Question		Expected Answers	Marks	
1 (a)	(i)	Expected Answers 79Br has two ✓ less neutrons than 81Br ✓	[2]	
	(ii)	$^{79} \rm Br$ and $^{81} \rm Br$ have same number of protons \checkmark and same number of electrons \checkmark	[2]	
(b)	(i)	$1s^2 2s^2 2p^6 3s^2 3p^6 \dots 3d^{10} 4s^2 4p^5 \checkmark \checkmark$ Award 1 mark for p^5 .	[2]	
	(ii)	Highest energy sub-shell/sub-shell/ being filled is the p sub-shell/outer electrons are in a p (sub-shell/orbital/shell) 🗸	[1]	
(c)	(i)	Number AND type of atoms (making up a molecule)/number of atoms of each element ✓ Not ratio	[1]	
	(ii)	$P_4 + 6 Br_2 \longrightarrow 4 PBr_3 \checkmark$	[1]	
	(iii)	ratio P: Br = 16.2/31 : 83.8/79.9 /= 0.52 : 1.05 /= 1 : 2 \(\frac{1}{2}\) Empirical formula = PBr ₂ \(\frac{1}{2}\)		
		Correct compound = P_2Br_4 /phosphorus(II) bromide but not PBr_2	[3]	
			Total: 12	

Question	Expected Answers	Marks
2 (a)	shared pair √ of electrons √ i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks	[2]
(b)	H ₂ O: all correct including lone pairs around O ✓ CO ₂ : correct covalent bonds around carbon ✓ lone pairs added around oxygen atoms ✓ (must be 'dot AND cross' or electron source clearly shown (different coloured for source is OK)	[3]
(c) (i)	molecule shown as non-linear ✓ angle: 104 - 105° ✓ molecule shown as linear ✓	[4]
(ii	angle: 180° √ shape of H₂O shape of CO₂	
	Electron pairs repel / groups (or regions) of electrons repel/ electron pairs get as far apart as possible Oxygen in water surrounded by 4 areas of electron density/2 bonds and 2 lone pairs AND Carbon in CO ₂ surrounded by 2 regions of electron density/2 double bonds	[2]
(d) (i)	Attraction of electrons ✓ in a bond ✓ towards an atom	[2]
(ii	(i) CO_2 is symmetrical/ H_2O is not symmetrical \checkmark In CO_2 , dipoles cancel/in H_2O , the dipoles don't cancel \checkmark	[2]
		Total:

Question	Expected Answers	Marks
3 (a)	Energy change when each atom in 1 mole √	
	of gaseous atoms ✓	[3]
	loses an electron √ (to form 1 mole of gaseous 1+ ions).	
(b)	increasing nuclear charge/number of protons ✓	
	electrons experience greater attraction or pull / atomic radius decreases / electrons added to same shell /same or similar shielding 🗸	[2]
(c)	N has an single electron in each p orbital/ O has a paired p orbital 🗸	
	in O, this pairing leads to repulsion/higher energy level ✓	[2]
(d)	(From 2 \longrightarrow 10 \longrightarrow 18 / down group)	
	1st ionisation energies decrease/easier to remove electrons √	
	electron is further from nucleus/ atomic radius increases/ electron in a different shell/ atoms increase in size √ (not sub-shell or orbital)	
	electron experiences more shielding √ (<i>more</i> is essential here)	
	distance and shielding outweigh the increased nuclear charge NOT: attraction/pull; effective nuclear charge	[4]
		Total: 11

Question			Expected Answers	Marks	
4	(a)		Strontium reacts with oxygen/strontium oxide forms/SrO forms \checkmark 2Sr + O ₂ \longrightarrow 2SrO / Sr + $^{1}/_{2}$ O ₂ \longrightarrow SrO \checkmark	[2]	
	(b)	(i)	In Sr, oxidation number = 0 √ In Sr(OH) ₂ , oxidation number = (+)2 √ OR Oxidation number increases from Sr → Sr(OH) ₂ √ by 2 √	[2]	
		(ii)	$0.438/87.6 = 5.00 \times 10^{-3} / 0.00500 \text{ mol } \checkmark$	[1]	
		(iii)	0.00500 × 24.0 = 0.120 dm³ √ (accept 120 cm³)	[1]	
		(iv)	$0.00500 \times 1000/200 = 0.0250 \text{ mol dm}^{-3} \checkmark$	[1]	
	(c)	(i)	heat V	[1]	
		(ii)	3SrO(s) +2Al(s) \longrightarrow 3Sr(s) +Al ₂ O ₃ (s) \checkmark	[1]	
		(iii)	Molar mass of $SrCO_3 = 87.6 + 12 + 16 \times 3 = 147.6 \text{ g mol}^{-1} \checkmark$ Mass $SrCO_3$ required = $100 \times 147.6/87.6 = 168 \text{ tonnes} \checkmark$		
			Mass of ore needed = mass $SrCO_3 \times 100/2$ = $168 \times 100/2 = 8400$ tonnes / 8425 tonnes (from 168.484931507) \checkmark (answer depends on rounding)		
			5000 tonnes is 50×100 tonnes: worth 1 mark	[3]	
		(iv)	98% waste produced which must be disposing of /made into something worthwhile / CO2 being removed by something sensible/ any sensible comment 🗸	[1]	
				Total:	
				1	

Question	Expected Answers	Marks
5	Physical states of halogens	
	chlorine gas; bromine liquid; iodine solid/	
	boiling point increases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2 \checkmark$	
	number of electrons/number of shells increases down group √	
	van der Waals' forces/ induced dipole-dipole interactions/	
	AW \(\sigma\)	
	stronger forces to be broken (between the molecules) \checkmark	[4]
	Displacement	
	with chloride, nothing happens ✓	
	with iodide, darker orange/brown/darker yellow	
	/> purple with organic solvent ✓	
	$Br_2 + 2I^- \longrightarrow I_2 + 2Br^- \checkmark$	
	(or a full equation, e.g. with NaI)	
	The strength of oxidising power is $Cl_2 > Br_2 > I_2$ / Reactivity order is $Cl_2 > Br_2 > I_2$	F43
	Reactivity order is Ci ₂ > Br ₂ > I ₂ •	[4]
	Quality of written communication	
	 organise relevant information clearly and 	
	coherently, using specialist vocabulary when	
	appropriate;	
	Evidence should link together two of the marking points:	
	e.g. size of the intermolecular forces linked to	
	temperature at which a substance changes state /	
	number of electrons linked to magnitude of intermolecular	
	forces /amount of energy needed to overcome forces	
	order of reactivity linked to observation ✓	F43
	The key is a 'hecause' on 'thenefone': in homeing describ	[1]
	The key is a 'because' or 'therefore': i.e bromine doesn't displace chlorine because it is less reactive.	
	Greater intermolecular forces: therefore more energy	
	needed to break them.	
		Total: 9