[2]

[4]

1. (a)

isotope	number of			
	protons	neutrons	electrons	
⁶⁹ Ga	31	38	31	
⁷¹ Ga	31	40	31	

(b)

(c) (i) average mass/weighted mean/average mass of an atom / the isotopes ✓ compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark

not 12 g

or... mass of 1 mole of atoms ✓

compared with carbon-12 \checkmark

1/12th of mass of 1 mol of carbon-12/on a scale where carbon-12 is 12 g \checkmark [3]

(ii) ⁶⁹Ga: 61%; ⁷¹Ga: 39% \checkmark (allow 62/38 \longrightarrow 69.76 below)

[1]

(iii) $A_r = 69 \times 61/100 + 71 \times 39/100 = 69.78 \checkmark = 69.8 \checkmark$

ignore g / grammes [2]

[Total: 12 marks]

2811

281	1	Mark Scheme	January 200
2	(a)	1s ² 2s ² 2p ⁶ 3s ² ✓	[1]
	(b) (i)	Mg: 0 🗸	[1]
	(ii	i) MgO: +2 /2/II ✓	[1]
	(c)	(i) $3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s) \checkmark \checkmark$ 1 for correct formulae and balancing; 1 for correct state symbols	(2)
	(i	 i) N₂ is less reactive than O₂ / bond between N atoms is stronger than bond between O atoms / nitrogen has a triple bond and oxygen has a double bond 	
		activation energy of N > activation energy of O \checkmark The emphasis here should be a comparison for the mark	[1
	(d) M N	IgO has a giant structure ✓ IgO is ionic / charged magnesium and oxide ions shown ✓	
	S	trong forces 🗸	[3]
	(e)	(i) MgO dissolves/disappears ✓	[1]
		 (ii) m(MgO) = 24.3 + 16 = 40.3 (g mol⁻¹) ✓ (accept 40) mass MgO = 0.0500 x 40.3 = 2.015 g / 2.02 g / 2.01 g / 2 g ✓ g is needed here 	[2]
	((iii) moles $HNO_3 = 2 \times 0.0500 = 0.100 \text{ mol} \checkmark$ right or wrong for 1st mark volume $HNO_3 = 0.25 \text{ dm}^3 / 250 \text{ cm}^3 \checkmark$ is a size $LNO_3 = 0.00 \text{ dm}^3 / 1000 \times \text{moles } HNO_3 / 0.400 \text{ cm}^3$	
		1.e. moles HNO ₃ /0.400 dm / 1000 x moles HNO ₃ strate 0.05/0.400 \longrightarrow 0.125 dm ³ / 125 cm ³ would score 1 mark as mole	ar ratio not used [2]
	(f)	(i) ions move / free ions ✓	[1]
		(ii) Mg ²⁺ /NO ₃ ⁻ / H ⁺ /OH ⁻ ✓ ✓ 2 max	[2] [Total: 17 marks]

I

)(]]]

0

(C Ti Fi E

۷

F p

281	11	Mark Scheme Januar	y 2003
3.	(a)	(i) purification/sterilisation/kills <i>or</i> removes germs/disinfects \checkmark	
		not 'to make bleach' not 'cleans the water'	
			[1]
		(ii) turns red / yellow / orange ✓	
		then colourless / bleaches ✓	
		colourless then nothing scores i mark	
		colouriess then red does not score because overall bleaching is not implied.	[2]
	(b)	<i>reagent</i> silver nitrate/Ag ⁺ ions ✓ mark independently	
		observation white (precipitate) / goes white 🗸	
		equation $Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s) /$	
		NaCl(aq) + AgNO ₃ (aq) \longrightarrow AgCl(s) + NaNO ₃ (aq) \checkmark	
		(state symbols not required)	
		Fluorine for reagent + 'correct' displacement equation scores 1 mark)	
			[3]
	(c)	(i) CI : C = $85.6/35.5$: $14.4/12 \checkmark = 2.4$: 1.2	
		= 2 : 1 🗸	
		Cl_2C has mass of 83. 166 = 2 x 83	
		molecular formula = $Cl_4C_2 \checkmark$	
		$CI: C = 85.6/17: 14.4/12 \longrightarrow CI_4C \text{ scores } 1 \text{ mark } /$	
		$CI: C = 85.6/17: 14.4/6 \longrightarrow CI_2C \text{ scores 1 mark}$	
		$CI: C = 85.6/35.5: 14.4/6 \longrightarrow CIC scores 1 mark$	[3]
		(iii) perc is covalent / perc is not ionic / C–Cl bond in perc is covalent	[0]
		/ no Cl ⁻ ions / perc is molecular \checkmark	
			[1]
	(d)	$m(NaClO_3) = 106.5 \text{ g mol}^{-1} \checkmark$	
	(-)	moles NaClO ₃ = $4.26/106.5 = 0.04$ mol \checkmark	
		moles $Q_2 = 0.06$ mol \checkmark	
		volume $O_2 = 0.06 \times 24 = 1.44 \ (dm^3) \checkmark$	
		If no molar ratio has been used, ans $\longrightarrow 0.96 \text{ dm}^3$: worth 3 marks	
			[4]

[Total:14 marks]

4. (a) Energy change when each atom in 1 mole \checkmark of gaseous atoms ✓ **loses an electron** \checkmark (to form 1 mole of gaseous 1+ ions). 1 mole of gaseous atoms loses 1 mole of electrons would score all 3 marks $D(g) \longrightarrow D^{+}(g) + e^{-}$ scores 2 marks $\mathbf{D}(g) \longrightarrow \mathbf{D}^{+}(g) + e^{-} \Delta H / I.E. \dots kJ mol^{-1}$ scores 3 marks

Sharp rise in successive ionisation energy between 4th and 5th IE \checkmark

marking a change to a new shell/energy level / there are 4 electrons in the outer shell \checkmark

mention of 'orbital' or 'sub-shell cancels the 'shell mark'

Each marking point in (c) is independent

[Total: 8 marks

2811

January 200

[3]

[2]

[3

5. Group 2

atomic radii increases down group 🗸

down group, electrons added to a new shell / more shells \checkmark

down group, **more** shielding ✓ : *'more'* is essential

increased nuclear charge outweighed / despite increased nuclear charge \checkmark

Period 3

atomic radii decrease across period 🗸

number of protons/nuclear charge increases 🗸

across period, electrons added to same shell / same or similar shielding \checkmark

nuclear attraction increases / shell drawn in by increased nuclear charge \checkmark

watch for distinction between nuclear **attraction** and nuclear **charge** in candidates' scripts.

Quality of Written Communication

At least **two** complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. \checkmark

[1] [Total: 9 marks]

[8]