| Question | | Expected Answers | Marks | | |----------|-------|--|-----------|--| | 1 (a) | (i) | Expected Answers 79Br has two ✓ less neutrons than 81Br ✓ | [2] | | | | (ii) | $^{79} \rm Br$ and $^{81} \rm Br$ have same number of protons \checkmark and same number of electrons \checkmark | [2] | | | (b) | (i) | $1s^2 2s^2 2p^6 3s^2 3p^6 \dots 3d^{10} 4s^2 4p^5 \checkmark \checkmark$
Award 1 mark for p^5 . | [2] | | | | (ii) | Highest energy sub-shell/sub-shell/ being filled is the p sub-shell/outer electrons are in a p (sub-shell/orbital/shell) 🗸 | [1] | | | (c) | (i) | Number AND type of atoms (making up a molecule)/number of atoms of each element ✓ Not ratio | [1] | | | | (ii) | $P_4 + 6 Br_2 \longrightarrow 4 PBr_3 \checkmark$ | [1] | | | | (iii) | ratio P: Br = 16.2/31 : 83.8/79.9
/= 0.52 : 1.05
/= 1 : 2 \(\frac{1}{2}\) Empirical formula = PBr ₂ \(\frac{1}{2}\) | | | | | | Correct compound = P_2Br_4 /phosphorus(II) bromide but not PBr_2 | [3] | | | | | | | | | | | | | | | | | | Total: 12 | | | Question | Expected Answers | Marks | |----------|--|--------| | 2 (a) | shared pair √ of electrons √ i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks | [2] | | (b) | H ₂ O: all correct including lone pairs around O ✓ CO ₂ : correct covalent bonds around carbon ✓ lone pairs added around oxygen atoms ✓ (must be 'dot AND cross' or electron source clearly shown (different coloured for source is OK) | [3] | | (c) (i) | molecule shown as non-linear ✓ angle: 104 - 105° ✓ molecule shown as linear ✓ | [4] | | (ii | angle: 180° √ shape of H₂O shape of CO₂ | | | | Electron pairs repel / groups (or regions) of electrons repel/ electron pairs get as far apart as possible Oxygen in water surrounded by 4 areas of electron density/2 bonds and 2 lone pairs AND Carbon in CO ₂ surrounded by 2 regions of electron density/2 double bonds | [2] | | (d) (i) | Attraction of electrons ✓ in a bond ✓ towards an atom | [2] | | (ii | (i) CO_2 is symmetrical/ H_2O is not symmetrical \checkmark In CO_2 , dipoles cancel/in H_2O , the dipoles don't cancel \checkmark | [2] | | | | Total: | | Question | Expected Answers | Marks | |----------|---|-----------| | 3 (a) | Energy change when each atom in 1 mole √ | | | | of gaseous atoms ✓ | [3] | | | loses an electron √ (to form 1 mole of gaseous 1+ ions). | | | (b) | increasing nuclear charge/number of protons ✓ | | | | electrons experience greater attraction or pull / atomic radius decreases / electrons added to same shell /same or similar shielding 🗸 | [2] | | (c) | N has an single electron in each p orbital/
O has a paired p orbital 🗸 | | | | in O, this pairing leads to repulsion/higher energy level ✓ | [2] | | (d) | (From 2 \longrightarrow 10 \longrightarrow 18 / down group) | | | | 1st ionisation energies decrease/easier to remove electrons √ | | | | electron is further from nucleus/ atomic radius increases/ electron in a different shell/ atoms increase in size √ (not sub-shell or orbital) | | | | electron experiences more shielding √ (<i>more</i> is essential here) | | | | distance and shielding outweigh the increased nuclear charge NOT: attraction/pull; effective nuclear charge | [4] | | | | Total: 11 | | Question | | | Expected Answers | Marks | | |----------|-----|-------|--|--------|--| | 4 | (a) | | Strontium reacts with oxygen/strontium oxide forms/SrO forms \checkmark 2Sr + O ₂ \longrightarrow 2SrO / Sr + $^{1}/_{2}$ O ₂ \longrightarrow SrO \checkmark | [2] | | | | (b) | (i) | In Sr, oxidation number = 0 √ In Sr(OH) ₂ , oxidation number = (+)2 √ OR Oxidation number increases from Sr → Sr(OH) ₂ √ by 2 √ | [2] | | | | | (ii) | $0.438/87.6 = 5.00 \times 10^{-3} / 0.00500 \text{ mol } \checkmark$ | [1] | | | | | (iii) | 0.00500 × 24.0 = 0.120 dm³ √ (accept 120 cm³) | [1] | | | | | (iv) | $0.00500 \times 1000/200 = 0.0250 \text{ mol dm}^{-3} \checkmark$ | [1] | | | | (c) | (i) | heat V | [1] | | | | | (ii) | 3SrO(s) +2Al(s) \longrightarrow 3Sr(s) +Al ₂ O ₃ (s) \checkmark | [1] | | | | | (iii) | Molar mass of $SrCO_3 = 87.6 + 12 + 16 \times 3 = 147.6 \text{ g mol}^{-1} \checkmark$
Mass $SrCO_3$ required = $100 \times 147.6/87.6 = 168 \text{ tonnes} \checkmark$ | | | | | | | Mass of ore needed = mass $SrCO_3 \times 100/2$
= $168 \times 100/2 = 8400$ tonnes /
8425 tonnes (from 168.484931507) \checkmark
(answer depends on rounding) | | | | | | | 5000 tonnes is 50×100 tonnes: worth 1 mark | [3] | | | | | (iv) | 98% waste produced which must be disposing of /made into something worthwhile / CO2 being removed by something sensible/ any sensible comment 🗸 | [1] | | | | | | | Total: | | | | | | | 1 | | | Question | Expected Answers | Marks | |----------|---|----------| | 5 | Physical states of halogens | | | | chlorine gas; bromine liquid; iodine solid/ | | | | boiling point increases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2 \checkmark$ | | | | number of electrons/number of shells increases down group √ | | | | van der Waals' forces/ induced dipole-dipole interactions/ | | | | AW \(\sigma\) | | | | stronger forces to be broken (between the molecules) \checkmark | [4] | | | Displacement | | | | with chloride, nothing happens ✓ | | | | with iodide, darker orange/brown/darker yellow | | | | /> purple with organic solvent ✓ | | | | $Br_2 + 2I^- \longrightarrow I_2 + 2Br^- \checkmark$ | | | | (or a full equation, e.g. with NaI) | | | | The strength of oxidising power is $Cl_2 > Br_2 > I_2$ / Reactivity order is $Cl_2 > Br_2 > I_2$ | F43 | | | Reactivity order is Ci ₂ > Br ₂ > I ₂ • | [4] | | | Quality of written communication | | | | organise relevant information clearly and | | | | coherently, using specialist vocabulary when | | | | appropriate; | | | | Evidence should link together two of the marking points: | | | | e.g. size of the intermolecular forces linked to | | | | temperature at which a substance changes state / | | | | number of electrons linked to magnitude of intermolecular | | | | forces /amount of energy needed to overcome forces | | | | order of reactivity linked to observation ✓ | F43 | | | The key is a 'hecause' on 'thenefone': in homeing describ | [1] | | | The key is a 'because' or 'therefore': i.e bromine doesn't displace chlorine because it is less reactive. | | | | Greater intermolecular forces: therefore more energy | | | | needed to break them. | | | | | Total: 9 |