1. (a) (Atoms of) the same element / with same protons.... with different masses/different numbers of neutrons [1]

(b)

isotope	percentage composition	number of	
		protons	neutrons
¹⁹¹ lr	38%	77	114
¹⁹³ lr	62%	77	116
	√	\checkmark	√

Accept 37-39% for ¹⁹¹Ir; 61-63% for ¹⁹³Ir but **must** add up to 100.

[3]

(c)(i) average atomic mass/weighted mean/average mass ✓
compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 🗸

mass of 1 mole of element/mass of 1 mole of carbon-12 is equivalent to first two marks

"mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" → 2 marks (mark lost because of mass units)

[3]

(ii)
$$38 \times 191/100 + 62 \times 193/100 \checkmark = 192.2 \checkmark$$

Answers from other percentages above:

$$37 \times 191/100 + 63 \times 193/100$$
 = 192.3 \checkmark = 192.2 \checkmark

[2]

[2]

(ii) ratio Ir: F = 62.75/192 : 37.25/19 or 0.327 : 1.96 \checkmark = 1 : 6 or formula = IrF₆ \checkmark

(or using answer for Ir from (c)(ii))

(iii)
$$lr + 3F_2 \longrightarrow lrF_6 \checkmark$$
 (consequential on response to (ii)) [1]

[Total: 13]

(C

F: E

Fo

pr

2. (a) trend in reactivity: more reactive down group ✓
explanation: electrons lost more easily / ionisation energies decrease
/ less attraction or pull ✓

some attempt to relate this increase in size of atom / more shells / energy levels
and increase in shielding
[4]

(b)

[Total: 8]

[4]

3. (a)(i) $O^+(g) \longrightarrow O^{2+}(g) + e^-$ equation \checkmark ; state symbols **but** an electron must be in the equation somewhere \checkmark [2]

(ii) Large difference between 6th and 7th ionisation energies ✓
marks a different shell (closer to nucleus) ✓
[2]

(b)(i)
$$1s^22s^22p^63s^23p^1$$

O 1 2 3 4 5 6 7 8 9 10 11 12 13 lonisation number

sharp rise between ionisation 3 and ionisation 4
sharp rise between ionisation 11 and ionisation 12

i.e. the two steepest rises

(for 2,8,3 pattern the wrong way around, award 1 mark)

(c)(i) $4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$ equation \checkmark ; state symbols \checkmark [2]

(ii) Al³⁺ ions / highly charged aluminium ions ✓ are small ✓;
 O²⁻ ions / anions / negative ions are large ✓;
 O²⁻ ions / anions / negative ions are polarised / distorted ✓

 $M(Al₂O₃) = 102 g mol⁻¹ \checkmark$

(d) $M(Al_2O_3) = 102 \text{ g mol}^{-1} \checkmark$ amount of $Al_2O_3 = 25/102 = 0.2451 / 0.245 / 0.25 \checkmark$ [2]

[Total: 14]

[1]

- (b) covalent bonds shown correctly ✓
 all molecule correct (i.e. chlorine's and oxygen's lone pairs) ✓
 [2]
- (c)(i) electron pairs repel ✓
 as far apart as possible ✓
 the number of electron pairs (surrounding central atom) decides the shape ✓
 lone pairs repel more (than bonded pairs) ✓ $4 \longrightarrow [3 \text{ max}]$

(ii)

[2]

- (d)(i) loss of electrons / ox number increases / gains oxygen / loses hydrogen ✓
 [1]
 - (ii) brown / orange / yellow colour ✓
 [1]
 - (iii) $Cl_2 + 2l^- \longrightarrow 2Cl^- + l_2 \checkmark$ [1]
- (e)(i) Molar mass of NaCl = $58.5 \text{ g mol}^{-1} \checkmark$ mass of NaCl dissolved = $58.5 \times 4 \text{ g} = 234 \text{ g} \checkmark$

[2]

(ii) 2 mol NaCl → 1 mol Cl₂
 ∴ amount of Cl₂ produced = 2 mol ✓ (i.e. half 1st answer to (e)(i))
 volume of Cl₂ produced = 24 x 2 = 48 dm³ ✓

[2]

(iii) 1 dm³ brine \longrightarrow 48 dm³ Cl₂(g) 2.5 x 10⁹/48 dm³ brine \longrightarrow 2.5 x 10⁹ dm³ Cl₂(g)

$$\therefore 5.2 \times 10^7 \, (dm^3) \checkmark \text{ (but wrong unit is wrong!)}$$

[Total: 17]

5. (a) diagram of H bonding between water molecules (O of 1 molecule to H of another) ✓ dipoles shown ✓ with lone pair involved in bond ✓ (could be in words; could describe another molecule such as NH₃.)

Two properties from:

property higher melting/boiling point than expected ✓

explanation strength of H bonds/H-bonds need to be broken

must imply that intermolecular bonds are broken

property ice is lighter than water/ max density at 4°C 🗸

explanation H bonds hold H₂O molecules apart

/ open lattice in ice

/ H-bonds are longer ✓

property high surface tension/viscosity 🗸

explanation strength of H bonds/H-bonds need to be broken

 $4 \text{ max} \longrightarrow [4]$

Q – legible text with accurate spelling, punctuation and grammar $\sqrt{\ }$

[1]

[Total: 8]