Question	Expected Answers	Marks
1 (a) (i) (ii)	${ }^{79} \mathrm{Br}$ has two \checkmark less neutrons than ${ }^{81} \mathrm{Br} \checkmark$ ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$ have same number of protons \checkmark and same number of electrons \checkmark	[2] [2]
(b) (i) (ii)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \ldots \ldots3 d^{10} 4 s^{2} 4 p^{5} \checkmark \checkmark$ Award 1 mark for p^{5}. Highest energy sub-shell/sub-shell/ being filled is the p sub-shell/outer electrons are in a p (subshell/orbital/shell)	[2] [1]
(c) (i) (ii) (iii)	Number AND type of atoms (making up a molecule)/number of atoms of each element \checkmark Not ratio $\begin{aligned} & \mathrm{P}_{4}+6 \mathrm{Br}_{2} \longrightarrow 4 \mathrm{PBr}_{3} \checkmark \\ & \text { ratio } \mathrm{P}: \mathrm{Br}=16.2 / 31: 83.8 / 79.9 \\ & /=0.52: 1.05 \\ & /=1: 2 \checkmark \\ & \text { Empirical formula }=\mathrm{PBr}_{2} \checkmark \\ & \text { Correct compound }=\mathrm{P}_{2} \mathrm{Br}_{4} \text { /phosphorus(II) bromide but } \\ & \text { not } \mathrm{PBr} r_{2} \checkmark \end{aligned}$	[1] [1] [3]
		Total: 12

Question	Expected Answers	Marks
2 (a)	shared pair \checkmark of electrons \checkmark i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks	[2]
(b)	$\mathrm{H}_{2} \mathrm{O}$: all correct including lone pairs around $O \checkmark$ CO_{2} : correct covalent bonds around carbon \checkmark lone pairs added around oxygen atoms \checkmark (must be 'dot AND cross' or electron source clearly shown (different coloured for source is OK)	[3]
(c) (i) (ii)	molecule shown as non-linear \checkmark angle: 104-105 molecule shown as linear \checkmark angle: $180^{\circ} \checkmark$ shape of $\mathrm{H}_{2} \mathrm{O}$ shape of CO_{2} Electron pairs repel / groups (or regions) of electrons repel/ electron pairs get as far apart as possible Oxygen in water surrounded by 4 areas of electron density/2 bonds and 2 lone pairs AND Carbon in CO_{2} surrounded by 2 regions of electron density/2 double bonds \checkmark	[4] [2]
(d) (i) (ii)	Attraction of electrons \checkmark in a bond \checkmark towards an atom CO_{2} is symmetrical/ $\mathrm{H}_{2} \mathrm{O}$ is not symmetrical \checkmark In CO_{2}, dipoles cancel/in $\mathrm{H}_{2} \mathrm{O}$, the dipoles don't cancel \checkmark	[2] [2]
		Total:

Question	Expected Answers	Marks
3 (a)	Energy change when each atom in 1 mole of gaseous atoms \checkmark loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).	[3]
(b)	increasing nuclear charge/number of protons electrons experience greater attraction or pull / atomic radius decreases / electrons added to same shell /same or similar shielding \checkmark	[2]
(c)	N has an single electron in each p orbital/ O has a paired p orbital in O, this pairing leads to repulsion/higher energy level	[2]
(d)	(From $2 \longrightarrow 10 \longrightarrow 18 /$ down group) 1st ionisation energies decrease/easier to remove electrons \checkmark electron is further from nucleus/atomic radius increases/ electron in a different shell/ atoms increase in size \checkmark (not sub-shell or orbital) electron experiences more shielding \checkmark (more is essential here) distance and shielding outweigh the increased nuclear charge \checkmark NOT: attraction/pull; effective nuclear charge	[4]
		Total: 11

Question	Expected Answers	Marks
4 (a)	```Strontium reacts with oxygen/strontium oxide forms/SrO forms } 2Sr+\mp@subsup{O}{2}{}\longrightarrow2SrO/ Sr + 1/2 O2 \longrightarrow SrO```	[2]
(b) (i) (ii) (iii) (iv)	In Sr , oxidation number $=0 \checkmark$ In $\mathrm{Sr}(\mathrm{OH})_{2}$, oxidation number $=(+) 2 \checkmark$ OR Oxidation number increases from $\mathrm{Sr} \longrightarrow \mathrm{Sr}(\mathrm{OH})_{2} \checkmark$ by $2 \checkmark$ $\begin{aligned} & 0.438 / 87.6=5.00 \times 10^{-3} / 0.00500 \mathrm{~mol} \checkmark \\ & 0.00500 \times 24.0=0.120 \mathrm{dm}^{3} \checkmark\left(\text { accept } 120 \mathrm{~cm}^{3}\right) \\ & 0.00500 \times 1000 / 200=0.0250 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \end{aligned}$	[2] [1] [1] [1]
(c) (i) (ii) (iii) (iv)	heat \checkmark $\ldots 3 . . \mathrm{SrO}(s)+\ldots 2 . . \mathrm{Al}(\mathrm{~s}) \longrightarrow \ldots 3 . . \mathrm{Sr}(\mathrm{~s})+\ldots . \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \checkmark$ Molar mass of $\mathrm{SrCO}_{3}=87.6+12+16 \times 3=147.6 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$ Mass SrCO_{3} required $=100 \times 147.6 / 87.6=168$ tonnes \checkmark Mass of ore needed $=$ mass $\mathrm{SrCO}_{3} \times 100 / 2$ $=168 \times 100 / 2=8400$ tonnes $/$ 8425 tonnes (from 168.484931507) (answer depends on rounding) 5000 tonnes is 50×100 tonnes: worth 1 mark 98% waste produced which must be disposing of /made into something worthwhile / CO_{2} being removed by something sensible/ any sensible comment \checkmark	[1] [1] [3] [1]
		Total:

