

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY

How Far, How Fast?

Wednesday

4 JUNE 2003

Morning

45 minutes

2813/01

Candidates answer on the question paper. Additional materials: *Data Sheet for Chemistry* Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	8		
2	7		
3	9		
4	12		
5	9		
TOTAL	45		

This question paper consists of 8 printed pages.

Answer **all** the questions.

- Ammonia is manufactured by the Haber process according to the following equation. 1 $\Delta H^{\ominus} = -92 \, \text{kJ} \, \text{mol}^{-1}$ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (a) State the temperature used in this industrial process.[1] (b) The temperature used is often described as a 'compromise' or an 'optimum' temperature. What would be the main disadvantage of using (i) a lower temperature[1] (ii) a higher temperature?[1] (c) A few years ago some Haber process plants were designed to run at extremely high pressures, but now these have mostly been closed down. (i) Suggest one **advantage** of running a plant at a very high pressure.[1] (ii) Suggest one **disadvantage** of running a plant at a very high pressure. _____[1] (d) Under the conditions usually employed, the yield of ammonia is between 10% and 15%. Suggest what happens to the unreacted nitrogen and hydrogen in the Haber plant.[1] (e) State two large scale uses of ammonia.
 -[2]

[Total: 8]

- For Examiner's Use
- 2 In the vapour state, sulphur dichloride, SCl_2 , undergoes the following equilibrium reaction.

$$2 Cl - S - Cl(g) \rightleftharpoons Cl - S - S - Cl(g) + Cl - Cl(g)$$
 reaction 2.1

(a) State two characteristics of a dynamic equilibrium.

(b) Use the following average bond enthalpies to calculate the standard enthalpy change, ΔH_r^{\ominus} , for the forward reaction 2.1.

bond	average bond enthalpy / kJ mol-1
C1C1	242
S—Cl	255
S—S	266

	$\Delta H_{\rm r}^{\Theta} = \dots \qquad \text{kJ mol}^{-1} [3]$	
(c)	Describe how the position of equilibrium might be affected by an increase in remperature. Explain your answer.	

.....[2] [Total: 7] 3 The standard enthalpy changes of formation of hydrocarbons are difficult to measure directly by experiment, but they can be calculated from standard enthalpy changes of combustion by using Hess's Law.

Table 3.1 lists some standard enthalpy changes of combustion of some relevant substances.

substance	ΔH_{c}^{Θ} / kJ mol ⁻¹
C ₃ H ₈ (g)	-2220
C(s)	-394
H ₂ (g)	-286

Table 3.1

(a) (i) Define the term standard enthalpy change of combustion.

[3]

(ii) Write a balanced equation, including state symbols, to represent the standard enthalpy change of combustion of propane, C₃H₈.

.....[2]

- For Examiner's Use (b) The equation that represents the standard enthalpy change of formation, ΔH_{f}^{Θ} , of propane is shown below. $3C(s) + 4H_2(g) \longrightarrow C_3H_8(g)$
 - Suggest a reason why ΔH_{f}^{Θ} of propane is difficult to determine directly. (i)

.....[1]

(ii) Use Hess's law and the data in Table 3.1 to calculate a value of ΔH_{f}^{\ominus} for propane.

 $\Delta H_{\rm f}^{\oplus}$ =kJ mol⁻¹ [3]

[Total: 9]

For Examiner's Use

4 (a) (i) On the following axes, sketch the Boltzmann distribution of molecular energies for a fixed amount of gas at a particular temperature.

(b) In this question, one mark is available for the quality of written communication.

Explain how a catalyst speeds up a reaction. Use ideas from part (a) in your explanation.

Catalysts are of two types, *homogeneous* and *heterogeneous*. Explain the two terms in italics. Give an example of each type of catalyst and write an equation for the reaction it catalyses.

Quality of Written Communication [1]

OCR has made every effort to trace copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.