1 (a) (i) the enthalpy change when 1 mole of compound/species/substance is formed [mention of 1 mole of elements negates this mark]
from its elements [NOT atoms/ions] (under standard conditions)
(ii) $25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ and $1 \mathrm{atmos} / 1 \times 10^{5} \mathrm{~Pa}$
(b) $\quad \mathrm{Pb}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PbO}(\mathrm{s})$ (balancing for 1 mol of PbO) (state symbols)
(c) (i) $\Delta \mathrm{H}^{\ominus}=-718-3(-217)$
$=-\mathbf{6 7}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ (use of correct data \& multiplier
(correct signs
(correct calculation of value

some possible ecf values: $\quad+67$

-501
$+501$
-1369

$$
+1369
$$

(ii) $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}=-718+10+2(217)$
$\begin{array}{rr}=-\mathbf{2 7 4}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right) \text { (use of correct data \& multiplier } & \checkmark \text { (correct signs } \\ \text { (correct calculation of value } & \checkmark \text {) }\end{array}$
some possible ecf values: -57 [2]

-284	$[2]$	-294	$[2]$		
+424	$[1]$	+444	$[2]$	-491	$[2]$
-511	$[1]$	-708	$[1]$	-1142	$[2]$

for others, work through the calc: -[1] for each error.

2 (a) $\mathrm{I}-\mathrm{I}(\mathrm{g}) \longrightarrow 2 \mathrm{I}(\mathrm{g})$ (state symbols \checkmark) (1 mole $I_{2} \checkmark$)
(b) $\Delta \mathrm{H}_{\mathrm{r}}{ }^{\ominus}=151+436-2(298)$
$=-9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (all the right numbers \& $x 2$)
(use of the - sign)
(L - R: using - sign the right way round)
some ecf values: $\quad+9$ [2]
+289 [2]
+1183 [1]
(c)

(d) (i) fizzing/gas/hydrogen evolved or Mg dissolves/disappears [an incorrect observation negates this mark]
(ii) $2 \mathrm{HCl}+\mathrm{Mg} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
[correct formula for MgCl_{2}. Allow equation with $\mathrm{HI} / \mathrm{MgI}_{2}$ instead of HCl]
[balancing: e.g. $2 \mathrm{HCl}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}+\mathrm{H}_{2}$ will get this mark but not the 1^{st}]
(iii) $2 \mathrm{H}^{+}+\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2}$
[NO spectator ions allowed]
(e) strong acids are completely ionised/dissociated (in solution)
weak acids are incompletely ionised/dissociated (in solution)
[the comparative statement that strong acids are more ionised than weak acids is worth [1] mark]

3 (a) (When a system in dynamic equilibrium is subjected to a change in conditions....)
the (position of) equilibrium will shift
in the direction that minimises the effect of/opposes the change [NOT negates, nullifies or cancels]
(b) Any two of the following bullet points

- forward rate $=$ reverse rate [NOT just "forward reaction $=$ reverse reaction"]
- can be approached from either direction
["forward rate of reaction = reverse rate of reaction" is worth both the above bullet points]
- no change in overall macroscopic properties or a specific one (e.g. colour)
- takes place in a closed system [N.B. every wrong point negates a correct one]
(c) (from yellow) to orange
increasing $\left[\mathrm{H}^{+}\right]$or more acid $/ \mathrm{HCl}$
moves equilibrium/reaction to the left or produces more $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(d) (i) turns lighter brown/colourless
(equilibrium/reaction moves to the right):
fewer molecules/particles/moles on right or 2 moles $\rightarrow 1$ mole
(ii) turns darker (brown)
(equilibrium/reaction moves to the left): $\mathrm{L} \rightarrow \mathrm{R} /$ forward rxn is exothermic.
[in (i) and (ii) mark the observation first, and then the reason. Each mark is unconditional on the other.] [in (ii), if neither mark is scored and you are convinced that the only error is mixing up endo/exo-thermic, you may award [1] mark]

Total: 10

4 (a) (adding a catalyst):

- speeds up a reaction
- provides an alternative route or forms an intermediate of some sort
- of lower $\mathrm{E}_{\text {att }}$ (can be read into a label on a Boltzmann distribution)
- so more molecules have $\mathrm{E}>\mathrm{E}_{\text {act }}$ or more collisions are successful
- weakens bonds in the reactants
[any 4 points. Look for these in part (b) if not all stated in (a)]
(b) General scheme for each example:
- identity of all reactants and all products (by names or the correct formu in an (unbalanced) equation [if words given, ignore incorrect formulae]
- identity of catalyst
- whether the catalyst is hetero or homo-geneous.
example A: converting nitrogen and hydrogen into ammonia (in the Haber process) iron/ $\mathrm{Fe}\left[\mathrm{NOT}_{\mathrm{Fe}}{ }^{2+}\right.$ etc]
heterogeneous
example B: converting unsaturated oils into fats for margarine with hydrogen nickel/Ni
heterogeneous
communicating the correct sense of the terms heterogeneous or homogeneous
[N.B. allow other examples, as long as they are of economic or environmental import other possibilities: catalytic converter: platinum
$\mathrm{CO}+\mathrm{NO} \longrightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
heterogeneous
fermentation: (yeast) enzymes, or zymase
starch/sugar \longrightarrow ethanol $+\mathrm{CO}_{2}$
homogeneous
esterification: $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl (conc. not needed, but dil or aq is in
acid + alcohol \longrightarrow ester + water homogeneous

