1. (a)

	number of			
	isotope			
	protons	neutrons	electrons	
	${ }^{69} \mathrm{Ga}$	31	38	31
	${ }^{71} \mathrm{Ga}$	31	40	31

(b)

not electron gun
(c) (i) average mass/weighted mean/average mass of an atom / the isotopes \checkmark compared with carbon-12 \checkmark
$1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is 12
not 12 g
or... mass of 1 mole of atoms
compared with carbon-12 \downarrow
$1 / 12$ th of mass of 1 mol of carbon-12/on a scale where carbon-12 is 12 g
(ii) ${ }^{69} \mathrm{Ga}: 61 \% ;{ }^{71} \mathrm{Ga}: 39 \% \checkmark$ (allow $62 / 38 \longrightarrow 69.76$ below)
(iii) $A_{r}=69 \times 61 / 100+71 \times 39 / 100=69.78 \checkmark=69.8 \checkmark$ ignore $\mathrm{g} / \mathrm{grammes}$

2 (a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$
(b) (i) $\mathrm{Mg}: 0^{\checkmark}$
(ii) $\mathrm{MgO}:+2 / 2 / \mathrm{II} \checkmark$
(c) (i) $3 \mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s}) \checkmark \checkmark$ 1 for correct formulae and balancing; 1 for correct state symbols
(ii) N_{2} is less reactive than $\mathrm{O}_{2} /$
bond between N atoms is stronger than bond between O atoms / nitrogen has a triple bond and oxygen has a double bond activation energy of $N>$ activation energy of $O \checkmark$
The emphasis here should be a comparison for the mark
(d) MgO has a giant structure \checkmark

MgO is ionic / charged magnesium and oxide ions shown \checkmark
strong forces
(e) (i) MgO dissolves/disappears \checkmark
(ii) $m(\mathrm{MgO})=24.3+16=40.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ (accept 40) mass $\mathrm{MgO}=0.0500 \times 40.3=2.015 \mathrm{~g} / 2.02 \mathrm{~g} / 2.01 \mathrm{~g} / 2 \mathrm{~g} \checkmark$ \mathbf{g} is needed here
(iii) moles $\mathrm{HNO}_{3}=2 \times 0.0500=0.100 \mathrm{~mol} \checkmark$
right or wrong for 1 st mark
volume $\mathrm{HNO}_{3}=0.25 \mathrm{dm}^{3} / 250 \mathrm{~cm}^{3} \checkmark$
i.e. moles $\mathrm{HNO}_{3} / 0.400 \mathrm{dm}^{3} / 1000 \times$ moles $\mathrm{HNO}_{3} / 0.400 \mathrm{~cm}^{3}$
$0.05 / 0.400 \longrightarrow 0.125 \mathrm{dm}^{3} / 125 \mathrm{~cm}^{3}$ would score 1 mark as molar ratio not used
(f) (i) ions move / free ions
(ii) $\mathrm{Mg}^{2+} / \mathrm{NO}_{3}^{-} / \mathrm{H}^{+} / \mathrm{OH}^{-} \checkmark \checkmark 2 \max$
3. (a) (i) purification/sterilisation/kills or removes germs/disinfects \checkmark
not 'to make bleach' not 'cleans the water'
(ii) turns red / yellow / orange \checkmark then colourless / bleaches \checkmark
colourless then 'nothing' scores 1 mark
colourless then 'red' does not score because overall bleaching is not implied.
(b) reagent silver nitrate $/ \mathrm{Ag}^{+}$ions \checkmark
observation white (precipitate)/goes white \checkmark
equation $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s}) /$
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
(state symbols not required)
Fluorine for reagent + 'correct' displacement equation scores 1 mark)
(c) (i) $\mathrm{Cl}: \mathrm{C}=85.6 / 35.5: 14.4 / 12 \checkmark=2.4: 1.2$

$$
=2: 1
$$

$\mathrm{Cl}_{2} \mathrm{C}$ has mass of $83.166=2 \times 83$
molecular formula $=\mathrm{Cl}_{4} \mathrm{C}_{2} \checkmark$
$\mathrm{Cl}: \mathrm{C}=85.6 / 17: 14.4 / 12 \longrightarrow \mathrm{Cl}_{4} \mathrm{C}$ scores 1 mark $/$
$\mathrm{Cl}: \mathrm{C}=85.6 / 17: 14.4 / 6 \longrightarrow \mathrm{Cl}_{2} \mathrm{C}$ scores 1 mark
CI:C $=85.6 / 35.5: 14.4 / 6 \longrightarrow C I C$ scores 1 mark
(ii) perc is covalent / perc is not ionic / $\mathrm{C}-\mathrm{Cl}$ bond in perc is covalent / no Cl^{-}ions / perc is molecular
(d) $m\left(\mathrm{NaClO}_{3}\right)=106.5 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$
moles $\mathrm{NaClO}_{3}=4.26 / 106.5=0.04 \mathrm{~mol} \checkmark$
moles $\mathrm{O}_{2}=0.06 \mathrm{~mol} \checkmark$
volume $\mathrm{O}_{2}=0.06 \times 24=1.44\left(\mathrm{dm}^{3}\right)^{\checkmark} \checkmark$
If no molar ratio has been used, ans $\longrightarrow 0.96 \mathrm{dm}^{3}:$ worth 3 marks
4. (a) Energy change when each atom in 1 mole \checkmark
of gaseous atoms \checkmark
loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).
1 mole of gaseous atoms loses 1 mole of electrons would score all 3 marks
$D(\mathrm{~g}) \longrightarrow \mathrm{D}^{+}(\mathrm{g})+\mathrm{e}^{-}$scores 2 marks
$D(g) \longrightarrow D^{+}(g)+e^{-} \Delta H / I . E . \ldots .$. kJ mol $^{-1} \quad$ scores 3 marks
(b) $\mathrm{D}^{2+}(\mathrm{g}) \longrightarrow \mathrm{D}^{3+}(\mathrm{g})+\mathrm{e}^{-} \checkmark \checkmark$
(1st mark for equation; 2nd mark for state symbols
${ }^{\text {r- }}$ not required in e^{-}; ignore wrong \boldsymbol{D} ' except if H or He used; \boldsymbol{X} is acceptable
(c) Group $4 \checkmark$

Sharp rise in successive ionisation energy between 4th and 5th IE \checkmark
marking a change to a new shell/energy level / there are 4 electrons in the outer shell $\sqrt{ }$ mention of 'orbital' or 'sub-shell cancels the 'shell mark'

Each marking point in (c) is independent
5. Group 2
atomic radii increases down group \checkmark
down group, electrons added to a new shell / more shells \checkmark
down group, more shielding $\checkmark \quad: \quad$ 'more' is essential
increased nuclear charge outweighed / despite increased nuclear charge \checkmark

Period 3

atomic radii decrease across period number of protons/nuclear charge increases \checkmark across period, electrons added to same shell / same or similar shielding \checkmark nuclear attraction increases / shell drawn in by increased nuclear charge \checkmark watch for distinction between nuclear attraction and nuclear charge in candidates' scripts.

Quality of Written Communication

At least two complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. \checkmark

