1 (a)

(i) *unsaturated* contains a double/multiple/ π bond

/ [1]

hydrocarbon contains hydrogen and carbon only.

[1]

(ii) angle **a** 109 –110 °

angle **b** $117-120^{\circ}$

[1]

[1]

(iii)

Diagram to show a minimum of 2 carbons, each with a σ -bond and p-orbitals

Overlap of adjacent p-orbitals (in words or in diagram)

[2]

(b)

(i) electrophile: lone pair (of electrons) acceptor.

√ [1]

(ii)

essential mark intermediate carbocation/carbonium ion, accept primary/"triangular"/ <a href="mailt

curly arrow from double bond to Br₂

✓

curly arrow showing movement of electrons in the Br-Br bond **or** the dipole in the Br-Br

√

curly arrow from lone pair of electrons in Br to intermediate

mark any errors first

5 max = [4]

- (c)
- (i) Addition (not additional)

✓

(ii)

✓

(iii)

or but-1-ene

(iv) Poly(but-1-ene)

✓

[To

2

- (a)
- (i) bubbles/ effervescence

[1]

(ii) CH₃CH₂CH₂CH₂O'Na⁺/C₄H₉O' Na⁺ need **not** be shown as ionic

[1]

Must clearly show that the Na is bonded to the O, penalise if the Na—O is a covalent bond

(b)

(i) orange to green/dark green/brown/black

[1]

(ii)
$$C_4H_9OH/C_4H_{10}O + 2[O] \rightarrow C_3H_7COOH + H_2O$$

I mark available for correct formula of the carboxylic acid

(iii)Identify isomer 2-methylpropan-1-ol by appropriate number/name/formula

✓ [1]

[2]

(c)

(i) CH_2 has mass = 14, 14 x4 = 56

[1]

∴C₄H₈

[1]

 $\rightarrow C_4H_8 + H_2O$ (ii)C₄H₉OH

[1]

(iii)Identify butan-2-ol by appropriate number/name/formula

[1]

(d)

(i) H_2SO_4

[1]

(ii)0.06

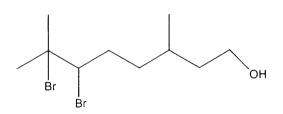
[1]

(iii)60%

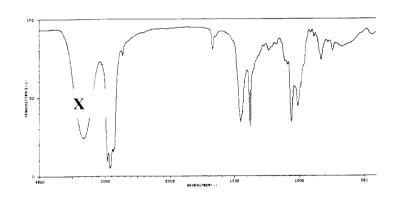
[1]

[Total: 16]

[1]


3

- (a)
- (i) alkene


alcohol/hydroxy/hydroxyl ✓ [1]

- (b)
 (i) I = alkene & II = alcohol... both are needed
 ✓ [1]
- (ii) decolourised / colourless ✓ [1]

(iii) ✓ [1]

(iv) \mathbf{X} as shown below

(c)

- (ii) compound \mathbf{B} is $C_{10}H_{22}O$ [1]
- $(iii)C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O$ [1]

Final Mark Scheme		2812	Janua	ry 2004
4. (i) sodium hydroxide/pota	ssium hydroxide/Na	ОН/КОН	✓	[1]
(ii)heat to reflux			✓	[1]
(iii) water/aqueous ac	ccept NaOH(aq)		✓	[1]
(iv)ethanol/ethanolic/alcoh	ol accept NaOH(alc)	✓	[1]
(v) (nucleophilic) substitution	on/hydrolysis		✓	[1]
(vi)elimination			✓	[1]
(b) H ₂ N-	H H 		✓	[1]
(c) H-C≡C-H			✓	[1]
				[Total:8]

5

(a)
$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

 $2CO_2 + 3H_2O$ gets 1 mark

(b) Fermentation

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$

Yeast /enzyme / temperature about 30 °C/ batch process

Hydration of ethene.

 $C_2H_4 + H_2O \rightarrow C_2H_5OH$

/ 6 –20 MPa/phosphoric acid catalyst/ Temp $> 100 \, {}^{\circ}\text{C/ Press } 370 - 100 \, \text{atm}$ continuous process

Glucose is obtained from plants Ethene is obtained from crude oil/cracking/fossil fuel glucose is renewable/ethene isn't

1 mark available for Quality of written communication..... base the award of the mark on the abil communicate the essential chemistry by correct use of at least two from: $fermentation/hydration/catalyst/renewable/sustainable/biofuel/enzymes/finite/cracking ~\checkmark$

[Tota]