catalysing $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
(in general: identity of catalyst $\quad \checkmark$ equation $\quad \checkmark$) (deduct [1] if the stated catalysts are not described in the right homo-heterogeneous context) 8 marking points max[7]

5(a) $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$or "hydrogen"
$\checkmark \quad[1]$
(b) strong: completely ionised/dissociated weak: incompletely/partially ionised/dissociated
(c) $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
\checkmark balancing
\checkmark state symbols
[N.B. ionic equation needed]
(d) (i) methanoic acid only partially ionises or $\mathrm{HCO}_{2} \mathrm{H}=\mathrm{HCO}_{2}^{-}+\mathrm{H}^{+}(=$needed) \checkmark or is a poor proton donor or ionises/dissociates less (than HCl)
or is a weak acid or H^{+}harder to lose
(equilibrium lies over to the I.h.side, so) only a small $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ or less H^{+}ions or small concentration means slow rate of reaction
(ii) $\left(\mathrm{As}^{+}{ }^{+}(\mathrm{aq})\right.$ is used up by reaction with $\mathrm{CaCO}_{3}(\mathrm{~s})$)
the equilibrium continually moves (to the r.h. side)
So eventually all the $\mathrm{HCO}_{2} \mathrm{H}$ reacts
or same concentration/no of moles of reactant give the same amount of product

