

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY

How Far, How Fast?

Wednesday 29 MAY 2002

Morning

45 minutes

2813/01

Candidates answer on the question paper. Additional materials: *Data Sheet for Chemistry* Scientific Calculator

Candidate Name	Candida Centre Number Number			

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	5			
2	7			
3	5			
4	14			
5	7			
6	7			
TOTAL	45			

This question paper consists of 10 printed pages and 2 blank pages.

Answer all questions.

- 1 The enthalpy change for the reaction between hydrochloric acid, HCl(aq), and sodium hydroxide, NaOH(aq), can be determined in the following way.
 - 50.0 cm³ of 2.00 mol dm⁻³ HCl(aq) is placed in a plastic cup, and its temperature recorded.
 - 50.0 cm³ of 2.00 mol dm⁻³ NaOH(aq) is placed in another plastic cup, and its temperature recorded.
 - The two solutions are mixed with stirring, and the final temperature recorded.

The following results were obtained from one such experiment:

initial temperature of both HCl(aq) and NaOH(aq) = 18.0 °C

final temperature after mixing = 31.9 °C

(Take the specific heat capacity of all solutions to be $4.18 \text{ J g}^{-1} \text{ K}^{-1}$, and the densities of all solutions to be 1.00 g cm^{-3} .)

(a) Calculate the heat evolved in the above experiment. Include units in your answer.

heat	evolved =	[3]	ł
πσαι		 ۲.	

(b) Calculate how many moles of HC*l* were used.

moles of $HCl = \dots$ [1]

(c) Hence calculate the enthalpy change, in kJ, for the reaction of 1 mol of HCl with 1 mol of NaOH.

enthalpy change =..... kJ [1]

[Total : 5]

2 On heating in a lime kiln at 1000 °C, limestone decomposes according to the following equation.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$
 $\Delta H = +178 \text{ kJ mol}^{-1}$

(a) Using the axes below, sketch the enthalpy profile of this reaction. Label the activation energy E_A and the enthalpy change ΔH .

3 The chlorination of methane in the gas phase involves the following two steps.

$$CH_4 + Cl \longrightarrow CH_3 + HCl$$
 reaction 3.1

 $CH_3 + Cl_2 \longrightarrow CH_3Cl + Cl$ reaction 3.2

Table 3.1 lists some relevant average bond enthalpies.

Table 3.1

bond	bond enthalpy / kJ mol ⁻¹
C—H	+413
C—Cl	+327
H—Cl	+432
Cl—Cl	+243

(a) (i) Use these bond enthalpies to calculate the enthalpy changes of reactions 3.1 and 3.2.

reaction 3.1

Answer kJ mol⁻¹

reaction 3.2

Answer kJ mol⁻¹ [2]

(ii) Suggest which might be the faster of these two reactions. Give a reason for your answer.

 (b) An alternative reaction route has been suggested for this reaction, which involves the following two steps.

$CH_4 + Cl \longrightarrow CH_3Cl + H$	reaction 3.3
$H + Cl_2 \longrightarrow HCl + Cl$	reaction 3.4

Use Table 3.1 to suggest why this reaction route is unlikely to take place.

[2]
(-)
[Total : 5]

4 It has been suggested that using methane, CH_4 , as a fuel for cars rather than petrol would decrease the amount of carbon dioxide produced per mile. This question looks at how much this reduction in CO_2 emission might be. You may assume that petrol is pure octane, C_8H_{18} .

The combustion of methane can be represented by the following equation.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H_c^{\ominus} = -890 \text{ kJ mol}^{-1}$

(a) Balance the following equation for the combustion of octane.

$$C_8H_{18} + \dots + CO_2 + \dots + H_2O$$
[1]

(b) The enthalpy change of combustion, ΔH_{c}^{\ominus} , of octane is -5472 kJ per mole of octane.

Use your balanced equation and the given ΔH_{c}^{\ominus} data to calculate for each fuel:

- (i) the enthalpy change per mole of CO₂ produced, and hence
- (ii) the number of moles of CO_2 produced per kJ of heat energy given out.

Write your answers in the Table below.

fuel	ΔH_{c}^{Θ} per mole of alkane burned/kJ	ΔH_{c}^{e} per mole of CO ₂ produced/kJ	moles of CO ₂ produced per kJ of heat given out	
methane	-890			
octane	-5472			

[4]

(iii) Hence calculate a value for the ratio:

moles of CO₂ produced per kJ from methane

moles of CO₂ produced per kJ from octane

Ratio [1]

- (c) Both methane and octane undergo incomplete combustion in a car engine. As a result of this, unburned hydrocarbons and carbon monoxide, CO, occur in the exhaust gases. Nitrogen monoxide, NO, is also formed inside the engine. All three pollutants can be removed by fitting a catalytic converter to the exhaust system.
 - (i) State one environmental consequence of each of the following emissions.

	unburned hydrocarbons
	со
	NO
(ii)	How is the NO formed in a car engine?
(iii)	NO and CO react together on the surface of the catalyst. Write an equation for this reaction.
(iv)	
(v)	The catalyst is a heterogeneous catalyst. What is the meaning of <i>heterogeneous</i> ?
(vi)	The catalytic converter is positioned as close to the engine as possible, so that it heats up quickly. Why does the converter work best when it is hot?
	[Total : 14]

5 Methanol is an important industrial organic chemical. It is used as a solvent and a feedstock for the manufacture of several other compounds such as ethanoic acid. A two-stage process to make methanol from natural gas, methane, is summarised in the following equations.

read	ction	5.1	$CH_4(g) + H_2O(g)$	-	Ni at 700 °C		$CO(g) + 3H_2(g)$	ΔH = +207 kJ mol ⁻¹
read	ction	5.2	$CO(g) + 2H_2(g)$	Cr at	300 °C and 3	30 MPa	CH ₃ OH(g)	ΔH = -129 kJ mol ⁻¹
(a)	Des	cribe a	and explain the eff	ect of	fincreasin	g the p	pressure on the ra	ate of reaction 5.1.
(b)	Des	cribe a	and explain how th	ne eq i	uilibrium	positio	on of reaction 5.1	is affected by
	(i)	increa	asing the tempera	ture,				
	(ii)	increa	asing the pressure) .				
(c)	Rea	ction	5.2 uses the proc	ducts	from reac	tion 5.	1. Suggest a rea	ason why these two
(-)	read	tions	cannot proceed or	ne afte	er the othe	er in the	e same reaction	vessel.
								[1]
								[Total : 7]

6 What do you understand by the term *acid*? Describe **three** different types of reaction of hydrochloric acid in which it behaves as an acid. Give any relevant observations, and write both full equations and ionic equations.

9

In this question, 1 mark is available for the quality of written communication.

..... _____ _____ _____ _____ _____ QWC [1]