2813/01

1

Mark Scheme

January 2003

 $\checkmark\checkmark\checkmark$

[3]

(a)(i) the energy required to break
1 mole of bonds
$$\checkmark$$
[2]
(ii) bonds broken: 5x (C-C) + 14 x (C-H) = 1750 + 5740 = 7490 \checkmark
bonds formed: 3 x (C=C) + 12 x (C-H) + (H-H)
= 1830 + 4920 + 436 = 7186 \checkmark
 $\Delta H = (+)304 \text{ kJ mol}^{-1} \checkmark$
[3]

(b) enthalpy $3C_{2}H_{4}(g) + H_{2}(g)$ $\Delta H = +304$ $C_{6}H_{14}(g)$ $\Delta H = +304$ $\Delta H \text{ shown } \checkmark$ $\Delta H \text{ shown } \checkmark$ f(3) 8

2 (a)
$$\Delta H_r^* = 4 \times 90 + 6 \times (-242) - 4 \times (-)46 = -908 \text{ kJ mol}^{-1}$$

(b)(i)a change in conditions or a disturbance will cause a shift in the (position of)
equilibrium
in the direction that minimises/opposes/reduces/attempts to balance
out/compensates for [NOT cancels out] the effect of the change(2](ii)the equilibrium will move to the left hand side
because there are fewer moles (of gas on that side)(2](c)(i)(heterogeneous) catalyst or to speed up the reaction or to increase
surface area(1](ii)to allow time for the (slow) reaction to take place (on the surface)
or to allow adsorption to take place(1](d)
$$4NO + 2H_2O + 3O_2 \longrightarrow 4HNO_3$$
 balancing of oxygen
balancing of C and H(2)

2813/01		Mark Scheme	January 2003	
5	(a)(i)	effervescence/fizzing/gas evolved	\checkmark	[1]
	(ii)	$\begin{array}{rcl}H_2SO_4 \ + \ Na_2CO_3 \ \longrightarrow \ Na_2SO_4 \ + \ H_2O \ + \ CO_2\\Na_2SO_4\\H_2O \ + \ CO_2\end{array}$	√ √	[2]
	(b)(i)	ammonia is a base/alkali/proton acceptor/electron pair donor	\checkmark	[1]
	(ii)	$(NH_4)_2SO_4 = 2 \times (14 + 4) + 32 + 4 \times 16 = 132$	\checkmark	
		$%_{0}N = 100 \times 28/132$ = 21.2%	\checkmark	[2]
	(iii)	as a fertiliser	~	[1] 7
6	• pr	ocess A is photosynthesis.		[1]
	prpr	ocess B is respiration or the burning/combustion of food ocess C is combustion or the/burning of fuels		[1]
	 pr pr pr 	ocess A occurs in plants ocess B occurs in animals occess C occurs in cars etc		[1] [1] [1]
	• pr ([2	cocess A is endothermic; process B and process C are exothermic 2] for all three correct, [1] for two correct, [0] for only one correct)		[2]
	• th	e energy of sunlight is 'captured' in photosynthesis/process A (OWT	TE)	[1]

9 max 7