Abbreviations, annotations and conventions used in the Mark Scheme	point	
Question	Expected Answers	Marks
1 (a)	isotope protons neutrons electrons $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[2]
(b) (i)	mass spectrometry 🗸	[1]
(ii)	mass of an isotope compared with carbon-12 √ 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 √ mass of 1 mole of the isotope/mass of 1 mole of carbon-12 is equivalent to the first mark "mass of the isotope that contains the same number of atoms as are in 1 mole of carbon-12" → 1 mark (mark lost because of mass units)	[2]
(iii)	12 x 95/100 + 13 x 5/100 OR 12.05 ✓ = 12.1 (mark for significant figures) ✓ (12.1 scores both marks)	[2]
(c)	1s²2s²2p² ✓	[1]
(d)	CO₂: correct covalent bonds around carbon ✓ outer shell electrons correct ✓ (must be 'dot AND cross' or electron source clearly shown (different coloured for source?)	[2]
(e) (i)	calcium hydroxide/Ca(OH)₂ ✓	[1]
	$Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(l) \checkmark \checkmark$ 1st mark for $CaCO_3(s)$ State symbol essential here 2nd mark for rest of equation. Ignore state symbols	[2]
	$CaCO_3 \longrightarrow CaO + CO_2 \checkmark$	[1]
(f)	state symbols not required	
(f) (g) (i) (ii)		[3]

Abbreviatior	ıs,	/ = alternative and acceptable answers for the same marking	point	
annotations	and	; = separates marking points		
conventions	,	NOT = answers which are not worthy of credit		
used in the f	Vlark	() = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit		
Scheme				
		ecf = error carried forward		
		AW = alternative wording		
		ora = or reverse argument		
Question		Expected Answers	Marks	
2 (a)		Ca(s) +2 \checkmark HCl(aq)CaCl ₂ (aq) + .H ₂ (g). \checkmark	[2]	
2 (a)		(q) not required for H ₂	(~)	
(b)		In Ca, oxidation state = 0 √ and		
()		In CaCl₂, oxidation state = +2 ✓		
		Oxidation number increases from Ca to CaCl ₂	[2]	
(c)		correct dot and crosses ✓	[2]	
` ,		correct charges ✓		
(d)	(i)	white precipitate/goes white √	[1]	
	(ii)	$Ag^{+} + Cl^{-} \longrightarrow AgCl \checkmark$	[1]	
	` ,	state symbols not required moles HCl = 2.0 × 50/1000 = 0.10 √	- -	
(e)	(i)	moles HCl = $2.0 \times 50/1000 = 0.10 \checkmark$	[1]	
	(ii)	moles $Ca = \frac{1}{2} \times \text{moles HCl} = 0.050 \checkmark$		
		mass Ca = 40.1 × 0.050 = 2.00 g / 2.005 g ✓	[2]	
		$(accept 40 \times 0.050 = 2.0 g)$		
		(mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio		
		has not been identified)		
	(iii)	Ca has reacted with water ✓		
	` .	$Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2 \checkmark \checkmark$		
		state symbols not required	[3]	
		1st mark for H ₂		
		2nd mark is for the rest of the balanced equation		
			Total: 14	

Abbreviations,	bbreviations, / = alternative and acceptable answers for the same marking point					
annotations and	; = separates marking points NOT = answers which are not worthy of credit					
conventions						
used in the Mark	() = words which are not essential to gain credit					
Scheme	= (underlining) key words which <u>must</u> be used to gain credit					
	ecf = error carried forward AW = alternative wording					
	AW = alternative wording ora = or reverse argument					
	ora – or reverse argument					
Question	Expected Answers	Marks				
3 (a) (i)	0 1	[1]				
(ii)	Al 🗸	[1]				
(iii)	P ✓	[1]				
(iv)	C/Si √	[1]				
(v)	N/P ✓	[1]				
(vi)	Mg ✓	[1]				
(vii)	Na ✓	[1]				
(viii)	Si ✓	[1]				
(b) (i)	Energy change when each atom in 1 mole √ of gaseous atoms √ loses an electron √ (to form 1 mole of gaseous 1+ ions).	[3]				
(ii)	increasing nuclear charge/number of protons \(\square \) electrons experience greater attraction or \(pull / \) atomic radius decreases \(/ \) electrons added to same shell \(/ \) same or similar shielding \(\square \)	[2]				
(iii)	In B, electron being removed is at a higher energy / In Be, electron being removed is at a lower energy ✓					
	An s electron is lost in Be AND α p electron is lost in B \checkmark	[2]				
(iv)	IE (of Na): $100 - 500 \text{ kJ mol}^{-1} \checkmark$ electron is in a different shell /further from nucleus/new shell/ more shielding \checkmark (not sub-shell or orbital) /	[2]				
		Total: 17				

Abbreviations,	/ = alternative and acceptable answers for the same marking	point
annotations and	; = separates marking points	
conventions	NOT = answers which are not worthy of credit	
used in the Mark	() = words which are not essential to gain credit	
Scheme	= (underlining) key words which <u>must</u> be used to gain credit	
	ecf = error carried forward	
	AW = alternative wording	
	ora = or reverse argument	-
Question	Expected Answers	Marks
4 (a)	uneven distribution of electrons \checkmark	
	instantaneous /oscillating/changing/temporary/transient/	
	dipole on one atom 🗸	
	causes an induced/resultant dipole on another	
	molecule/atom ✓	
	chlorine gas; bromine liquid; iodine solid/	
	volatility decreases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2/$	
	boiling point increases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2/$	
	stronger forces are broken from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2 \checkmark$	
	number of electrons increases down group 🗸	
	greater/more van der Waals' forces / induced dipole-	
	dipole interactions / forces between the molecules \checkmark	[6]
(b)	Reactivity decreases down group/ $Cl_2 > Br_2 > I_2$	[0]
(5)	Reactivity decireases down group? Ci2 > Bi 2 > 12 /	
	Cl₂ displaces Br₂ AND Br₂ displaces I₂ ✓	
	chlorine: Cl₂ + bromide	
	bromine: Br₂ + iodide> darker orange/brown ✓	
	or purple in organic solvent	
	$ C _2 + 2Br^- \rightarrow Br_2 + 2Cl^- \checkmark$	
	$Br_2 + 2I^- \rightarrow I_2 + 2Br^- \checkmark$	
	(or full equations)	
	Cl ₂ is stronger oxidising agent than Br ₂	
	AND Br_2 is stronger oxidising agent than I_2 /	[5 max]
	Cl ₂ has greater attraction for electrons than Br ₂	
	AND Br ₂ has greater attraction for electrons than $I_2 \checkmark$	
QoWC:		
QOVVC:		
	accurate spelling, punctuation and grammar so that the	F43
	meaning is clear. \checkmark	[1]
	(Mark this from anywhere within Q4)	Total: 40
		Total: 12