1. (a) (Atoms of) the same element / with same protons.... with different masses/different numbers of neutrons
(b)

isotope	percentage composition	number of	
		neutrons	
${ }^{191} \mathrm{Ir}$	38%	77	114
${ }^{193} \mathrm{lr}$	62%	77	116

Accept $37-39 \%$ for ${ }^{191} / r ; 61-63 \%$ for ${ }^{193} / r$ but must add up to 100.
(c)(i) average atomic mass/weighted mean/average mass
compared with carbon-12
1/12th of mass of carbon-12/on a scale where carbon-12 is 12
mass of 1 mole of element/mass of 1 mole of carbon-12 is equivalent to first two marks
"mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" $\longrightarrow 2$ marks (mark lost because of mass units)
(ii) $38 \times 191 / 100+62 \times 193 / 100 \checkmark=192.2$

Answers from other percentages above:

$$
\begin{aligned}
& 37 \times 191 / 100+63 \times 193 / 100 \checkmark \\
& 39 \times 191 / 100+61 \times 193 / 100 \\
& =192.3 \\
&
\end{aligned}
$$

(d)(i) Simplest (whole number) ratio of atoms/moles/elements
(ii) ratio $\operatorname{Ir}: F=62.75 / 192: 37.25 / 19$ or $0.327: 1.96$
$=1: 6$ or formula $=\operatorname{IrF}_{6} \checkmark$
(or using answer for Ir from (c)(ii))
(iii) $\mathrm{Ir}+3 \mathrm{~F}_{2} \longrightarrow \mathrm{IrF}_{6} \checkmark$ (consequential on response to (ii))
2. (a) trend in reactivity. more reactive down group explanation: electrons lost more easily / ionisation energies decrease $/$ less attraction or pull some attempt to relate this increase in size of atom / more shells / energy levels and increase in shielding \checkmark
(b)

[Total: 8]
3. (a)(i)
$\mathrm{O}^{+}(\mathrm{g}) \longrightarrow \mathrm{O}^{2+}(\mathrm{g})+\mathrm{e}^{-}$equation \checkmark;
state symbols but an electron must be in the equation somewhere
(ii) Large difference between 6th and 7th ionisation energies marks a different shell (closer to nucleus)
(b)(i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1} \downarrow$

sharp rise between ionisation 3 and ionisation 4
sharp rise between ionisation 11 and ionisation 12
i.e. the two steepest rises
(for 2, 8, 3 pattern the wrong way around, award 1 mark)
(c)(i) $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}$ (g) $\longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (s) equation \checkmark; state symbols
(ii) Al^{3+} ions $/$ highly charged aluminium ions \checkmark are small \checkmark;
O^{2-} ions / anions / negative ions are large $\sqrt{ }$;
O^{2-} ions / anions / negative ions are polarised / distorted
$4 \longrightarrow[3 \mathrm{max}]$
(d) $\quad M\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=102 \mathrm{~g} \mathrm{~mol}^{-1}$
amount of $\mathrm{Al}_{2} \mathrm{O}_{3}=25 / 102=0.2451 / 0.245 / 0.25$
4. (a) $\mathrm{HOCl}:+1 \sqrt{\mathrm{HCl}}-1 \checkmark$
(b) covalent bonds shown correctly
all molecule correct (i.e. chlorine's and oxygen's lone pairs)
(c)(i) electron pairs repel
as far apart as possible
the number of electron pairs (surrounding central atom) decides the shape \checkmark
lone pairs repel more (than bonded pairs)
$4 \longrightarrow[3$ max]
(ii)

(d)(i) loss of electrons / ox number increases / gains oxygen / loses hydrogen
(ii) brown / orange / yellow colour
(iii) $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2} \checkmark$
(e)(i) Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$
mass of NaCl dissolved $=58.5 \times 4 \mathrm{~g}=234 \mathrm{~g}$
(ii) $2 \mathrm{~mol} \mathrm{NaCl} \longrightarrow 1 \mathrm{~mol} \mathrm{Cl}_{2}$
\therefore amount of Cl_{2} produced $=2 \mathrm{~mol} \checkmark$ (i.e. half 1st answer to (e)(i))
volume of Cl_{2} produced $=24 \times 2=48 \mathrm{dm}^{3} \checkmark$
(iii) $1 \mathrm{dm}^{3}$ brine $\longrightarrow 48 \mathrm{dm}^{3} \mathrm{Cl}_{2}(\mathrm{~g})$
$2.5 \times 10^{9} / 48 \mathrm{dm}^{3}$ brine $\longrightarrow 2.5 \times 10^{9} \mathrm{dm}^{3} \mathrm{Cl}_{2}(\mathrm{~g})$
$\therefore 5.2 \times 10^{7}\left(\mathrm{dm}^{3}\right) \checkmark$ (but wrong unit is wrong!)
5. (a) diagram of H bonding between water molecules (O of 1 molecule to H of another) \downarrow dipoles shown \checkmark with lone pair involved in bond (could be in words; could describe another molecule such as NH_{3}.)

Two properties from:

property	higher melting/boiling point than expected \checkmark
explanation	strength of H bonds/H-bonds need to be broken \checkmark
	must imply that intermolecular bonds are broken
property	ice is lighter than water/max density at $4^{\circ} \mathrm{C} V$
explanation	H bonds hold $\mathrm{H}_{2} \mathrm{O}$ molecules apart
	/ open lattice in ice
	/ H-bonds are longer \checkmark
property	high surface tension/viscosity \checkmark
explanation	strength of H bonds/H-bonds need to be broken \checkmark
	4 max \longrightarrow [4]

Q - legible text with accurate spelling, punctuation and grammar \checkmark
[Total: 8]

