

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY

2813/01

How Far, How Fast?

Tuesday

11 JANUARY 2005

Morning

45 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	13			
2	15			
3	7			
4	10			
TOTAL	45			

Answer all the questions.

1	Butane C.H.	is a gas at room	temperature. It is	s used as a fuel fo	r portable gas cookers.
	Dutane, $O_A \cap_{10}$, is a gas at room	temperature. It is	s useu as a luci ic	i portable gas cookers.

(a)	Give two properties of	butane that make i	it suitable for its use as a fuel.	
-----	------------------------	--------------------	------------------------------------	--

1	 ••••
2	 [2]

(b) The combustion of butane is shown in the equation below.

$$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$$

(i) The standard enthalpy change of combustion of butane is –2877 kJ mol⁻¹. What does *standard* mean in this context?

***************************************	• • • • • • • • • • • • • • • • • • • •	••••••
	•••••	[1]

(ii) Define the term enthalpy change of combustion.

••••••	***************************************	•••••	
	•••••		

.....[2]

(iii) Complete the enthalpy profile diagram for the combustion of butane. Label the activation energy, E_a , and the enthalpy change, ΔH .

[3]

(c)	Enthalpy	changes	of	combustion	can	be	used	to	determine	enthalpy	changes	of
	formation										-	

(')	Include state symbols in your answer.	√ ₄ ⊓ ₁₀

(ii) Use the following data to calculate the standard enthalpy change of formation of butane.

	standard enthalpy change of combustion/kJ mol ⁻¹
carbon	-394
hydrogen	-286
butane	-2877

answer kJ mol⁻¹ [3]

[Total: 13]

2 Part of the manufacture of ammonia involves the equilibrium below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$ equilibrium 2.1

(a)	Stat	e le Chatelier's principle.
		[2]
(b)	A m	ixture of $\mathrm{N_2}$ and $\mathrm{H_2}$ was made and left to reach equilibrium.
	Ехр	lain how the following changes would affect the time taken to reach equilibrium.
	(i)	use of a catalyst
		[2]
	(ii)	a higher temperature
		[2]
	(iii)	a lower pressure
		[2]

(c)	A eqı	mixture of $\rm N_2$ and $\rm H_2$ was left until it had reached equilibrium as shown in uilibrium 2.1 . At that stage, $\rm N_{2,}$ H $_2$ and $\rm NH_3$ were present in the equilibrium mixture.
	Exp in t	plain how the following changes would affect the amounts of N_{2} , H_{2} and NH_{3} present the equilibrium mixture.
	(i)	use of a catalyst
		[1]
	(ii)	a higher temperature
	····	[2]
	(iii)	a lower pressure
		[2]
(d)		ne manufacture of ammonia, the reaction is generally carried out at a temperature of out 450 °C and at a pressure approximately 200 times normal atmospheric pressure.
	Sug	ggest why these conditions are used industrially.
	••••	
	••••	[2]
		[Total: 15]

2813/01 Jan05

	(a)	HC	cuss what is meant by the terms <i>strong acid</i> and <i>weak acid</i> . Use hydrochloric acid, l , and ethanoic acid, CH_3COOH , as examples. Include relevant equations in your ower.
		••••	
		••••	
		••••	
		••••	
		••••	
		••••	
		••••	[4]
			o students were provided with hydrochloric acid and ethanoic acid. They added the ne amount of magnesium ribbon to each acid. Gas was produced at the same rate each acid.
		(i)	Identify the gas.
			[1]
		(ii)	One student said that the acids had the same concentration.
			Comment, with a reason, on whether the student was correct.
			[2]
			[Total: 7]

4 This question looks at some aspects of the use of petrol as a fuel for cars.

Petrol contains octane, C_8H_{18} . Two of the stages that occur when petrol, containing octane, is used in a car engine are shown below.

a)	Stag	ge A includes the complete combustion of octane.	
	(i)	Write the equation for this reaction.	
			.[2]
	(ii)	Suggest how NO is produced.	
			[1].
b)	Stag	ge B requires a catalyst.	
	(i)	Name two metals generally present in the catalyst.	
			[1].
	(ii)	The catalyst is a heterogeneous catalyst. Describe how it works.	
			••••
			••••
			••••
			[3].
	(iii)	Using the substances shown above, write the equation for the reaction that occin stage B .	urs
			.[2]
(c)	If st	age B does not happen, further reactions occur and pollution levels rise.	
	Sug	ggest one pollutant whose level in the atmosphere would rise.	
			[1]

[Total: 10]

END OF QUESTION PAPER