- (a)(i) \div each by its own A, to give 5 : 13.3 : 1.67
 - \div each by 1.67 to give 3 : 8 : 1 \checkmark [1]
- (ii) Evidence of working e.g. 36 + 8 + 16 = 60 / that C₃H₈O adds up to $60 \checkmark$ [1]
- (b) unambiguous structure/formula of propan-1-ol & propan-2-ol to include:

- **✓** [2]
- (c)(i) dichromate/ $Cr_2O_7^{2-}$ /MnO₄ [1]
- (iii) continuous boiling/evaporation and condensation /
 heating & return of liquid to reaction flask/
 simple sketch showing vertical condenser & heat
 (any reference to a closed system negates the mark)

 [1]
- (d)(i) OH/alcohol/hydroxyl not hydroxide
 ✓ [1]
- (iii) carboxylic acid/-CO₂H/-COOH ✓ [1]
- (e) propan-1-ol (no marks) propan-1-ol oxidised to a carboxylic acid/ ✓ [1]
- (f) $C_3H_8O + 2[O] \rightarrow CH_3CH_2COOH / C_3H_6O_2 + H_2O$ [2] 1 mark available if, $CH_3CH_2COOH \& H_2O$ present in the equation

[Total: 15]

(a)(i) 1,1-dibromoethene

√ [1]

(ii) CHBr

[1]

(b)(i) (Br₂ is) decolourised

[1]

(ii) electrophilic addition

√ [1]

[1]

- (c) allow names & unambiguous formulae throughout part (c)
 - (i) Isomer **C** reacts with H₂.

✓ [1]

conditions

suitable catalyst such as Ni/Pt/Pd

√ [1]

(ii)

and

H Br Br C-C-H H Br 1 mark

(iii)

√ [2]

conditions

phosphoric acid (catalyst) temp ≥ 100 °C/ steam

✓ [1] ✓ [1]

[Total : 12]

(a)	non-polar	✓	[1]
	hence particles not attracted to methane	✓	[1]
(b)	(free radical) substitution	✓	[1]
	• CH_4 + Br_2 \rightarrow CH_3Br + HBr	✓	[1]
	ultra violet/UV light	✓	[1]
	• $Br_2 \rightarrow 2 Br \bullet$	✓	[1]
	homolysis/ homolytic fission	✓	[1]
	• Br• + CH ₄ \rightarrow •CH ₃ + HBr	✓	[1]
	• •CH ₃ + Br ₂ \rightarrow CH ₃ Br + Br•	✓	[1]
	 any two free radicals 2 Br → Br₂ 	✓	[1]
	free rads are difficult to control/react with anything/very reactive	✓	[1]
	identifies one of CH₂Br₂/ CHBr₃/ CBr₄ or can be polysubstituted	✓	[1]

1 QWC mark is available for using specific chemical terms.

chemical terms: initiation, propagation, termination, free radical substitution, homolysis/ homolytic fission, photochemical

any **two** terms used correctly
✓ [1]

[Total: 11]

[10 max = 9]

(ii)

marking points:

dipoles

curly arrow from OH to C $^{\delta +}$

curly arrow from C-Cl bond to Cl

√√√ [3]

(b)(i) Fastest – 1-iodobutane & slowest 1-chlorobutane

√ [1]

(ii) C-I has the weakest bond/ C-CI has the strongest bond

√ [1]

[Total : 6]

(a)
$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$
 [1]

(b) (i)
$$M_r \text{ of } C_6 H_{12} O_6 = 180$$

(iv) (iii)/(ii) x 100 = 12.5%
$$\checkmark$$
 [1]

(i)
$$CH_3CO_2H/CO_2$$
 [1]

(d)
$$CH_3OH + [O] \rightarrow HCHO/CH_2O + H_2O$$
 [2]

(e)(i)
$$CH_3OH + 1^{1}/_2O_2 \rightarrow CO_2 + 2H_2O / 2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O \checkmark$$
 [1]

(ii) burns more cleanly/ reduces CO(g) emissions / reduces benzene emissions/ less pollutants/ higher octane rating(number)/less knocking/ / improves combustion/ better fuel/ burns more cleanly/ absorbs free radicals/ oxygenates ✓ [1]

(f)(i)
$$CH_3OH + CO \rightarrow CH_3CO_2H$$
 [1]

[Total: 15]