

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY

How Far, How Fast?

Friday 9 JANUARY 2004

Morning

45 minutes

2813/01

Candidates answer on the question paper. Additional materials: *Data Sheet for Chemistry* Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	11	
2	13	
3	10	
4	11	
TOTAL	45	

Answer all the questions.

2

- 1 There are several oxides of lead. This question is about the enthalpy changes that occur during the reactions of some of these oxides.
 - (a) (i) Define the term enthalpy change of formation.

.....[2]

(ii) What are the standard conditions of temperature and pressure used in enthalpy calculations?

.....[1]

(b) Write an equation, including state symbols, representing the standard enthalpy change of formation of PbO.

.....[2]

(c) Metal priming paints often contain 'red lead', Pb_3O_4 . Red lead can be made by heating PbO in the presence of air.

$$3PbO(s) + \frac{1}{2}O_2(g) \rightarrow Pb_3O_4(s)$$

(i) Use the ΔH_{f}^{Θ} values in Table 1.1 to calculate the standard enthalpy change for the above reaction.

Table	1	.1	
-------	---	----	--

compound	$\Delta H_{\rm f}^{\Phi}$ / kJ mol ⁻¹
PbO(s)	-217
Pb ₃ O ₄ (s)	-718

 $\Delta H^{\Theta} = \dots kJ \operatorname{mol}^{-1} [3]$

(ii) Red lead can also be obtained by reacting PbO_2 with PbO.

$$PbO_2(s) + 2PbO(s) \rightarrow Pb_3O_4(s) \qquad \Delta H^{\bullet} = -10 \text{ kJ mol}^{-1}$$

Use the value of ΔH^{\bullet} for this reaction, together with the values of ΔH_{f}^{\bullet} in Table 1.1, to calculate a value for the enthalpy change of formation of PbO₂(s).

 $\Delta H_{\rm f}^{\Phi} = \dots kJ \, {\rm mol}^{-1}$ [3]

[Total: 11]

For Examiner's Use

2 In the vapour state, hydrogen and iodine undergo the following reaction.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ reaction 2.1

(a) Write an equation, including state symbols, for the bond enthalpy of I-I.

.....[2]

(b) Use the bond enthalpies given below to calculate the enthalpy change, $\Delta H_{\rm r}$, for the forward reaction in reaction 2.1.

bond	bond enthalpy/kJ mol ⁻¹
H–H	+ 436
I-I	+ 151
H-I	+ 298

 $\Delta H_{\rm r} = \, {\rm kJ} \, {\rm mol}^{-1}$ [3]

(c) Draw an enthalpy profile diagram for the forward reaction, labelling the products and ΔH_r .

(d)	Hydrogen iodide dissolves in water to give a solution of hydro-iodic acid, HI(aq). Its reactions are similar to those of hydrochloric acid, HC <i>l</i> (aq).		
	(i)	A length of magnesium ribbon is added to hydrochloric acid.	
		Describe what you would see in this reaction.	
		[1]	
	(ii)	Write a balanced equation for this reaction.	
		[2]	
	(iii)	Write an ionic equation for this reaction.	
		[1]	
(e)	(e) Hydro-iodic acid and hydrochloric acid are strong acids, whereas hydrofluoric acid, HF(aq), is a weak acid.		
	Exp	lain the difference between strong and weak acids.	
		[2]	
		[Total: 13]	

5

	State	e Chatelier's principle.
		[2]
b)	State t	wo characteristics of a dynamic equilibrium.
	1	
	2	[2]
;)	The foll	owing equation represents an equilibrium reaction.
		$Cr_2O_7^{2-}(aq) + H_2O(I) \rightleftharpoons 2CrO_4^{2-}(aq) + 2H^+(aq)$ orange yellow
	Use le take pla	Chatelier's principle to describe and explain the colour change (if any) that might ace when dilute HC <i>l</i> (aq) is added to a solution containing K ₂ CrO ₄ (aq).
	•••••	
		[2]
d)	 The foll	
d)	The foll	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H^{\circ} = -58 \text{ kJ mol}^{-1}$ brown colourless
d)	The foll Use le take pla	owing equation represents another equilibrium reaction. $2NO_2(g) \iff N_2O_4(g) \qquad \Delta H^{\Phi} = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when
d)	The foll Use le take pla (i) a r	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \qquad \Delta H^{\Theta} = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature,
d)	The foll Use le take pla (i) a r	owing equation represents another equilibrium reaction. $2NO_2(g) \iff N_2O_4(g) \qquad \Delta H^{\Phi} = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature,
d)	The foll Use le take pla (i) a r	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \qquad \Delta H^{\oplus} = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature,
d)	Use le take pla	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \qquad \Delta H^e = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature, [2]
d)	The foll Use le take pla (i) a r (ii) a r	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \qquad \Delta H^{\circ} = -58 \text{ kJ mol}^{-1}$ brown colourless Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature, [2] nixture of NO ₂ (g) and N ₂ O ₄ (g) is heated at constant pressure.
d)	The foll Use le take pla (i) a r (ii) a r	owing equation represents another equilibrium reaction. $2NO_{2}(g) \rightleftharpoons N_{2}O_{4}(g) \qquad \Delta H^{e} = -58 \text{ kJ mol}^{-1}$ Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature, [2]
d)	The foll Use le take pla (i) a r (ii) a r 	owing equation represents another equilibrium reaction. $2NO_{2}(g) \rightleftharpoons N_{2}O_{4}(g) \qquad \Delta H^{e} = -58 \text{ kJ mol}^{-1}$ Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature, [2]
d)	The foll Use le take pla (i) a r (ii) a r 	owing equation represents another equilibrium reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g) \qquad \Delta H^{\circ} = -58 \text{ kJ mol}^{-1}$ Chatelier's principle to describe and explain the colour change (if any) that might ace when nixture of NO ₂ (g) and N ₂ O ₄ (g) is compressed at constant temperature, [2] nixture of NO ₂ (g) and N ₂ O ₄ (g) is heated at constant pressure. [2]

3

For Examiner's Use

1.8

- 4 In this question, one mark is available for the quality of written communication.
 - (a) What effect does a catalyst have on the rate of a reaction, and how does it achieve this effect?

(b) Some catalysts are of economic or environmental importance.

Outline two examples of processes that involve the use of catalysts. For each example,

- state the starting materials and products,
- state the catalyst,
- and explain whether the catalyst is a heterogeneous or a homogeneous catalyst.

	[6]
Qua	ality of Written Communication [1]

[Total: 11]