1. (a) (i) $P \checkmark$
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3} \checkmark$
(iii) charge on icn: $3-\checkmark$
electronic configuration of ion of $\mathbf{A}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(b) (i) different number of neutrons \checkmark
(ii) $\mathrm{Ni} \checkmark$
(c) (i) average atomic mass/weighted mean/average mass \checkmark compared with carbon-12 \checkmark $1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is 12

OR
The mass of 1 mole of atoms of an element compared with 12 g of carbon-12 \checkmark
(ii) $58.0 \times 68.2 / 100+60.0 \times 27.3 / 100+62.0 \times 4.5 / 100 / 58.726$
$=58.7 \checkmark$ (to 3 sig figs: allow full marks for answer. 58.726 (calc) gets 1 mark only)
2. (a) correct dot and cross \checkmark
(b) number of electrons increases down group \checkmark
\longrightarrow greater van der Waais' forces/intermolecular forces \checkmark
more energy/higher temperature needed to break these intermolecular forces
(c) (i) brown/orange/yellow colour \checkmark
(ii) $2 \mathrm{NaBr}+\mathrm{Cl}_{2} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{NaCl}$ balanced equation \checkmark or ionic equation: $2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$

(iv) Cl is more reactive/more powerful oxidising agent than $\mathrm{Br} \checkmark$
(v) add $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+} \checkmark$
yellow precipitate \checkmark
OR
add $\mathrm{Cl}_{2} / \mathrm{Br}_{2} \checkmark$
purple in hexane / blue-black in starch \checkmark
3. (a) correct dot and cross
correct charges
(b) (i) $\mathrm{Ca}:(+) 2 \checkmark$
(ii) $\mathrm{C}:(+) 4 \checkmark$
(c) moles $\mathrm{CaCO}_{3}=20 \times 10^{6} / 100=200000 \mathrm{~mol} \checkmark$
mass $\mathrm{CaO}=200000 \times 56=11200000 \mathrm{~g} / 1.12 \times 10^{7} \mathrm{~g} / 11.2$ tonnes \checkmark
use of $56 \times 20 / 100$ OR 56/5 is worth 1 mark decimal point in wrong place i.e. 1.12×10^{x} is worth 1 mark. units needed for 2nd mark.
(d) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
(e) (i) molar mass $=40.1+(16+1) \times 2=74.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$
(ii) moles $\mathrm{HCl}=0.200 \times 25.0 / 1000=0.005 \mathrm{~mol} \checkmark$
(iii) moles $\mathrm{Ca}(\mathrm{OH})_{2}=0.5 \times 0.005=0.0025 \mathrm{~mol} \checkmark$
mass $\mathrm{Ca}(\mathrm{OH})_{2}=0.0025 \times 74.1=0.185 \mathrm{~g} \checkmark$ accept from 0.19 g to 0.18525 g i.e. $0.0025 \times$ answer to (i)
candidate who does not use 0.5 will get 0.37 g - worth 1 mark
(iv) 1 mol NaOH reacts with 1 mol HCl
$/ \mathrm{Ca}(\mathrm{OH})_{2}$ Has more $\mathrm{OH} / \mathrm{OH}$ s needed to neutralise \checkmark

Therefore twice the number of moles of NaOH are needed
/ twice number of OHs in $\mathrm{Ca}(\mathrm{OH})_{2}$
(f) solution reacted with $\mathrm{CO}_{2} \checkmark$ forming $\mathrm{CaCO}_{3} \checkmark$
4. (a) 4 valid examples $\checkmark \checkmark \checkmark \checkmark$

Can be names or formulae. If a formula is used, it must be correct for the structure: i.e. for simpie molecular, $\mathrm{H}_{2}, P_{4}, \mathrm{~S}_{8}$, etc is feuqired.
(b) (i) positive ions/metal ions/cations \checkmark
surrounded by free/delocalised/sea of electrons
[2]
(ii) electrons move \checkmark
(c) solid lattice, ions are in fixed positions \checkmark molten, ions are free to move and conduct \checkmark
(d) giant has stronger forces/simple has weaker forces \checkmark (i.e. comparison of forces) giant: covalent bonds break \checkmark
simple: molecules/intermolecular forces break / van der Waals break \checkmark
5. electron pairs repel \checkmark
as far apart as possible
lone pair repulsion > bonded pair repulsion / lone pair reduces bond angle \checkmark

4 examples, for each: shape $\checkmark \checkmark \checkmark \checkmark$
either
a named molecule that matches a correct shape
or
correct number and type of electron pairs to match shape

3 correct bond angles $\checkmark \checkmark \checkmark$
qowc: technical words of three shapes:
i.e. linear
non-linear / V-shaped / angular / bent
trigonal planar / planar triangle
tetrahedral / tetrahedron
pyramid(al) / trigonal pyramid(al)

Further notes on Question 5

1. Three marks that explain the theory:

electron pairs repel \checkmark

- This could simply be within 'electron pair repulsion theory' or 'lone pairs repel'
lone pairs repel more \checkmark
repelled as far apart as possible

2. Seven marks for shapes and bond angles

Bond angles

- Credit up to three correct bond angles for chosen examples. i.e. 3 max

Shapes

(a) If a candidate has drawn shapes of molecules,

- mark the shapes irrespective of any words that describe them.
- only look at the words (pyramidal, etc) for the QoWC mark (see below)
- do not use an incorrect name as a 'con' or we will be looking for both the shape and the name for the mark.
e.g.

(b) If a candidate has drawn a 'correct' shape but for a molecule that does not exist, then the shape mark cannot be awarded. e.g. BeCl_{3} shown as a trigonal planar molecule would not score the shape (but could score an angle mark of 120° if 'trigonal planar' is used as a fall back). The example below is certainly worth something! e.g.

(c) If a candidate has not drawn a diagram,
- the shape mark is still possible if the correct technical word is used. If this tactic has been used then you can still award the technical words as part of the QoWC mark (see below).
e.g. CH_{4} has a tetrahedral shape \checkmark with a bond angle of $109.5^{\circ} \checkmark$

Use of any three of the 'shape technical words' with correct shapes.
i.e. testing 'correct usage' of technical words.

