,

.

,

,

,

4

,

•

, , ,

Question	Expected Answers		Marks	
1 (a) (i)	the enthalpy change when <u>1 mole</u> of compound/species/substance is formed [mention of 1 mole of <i>elements</i> negates this mark]	✓ ✓	[2]	
	from its <u>elements</u> [NOT atoms/fons] (under standard conditions)	•	[-]	
(ii)	25°C/298K and 1 atmos/1 x 10 ⁵ Pa	\checkmark	[1]	
(b)	$Pb(s) + \frac{1}{2}O_2(g) \longrightarrow PbO(s)$ (balancing for 1 mol of PbO) (state symbols)	✓ ✓u/c	[2]	
(c) (i)	$\Delta H^{e} = -718 - 3(-217)$			
	= -67 (kJ mol ⁻¹) (use of correct data & multiplier (correct signs (correct calculation of value	✓) ✓) ✓)	[3]	
	some possible ecf values: +67 -501 +501 -1369 +1369	,	[2] [2] [1] [2] [1]	
(ii)	$\Delta H_{f}^{\theta} = -718 + 10 + 2(217)$			
	 -274 (kJ mol⁻¹) (use of correct data & multiplier (correct signs (correct calculation of value) 	✓) ✓) ✓)	[3]	
	some possible ecf values: -57 [2] -284 [2] -294 [2] +424 [1] +444 [2] -491 [2] -511 [1] -708 [1] -1142 [2]			
for others, wo	ork through the calc: -[1] for each error.			

Total: 11

Final Mark Scheme

2813/01

[the comparative statement that strong acids are more ionised than weak acids is worth [1] mark]

To

Final Mark Scheme

÷

,

,

1

,

.

• • ·

+ 1

2813/01

3	(a)		(When a system in dynamic equilibrium is subjected to a change in conditions) the (position of) <u>equilibrium</u> will shift in the direction that <u>minimises the effect of /opposes</u> the change [NOT negates, nullifies or cancels]	\checkmark	[2]
	(b)	Any •	two of the following bullet points forward rate = reverse rate [NOT just "forward reaction = reverse reaction"] can be approached from either direction	√ √	[2]
		•	["forward rate of reaction = reverse rate of reaction" is worth both the above points] no change in overall macroscopic properties or a specific one (e.g. colour) takes place in a closed system [N.B. every wrong point negates a correct one]	ve bulle	:t
	(c)		(from yellow) to orange increasing $[H^{\dagger}]$ or more acid/HCl moves equilibrium/reaction to the left or produces more $Cr_2O_7^{2^2}$	√ √	[2]
	(d)	(i)	turns lighter brown/colourless (equilibrium/reaction moves to the right): fewer molecules/particles/moles on right or 2 moles \rightarrow 1 mole	✓ ✓	[2]
		(ii)	turns darker (brown) (equilibrium/reaction moves to the left): L \rightarrow R/forward rxn is exothermic.	✓ ✓	[2]
		[in (i) [in (ii) endo/	and (ii) mark the observation first, and then the reason. Each mark is unconditional on the o b, if neither mark is scored and you are convinced that the only error is mixing up exo-thermic, you may award [1] mark]	ther.]	

Total: 10

 $\checkmark \checkmark \checkmark$

- 4 (a) (adding a catalyst):
 - speeds up a reaction
 - provides an alternative route *or* forms an intermediate of some sort
 - of lower E_{act} (can be read into a label on a Boltzmann distribution)
 - so more molecules have $E > E_{act}$ or more collisions are successful
 - weakens bonds in the reactants

[any 4 points. Look for these in part (b) if not all stated in (a)]

- (b) General scheme for each example:
 - identity of all reactants and all products (by names or the **correct** formu in an (unbalanced) equation [if words given, ignore incorrect formulae]
 - identity of catalyst
 - whether the catalyst is hetero or homo-geneous.

example A: converting nitrogen and hydrogen into ammonia (in the Haber process) iron/Fe [NOT Fe²⁺ etc] heterogeneous

example B: converting unsaturated oils into fats for margarine with hydrogen nickel/Ni heterogeneous

 $\checkmark\checkmark$

communicating the correct sense of the terms heterogeneous or homogeneous QwC

[N.B. allow other examples, as long as they are of economic or environmental import

other possibilities: catalytic converter: platinum $CO + NO \longrightarrow CO_2 + N_2$

heterogeneous

fermentation: (yeast) <u>enzymes</u>, or <u>zymase</u> starch/sugar \longrightarrow ethanol + CO₂ homogeneous

esterification: H_2SO_4 or HCl (conc. not needed, but *dil* or *aq* is in acid + alcohol \longrightarrow ester + water homogeneous

Tota