

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY 2813/01

How Far, How Fast?

Wednesday

8 JUNE 2005

Morning

45 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use a scientific calculator.
- You may use the *Data Sheet for Chemistry*.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	10	
2	15	
3	11	
4	9	
TOTAL	45	

Answer all the questions.

- 1 This question is about hydrazine, N₂H₄, and ammonia, NH₃. These are both compounds of nitrogen and hydrogen.
 - (a) Hydrazine can be oxidised and used as a rocket fuel. The equation for one possible reaction taking place is shown below.

$$H$$
 N
 H
 $+$
 0
 $=$
 0
 $+$
 0
 H
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$
 0
 $+$

Some average bond enthalpies are given below.

bond	bond enthalpy/kJ mol ⁻¹
N-N	+163
N≡N	+945
N-H	+390
O=O	+497
O-H	+463

Table 1.1

(i) Use these data to calculate the enthalpy change for the reaction of hydrazine with oxygen, as shown.

answer kJ mol⁻¹ [4]

(ii) Calculate the enthalpy change for one gram of hydrazine in this reaction.

answer kJ [1]

(b)	enthalpy change for one gram of ammonia is approximately the same as that for gram of hydrazine.		
	Usir is n	ng Table 1.1 , suggest a reason why hydrazine is used as a rocket fuel and ammonia ot.	
		[1]	
(c)	Amı	monia reacts with sulphuric acid, as shown in the equation below.	
		$2NH_3(g) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$	
	(i)	Complete the statement below to describe how ammonia is behaving in this reaction.	
		Ammonia is behaving as a because	
		[2]	
	(ii)	State one important use for the compound $(NH_4)_2SO_4$.	
		[1]	
	(iii)	Apart from the manufacture of $(NH_4)_2SO_4$, state one other large-scale use of ammonia.	
		[1]	
		[Total: 10]	

2

This question is concerned with equilibria that exist between oxides of nitrogen.			
(a)	Stat	te le Chatelier's principle.	
	••••		
		[2]	
(b)		ogen dioxide, NO_2 , is a brown gas whilst dinitrogen tetroxide, N_2O_4 , is a colourless . The following equilibrium between these two gases was set up.	
		$2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H = -58 \text{ kJ mol}^{-1}$	
		cribe, and explain, what you would see after the following changes have been made the system allowed to reach equilibrium again.	
	(i)	The temperature is increased.	
		[3]	
	(ii)	The pressure is increased.	
		[3]	

(c)	NO	2 is an atmospheric pollutant that reacts with water according to the equation below.
		$2NO_2(g) + H_2O(l) \rightarrow HNO_3(aq) + HNO_2(aq)$ equation 2.1
	(i)	Use oxidation numbers of nitrogen to explain why equation 2.1 represents a redox reaction.
		[2]
	(ii)	State a likely source of NO ₂ as an atmospheric pollutant.
		[1]
(d)		reaction of NO_2 with water, in equation 2.1 , occurs when rain falls through air taining NO_2 .
	Both	n HNO ₃ and HNO ₂ are acids.
Limestone contains calcium carbonate, CaCO ₃ .		
	(i)	Which ion is responsible for the acid properties of HNO ₃ and HNO ₂ ?
		[1]
	(ii)	Write the ionic equation for the reaction between calcium carbonate and HNO ₃ .
		[2]
	(iii)	Norwich cathedral is built from limestone. What will happen to Norwich cathedral over a period of years if significant amounts of ${\rm NO_2}$ are present in the atmosphere around Norwich?
		[1]
		[Total: 15]

3 In an experiment to determine the standard enthalpy change of combustion of propan-1-ol, $\rm C_3H_7OH$, a student used the apparatus shown below.

(a)	Define the term enthalpy change of combustion.		
	[2]		
(b)	Write the equation for the standard enthalpy change of combustion of propan-1-ol, $\mathrm{C_3H_7OH}$.		
	[2]		

(c)	The student measured 50.0 cm ³ of water into the beaker and lit the burner. When the temperature of the water had gone up by 12.8 °C, he found that 0.100 g of propan-1-ol had been burnt.			
	(i)	Calculate the energy, in kJ, produced by burning 0.100 g of propan-1-ol. The specific heat capacity of water is $4.18\mathrm{Jg^{-1}K^{-1}}$.		
	(ii)	energy = kJ [2] Calculate the number of moles of propan-1-ol in 0.100 g.		
	(iii)	number of moles = [2] Calculate the enthalpy change of combustion, in $kJ mol^{-1}$, of propan-1-ol.		
		enthalpy changekJ mol ⁻¹ [1]		
(d)	enth	student looked in a text book and found that the actual value for the standard nalpy change of combustion of propan-1-ol was more exothermic than the erimental value.		
		gest two reasons for the difference between this value and the one he obtained erimentally.		
	1			
	••••			
	••••	[2]		
		[Total: 11]		

2813/01 Jun05 [**Turn over**

,	(a)	What is a catalyst?	
		[2]	
	(b)	Explain the terms heterogeneous catalyst and homogeneous catalyst. In your explanation you should	
		include an example of a reaction for each type of catalyst	
		include an equation for one of your reactions	
		describe how a heterogeneous catalyst works.	
	`	[7]	
		[Total: 9]	
		END OF QUESTION PAPER	