

- (b) (high T) speeds up reaction *or* (gives energy to) overcome activation energy *or* provides energy to break bonds *or* reaction has a big E_a.
 and (gives the energy needed to carry out the) **endothermic** reaction *sor* reaction takes in heat
- (c) $\Delta H = 82 178 = -96 \text{ kJ mol}^{-1}$ \checkmark (sign) \checkmark [2] (allow [1] only for +96 or 96 or ±260, sign mark is conditional on 96 being correct)

Total: 7

[2]

Mark Scheme

June 2002

3	(a)	(i)	reaction 3.1: 413	3 - 432 = -19 (kJ mol-1)	1		[2]					
		(if both	signs are wrong, i.e. +19	nly, and award [1])		[2]						
		(ii)	reaction 3.2 is faster, beca or lower likely E _{act} or less	ause weaker bonds are be energy needed	eing broken	✓	[1]					
	(b) for rea (the re <i>or</i> too		ction 3.3: a comparison of E(C-CI) with <i>either</i> E(C-H) <i>or</i> E(H-CI) <i>or</i> a calculation, e.g. $\Delta H = 413 - 327 = +86$ action is) is too endothermic (to take place) <i>or</i> it has a highly positive ΔH high an E _a <i>or</i> too much energy is needed									
4	(a)	C_8H_{18}	+ 12.5 $O_2 \longrightarrow 8 CO_2$	+ 9 H ₂ O (<i>or</i> dou	ubled)	✓	[1]					
	(h)	(i) + (ii)			$\checkmark\checkmark\checkmark\checkmark$	~ [4]						
		fuel	ΔH_c per mole of alkane	ΔH_c per mole of CO ₂ produced (kJ)	moles of CO ₂ produc kJ of heat given	ed per out						
	-	nothano		-890	1.1 – 1.15 x 10	r ³	1					
		nethane	-000		(a)							
	i.					ecf						
		octane	-5479	-684 to -685	1.4 – 1.5 x 10	3	1					
	octane			ecf from incorrectly	(b) ecf							
				balanced equation	(needs a calc not ji ratio)	ust a						
		(iii)	ratio (= 1.124/1.462) = 0.7 – 0.8 √ecf, i.e. any (a (allow a whole number fraction)									
	(c)	(i)	unburned h/c low-level o NOT ozon CO poisonous	zone <i>or</i> smog <i>or</i> greenho e depletion, smoke, pollut /toxic (to animals - ignore	use gas <i>or</i> carcinoger ion, sootiness etc refs to trees etc) <i>or</i> re	iic acts wit	h					
			haemoglol	oin		N						
	(mention of greenhouse gas or acid rain or ozone depletion negates any valid CO effect mentioned)											
			NO smog or a or irritant	cid rain <i>or</i> bad for lungs of NOT poisonous. (Igne	r causes respiratory pl ore ozone depletion)	roblems √√√	[3]					
		(ii)	from the combination of I	N_2 and O_2 (from the air) (o	r equation)	✓	[1]					
		(iii)	NO + CO $\longrightarrow \frac{1}{2}N_2$	+ CO ₂ (or double)		✓	[1]					
		(iv)	Pt or Pd or Rh or all (ar	ny other metal negates the	e mark)	~	[1]					
		(v)	in a different phase/state	(to the reactants) or a sol	lid reacting with gases	✓	[1]					
		(vi)	rate of reaction is increased the hotter it is <i>or</i> more molecules with $E > E_a$ energy available to break bonds <i>or</i> more energy available to overcome ac									
		(barrie	(barrier) or increased collision rate			Tota	al: 14					

3

•

5	(a)	pressure increases the rate of reaction because the molecules are pushed closer together <i>or</i> become more concentrated <i>or</i> collide more often <i>or</i> more collisions								
		(NOT I of thes	because they are travelling faster <i>or</i> have more energy – mention of the se negates any correct comment)	either ⁄	[2]					
	(b)	(i)	(increasing T will) increase yield <i>or</i> drive equilibrium over to right \checkmark <i>or</i> favour the forward reaction	1						
			because it's an endothermic reaction $or \Delta H$ is positive \checkmark	/	[2]					
		(ii)	(increasing P will) decrease yield <i>or</i> drive equilibrium over to left \checkmark or favour the backward reaction							
			because there are more (gas) moles on the right than the left.	/	[2]					
	(c)	either e or the i	each reaction requires different conditions of temperature <i>or</i> pressure reaction use different catalysts (N.B. not just unspecified "different conditi	e ions")≁	´ [1] T	otal: 7				
6	acid = contains H ⁺ or proton donor or \rightarrow H ⁺ in an equation or an electron pair acceptor \checkmark									
	4 main	reactio	ns: HCI(aq) + metal (from Ca to Fe in reactivity) HCI(aq) + (insoluble) metal oxide HCI(aq) + soluble metal hydroxide <i>or</i> ammonia HCI(aq) + carbonate (any one - allow hydrogencarbonate to	00)						
		also all	low: $HCl(aq) + an alcohol + ZnCl_2$, giving a chloroalkane	,						
equatio [if none correct	an exa on) of these reagents	mple of and a of 3 marks 5 but no	each to include the name or correct formula of reactant (can be reac description of the observation s has been awarded there are 2 ways in which a salvage mark may be give observations or for stating the 3 general (word) equations for acid reactions]	d into a in for st]	an √√√ ating	3				
	observ	ations:	<i>metal</i> dissolves or H_2 evolved or gas evolved/produced/formed or fiz (in words, not to be read from $H_2(g)$ in the equation) <i>carbonate</i> dissolves or CO ₂ evolved or gas evolved or fizzes (in words, not to be read from CO ₂ (g) in the equation) <i>metal oxide</i> dissolves <i>soluble hydroxide</i> heats up or changes the colour of an indicator	zzes						
(for any metal also allow:			that gives coloured salts, allow the correct colour of the solution as an observation) solution (of alcohol) turns cloudy							
	[for read	balance tive met	ed chemical equations (any two from the five reaction types above) \checkmark tals, e.g. Na, allow [1] for balanced equation, but not the observation mark]	<i>′</i> ✓						
ionic e		ionic ea	equations (any two) [these must not include any spectator ions]							
		QWC	(two informative sentences)	•	и Т	[1] otal: 7				