1.

(a) (i) $\mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{3} \mathrm{H}_{8}$
(ii) propane
(b)

(c)

2-methyl pentane

3-methylpentane

2,3-dimethylbutane

2,2-dimethylbutane

Any two correct formulae and names
(d) More efficient/useful or better fuels/burn smoother/added to petrol/ increase octane rating or number
(e) (i) biofuels are fuels produced from plant/animal waste
, (ii) Fossil fuels are non-renewable because they take millions of years to form Must specify time $>10^{6}$ years

Ethanol is renewable because its feedstock (e.g.sugar, glucose, fruit, carbohydrate) can be continuously re-grown/replaced

2
(b)
(a)(i) reaction I $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-$ not $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
reaction II $\mathrm{CH}_{2} \mathrm{CH}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$
(ii) reaction I nucleophilic \checkmark substitution \checkmark
reaction II elimination/dehydrohalgenation \checkmark
Reagent:
NH_{3}
\checkmark
\checkmark

Conditions: ethanol/alc/heat in sealed tube/high T\&P
(c) (i)

Alkene	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \checkmark$	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} \checkmark$
Name	But-1-ene \checkmark	But-2-ene \checkmark

(ii) 1 mark for identifying but-2-ene as having cis-trans isomers 1 mark for labelling both correctly
(iii) $\quad(\mathrm{C}=\mathrm{C})$ double bond each C in the $\mathrm{C}=\mathrm{C}$ must be bonded to two different atoms/groups
(d) (i)

(ii) addition
(iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} /$ but-1-ene - not butene, by relating back to their answer for (c) (i) \checkmark

3
(a) name/formula of propan -1-ol also accept the ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{3}$
(b) (i) 0.15
(ii) 0.3 mol of the alcohol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$, reacts with $0.1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ hence $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is in excess (this mark is only available if first point is made)
(iii) orange \checkmark to green/blue-green/ any tinted green
(c) (i) $\quad 5.22 / 58\left(\right.$ mark is for $\left.\mathrm{M}_{\mathrm{r}}=58\right)$
0.09
(ii) 30% e.c.f. $c(i) / 0.3 * 100$
(d) (i) carbonyl/ $\mathrm{C}=\mathrm{O} / \mathrm{a}$ list that includes at least two of aldehyde, ketone, carboxylic acid and/or ester
(ii) OH hydrogen bonded in a carboxylic acid
(iv) propan-1-ol/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (no marks) because there is evidence of oxidation to a carboxylic acid
4.
(a)(i) Empirical formula: $3.2(25): 9.7: 3.2(25)$
$\mathrm{CH}_{3} \mathrm{O}$
(ii) Molecular formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

Alternative method:

$\%$	C	H		O	
	$38.7 \times 62 / 100$		$9.7 \times 62 / 100$		$51.6 \times 62 / 100$
	24	6	32		
$\div \operatorname{Ar}$	2	6		2	

\therefore (molecular) formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ gets all two marks, but must also state that the empirical formula is $\mathrm{CH}_{3} \mathrm{O}$ to get the third mark.
(b) Shows hydrogen bonds in alcohol
(c) ethane-1,2-diol

(d) hydrogen bonds
5.
chlorine and methane
6 available marks
free radical substitution
Initiation $\quad \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet$
Propagation $1 \quad \mathrm{CH}_{4}+\mathrm{Cl} \bullet \rightarrow \mathrm{HCl}+\mathrm{CH}_{3} \bullet$
Propagation $2 \quad \mathrm{CH}_{3} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet$
Termination Any two free radicals
Homolytic fission
chlorine and ethene 6 available marks
electrophilic addition

\longrightarrow

marking points for the mechanism:

- curly arrow from the $\mathrm{C}=\mathrm{C}$ bond to the Cl_{2}
- correct dipoles on the $\mathrm{Cl}-\mathrm{Cl}$ bond or curly arrow showing movement of bonded pair of electrons
- intermediate carbonium ion/carbocation
- curly arrow from Cl^{-}to the intermediate

Heterolytic Fission

1 mark is available in this question for the quality of the written communication. SPAG plus correct use o at least four of the following terms:free radical, substitution, initiation, propagation, termination, homolytic fission or equivalent term, electrophilic, addition, heterolytic fission or equivalent term, carbonium ion, carbocation, photochemical, photodissociation.

Show the QWC mark at the end by either \checkmark QWC or \times QWC

