[1]

1.

- (a)(i) B **√** [1]
- (ii) C ✓ [1]
- (iii) B **✓** [1]

solvent

(iv) A ✓ [1] and C ✓ [1]

ethanol/alcohol

- (c) (i) lone pair (of electrons) donor
 ✓ [1]
- (ii)

 If diagram shows a total of 8 electrons

 ✓[1]

 and has a negative charge.
 only award if the diagram shows 8 electrons
- (iii) unambiguous identification of organic product:

2-methylpropan-1-ol,

 $(CH_3)_2CHCH_2OH$ \checkmark [1]

[Total: 12]

2. (a)(i) same molecular formula -different structure same formula -different structure only scores 1 mark

J J [2

(ii)

H H Br H-C-C=C-Br H	H Br H I I I H-C-C=C-Br I H	H H H Br-C-C=C-Br H 3	H Br H 	Br H H Br—C—C=C—H H 5
---------------------------	---	--------------------------------	------------	--------------------------------

√[1]

√[1]

√[1]

(iii) 1,1-dibromopropene

√ [1]

(b)

(i)

H₃C H

C=C

Br Br

cis

H₃C Br C=C ✓[1] Br H trans

(ii) bond angle = $120^{\circ} \pm 4^{\circ}$

- **√** [1
- (iii) Each C in the C=C is **not** bonded to two different atoms/groups/ or equivalent.
- **/** [1]

(iv) Must be 1,3-dibromopropene.

√ [1]

[Total:1]

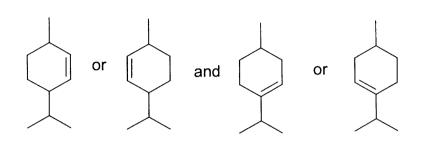
2812		Mark Scheme		January 2003	
3 . (a)					
(i)	Н			✓	[1]
(ii)	G			✓	[1]
(iii)	van	der Waals/ instantaneous	or temporary induced dipoles	✓	[1]
(b) (i)	conta	✓	[1]		
(ii)	Br ₂ -	→ 2 Br•	✓	[1]	
(iii)	Hom	✓	[1]		
(iv)	Br∙ +	$-C_5H_{12} \rightarrow -C_5H_{11} + HBr$		✓	[1]
	•C₅H	$I_{11} + Br_2 \rightarrow C_5H_{11}Br + I_{11}$	Br∙	✓	[1]
(c)	1	isomer G ,	1	✓	[1]
	11	isomer H ,	3	✓	[1]
	111	isomer I,	4	✓	[1]

[Total : 11]

4. (a)

(i) $C_{10}H_{20}O$

√ [1]


(ii) alcohol/ OH/ hydroxy(l)

/ [1]

secondary

√ [1]

(b)

1 mark for each alkene

√ [2]

(c)

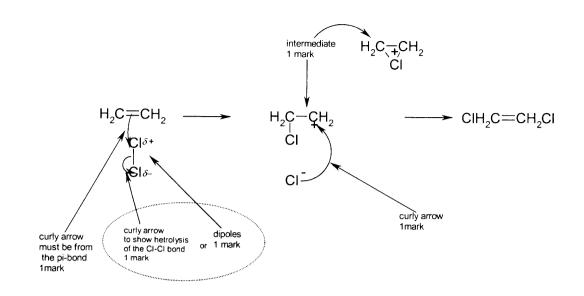
or full structural formula showing all the atoms

1 mark is available for the ester group showing CH₃ bonded via COO to a ring

2 marks for structure as shown 🗸 🗸

[Total:]

5. (a) (i)


electrophilic

[1]

addition

/ [1]

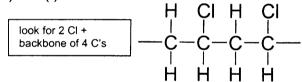
(ii)

4 marking points:

curly arrow from double bond to Cl₂,

curly arrow showing movement of electrons in the Cl-Cl bond or the

dipole in the CI-CI,


Intermediate carbocation/carbonium ion,

Curly arrow from Cl⁻ to intermediate.

✓ ✓ ✓ [4]

[1]

(c) (i)

"must show end-bonds"

(ii) general problems:

non-biodegradable/ not broken down by bacteria/ do not decompose

when burnt toxic fumes are produced
✓ [1]

specific problem of PVC:

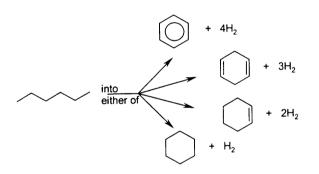
(iii) removal of toxic products or HCl formed during combustion <u>by gas scrubbers</u>/ by dissolving in a spray of alkali/ recycling/feedstock recycling/use energy from combustion for domestic heating/ manufacture biodegradable polymers . ✓ [1]

[Total: 10]

[1]

- 6. 3 marks for equations,
 - 2 marks for correctly explaining (in words) each of the 3 processes.
 - 1 mark for correctly explaining (in words) 2 of the processes.

Cracking. equation for long chain alkane into shorter chain alkane + alkene. ✓ [1]


Isomerisation

equation for straight chain alkane converted into a branched chain alkane

equation could be in the form of:

Reforming

to show straight chain into ring (& must be balanced with appropriate number of H_2 .) \checkmark [1]

(All three processes require) the use of heat and/or a catalyst

(Allow once)

/

Importance of the products:

max of 3 marks.

J J J [3

- more volatile/lower boiling points
- used in fuels because they burn better/smoother/more efficiently/more efficient fuel
- additive to petrol
- reduce knocking/pinking/increase octane number or rating
- alkenes can form polymers/PVC (see Q5)/alcohols etc

1 mark for quality of written communication to be awarded for clear presentation and SPAG.

[1]