

| OXFORD CAMBRIDGE    | E AND | RSA | <b>EXAMINATIONS</b> |
|---------------------|-------|-----|---------------------|
| Advanced Subsidiary | GCE   |     |                     |

## CHEMISTRY

Wednesday

Chains and Rings

8 JUNE 2005

Morning

1 hour

2812

Candidates answer on the question paper. Additional materials: Data Sheet for Chemistry Scientific calculator

| Candidate Name | Centre Number | Candidate<br>Number |
|----------------|---------------|---------------------|
|                |               |                     |

TIME 1 hour

## **INSTRUCTIONS TO CANDIDATES**

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

| FOR EXAMINER'S USE |      |      |
|--------------------|------|------|
| Question<br>Number | Max. | Mark |
| 1                  | 13   |      |
| 2                  | 15   |      |
| 3                  | 13   |      |
| 4                  | 8    |      |
| 5                  | 11   |      |
| TOTAL              | 60   |      |

#### This question paper consists of 11 printed pages and 1 blank page.

# Answer all the questions.

|     |       |                                  |                          | r                               |                     |                    |
|-----|-------|----------------------------------|--------------------------|---------------------------------|---------------------|--------------------|
|     |       | alkane                           | number of carbon atoms   | molecular<br>formula            | boiling point/°C    |                    |
|     |       | butane                           | 4                        | C <sub>4</sub> H <sub>10</sub>  | 0                   |                    |
|     |       | pentane                          | 5                        | C <sub>5</sub> H <sub>12</sub>  | 36                  |                    |
|     |       | hexane                           | 6                        |                                 | 69                  |                    |
|     |       | heptane                          | 7                        | C <sub>7</sub> H <sub>16</sub>  | 99                  |                    |
|     |       | octane                           | 8                        | C <sub>8</sub> H <sub>18</sub>  |                     |                    |
|     |       | nonane                           | 9                        | C <sub>9</sub> H <sub>20</sub>  | 152                 |                    |
|     |       | decane                           | 10                       | C <sub>10</sub> H <sub>22</sub> | 175                 |                    |
|     |       |                                  |                          |                                 |                     |                    |
| (a) | vvna  | at is the molecul                | ar formula of nex        | (ane /                          |                     | [1]                |
| (b) | (i)   | State the trend                  | in the boiling po        | ints of the alk                 | anes.               |                    |
|     |       | ••••••                           |                          |                                 |                     |                    |
|     |       |                                  |                          |                                 |                     | [1]                |
|     | (ii)  | Explain the tree                 | nd in the boiling (      | points of the                   | alkanes.            |                    |
|     |       |                                  |                          |                                 |                     |                    |
|     |       |                                  |                          |                                 |                     | [1]                |
|     | (iii) | Predict the boil                 | ing point of octai       | ne.                             |                     | °C [1]             |
| (c) | Lon   | ng chain alkanes                 | s, such as nonar         | ne, can be c                    | racked into shorter | chain alkanes and  |
|     | alke  | enes.                            |                          |                                 |                     |                    |
|     | (i)   | Write a balance                  | ed equation for t        | he cracking o                   | f nonane into hepta | ane and ethene.    |
|     |       |                                  | •••••••                  | •••••                           |                     | [1]                |
|     | (ii)  | Much of the et                   | hene is then con         | verted into et                  | hanol.              |                    |
|     |       | Write a baland<br>essential cond | ced equation for itions. | the convers                     | sion of ethene into | ethanol. State the |
|     |       | equation                         |                          |                                 |                     | [1]                |
|     |       | conditions                       |                          |                                 |                     |                    |
|     |       |                                  |                          | •••••                           |                     | [2]                |
|     |       |                                  |                          |                                 |                     |                    |

1 The table below lists the boiling points of some alkanes.

3 (d) Heptane can be isomerised to produce branched chain alkanes such as 2-methylhexane or 2,3-dimethylpentane. The equation below shows the isomerisation of heptane into 2-methylhexane. (i) Using skeletal formulae, complete the balanced equation for the isomerisation of heptane into 2,3-dimethylpentane. [1] (ii) The boiling point of 2,3-dimethylpentane is 84 °C. Predict the boiling point of 2-methylhexane. .....°C [1] (e) Heptane can be reformed to produce methylcyclohexane which is a cycloalkane. Write a balanced equation to show the reforming of heptane to obtain methylcyclohexane. [2] State why branched chain alkanes and cycloalkanes are more useful than straight chain (f) alkanes. .....[1] [Total: 13]

| 2                | Propane               | , $C_3H_8$ , is used in the reaction sequence shown below.                                                                                                                                                      | Use                    |
|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| H <sub>3</sub> C | С — СН <sub>2</sub> - | $-CH_{3} \xrightarrow{\text{reaction 1}} H_{3}C - CH_{2} - CH_{2} - Cl \xrightarrow{\text{reaction 2}} H_{3}C - CH_{2} - Cl$ $aqueous OH^{-}/heat$                                                              | <br>2 <sup>——</sup> OH |
|                  |                       | reaction 3 ethanolic<br>OH <sup>-</sup> /heat<br>OH                                                                                                                                                             |                        |
|                  |                       | $E \stackrel{\text{polymerisation}}{\longleftarrow} H_3C \stackrel{\text{reaction 4}}{\longrightarrow} H_3C \stackrel{\text{reaction 4}}{\longrightarrow} H_3C \stackrel{\text{reaction 4}}{\longrightarrow} D$ | I                      |
|                  |                       |                                                                                                                                                                                                                 |                        |
|                  | <b>(a)</b> The read   | e reaction sequence shows several important reaction mechanisms. Select fr<br>ctions <b>1</b> to <b>4</b> , the reaction that shows                                                                             | om                     |
|                  | (i)                   | free radical substitution, reaction                                                                                                                                                                             | [1]                    |
|                  | (ii)                  | electrophilic addition, reaction                                                                                                                                                                                | [1]                    |
|                  | (iii)                 | elimination. reaction                                                                                                                                                                                           | [1]                    |
|                  | <b>(b)</b> In r       | eaction <b>2</b> , the aqueous $OH^-$ acts as a nucleophile.                                                                                                                                                    |                        |
|                  | (i)                   | State what is meant by the term nucleophile.                                                                                                                                                                    |                        |
|                  |                       |                                                                                                                                                                                                                 | [1]                    |
|                  | (ii)                  | Complete, with the aid of curly arrows, the mechanism involved in reaction <b>2</b> . St any relevant dipoles.                                                                                                  | woi                    |
|                  | Н <sub>3</sub> С—     | $CH_2 - CH_2 - Cl \longrightarrow H_3C - CH_2 - CH_2 - OH + \dots$                                                                                                                                              |                        |
|                  |                       | OH-                                                                                                                                                                                                             |                        |
|                  |                       |                                                                                                                                                                                                                 | [4]                    |

4

For Examiner's

|                 |                                                   | 5                             | For<br>Examiner's |
|-----------------|---------------------------------------------------|-------------------------------|-------------------|
| ( <b>c</b> ) Co | mpounds <b>B</b> and <b>D</b> are structural isom | ners of each other.           | Use               |
| (i)             | State what is meant by the term str               | uctural isomers.              |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               | [2]               |
| (ii)            | Draw the skeletal formulae of comp                | ounds <b>B</b> and <b>D</b> . |                   |
|                 | Compound B                                        | Compound D                    |                   |
|                 | Compound B                                        | Compound D                    |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               | [2]               |
| (d) Co          | mound <b>C</b> can be polymerised to form         | m compound E                  |                   |
| ( <b>u</b> ) 00 | State the time of polymerised to for              |                               | [4]               |
| (1)             | State the type of polymerisation                  |                               | [1]               |
| (11)            | Name compound E                                   |                               | [1]               |
| (iii)           | Draw a section of compound E. Sho                 | ow <b>two</b> repeat units.   |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               | [1]               |
|                 |                                                   |                               | [Total: 15]       |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |
|                 |                                                   |                               |                   |

- 3 Acrolein, CH<sub>2</sub>=CHCHO, and acrylic acid, CH<sub>2</sub>=CHCOOH, are both used in industry for the manufacture of plastic resins and polymers. Both acrolein and acrylic acid can be made from prop-2-en-1-ol, CH<sub>2</sub>=CHCH<sub>2</sub>OH.
  - (a) (i) Draw the structures of prop-2-en-1-ol and acrolein. Clearly display the functional groups in each compound.

| prop-2-en-1-ol | acrolein |  |
|----------------|----------|--|
|                |          |  |
|                |          |  |
|                |          |  |
|                |          |  |

(ii) Name the functional group common to **both** prop-2-en-1-ol and acrolein.

.....[1]

- (b) Prop-2-en-1-ol can be oxidised to form either acrolein or acrylic acid.
  - (i) Identify a suitable oxidising mixture.

.....[2]

- (ii) Write a balanced equation for the oxidation of prop-2-en-1-ol into acrolein. Use [O] to represent the oxidising agent.
  - .....[1]
- (c) A sample of prop-2-en-1-ol was oxidised and an infra-red spectrum of the organic product was obtained.



|     | By<br>acid | referring to your <i>Data Sheet</i> , decide whether acrolein, $CH_2$ =CHCHO, or acrylic d, $CH_2$ =CHCOOH, was formed. |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------|
|     | Th€        | e infra-red spectrum above is of                                                                                        |
|     | bec        | ause                                                                                                                    |
|     | •••••      |                                                                                                                         |
|     |            |                                                                                                                         |
|     | •••••      |                                                                                                                         |
|     |            | [3]                                                                                                                     |
| (d) | Acr        | ylic acid reacts with prop-2-en-1-ol to produce an ester.                                                               |
|     | (i)        | Complete the balanced equation for this reaction.                                                                       |
|     |            | $CH_2 = CHCOOH + CH_2 = CHCH_2OH \rightarrow \dots $ [2]                                                                |
|     | (ii)       | Draw the structure of the ester. Clearly display <b>all</b> of the functional groups.                                   |
| [   |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            | [2]                                                                                                                     |
|     |            | [Total: 13]                                                                                                             |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |
|     |            |                                                                                                                         |

For 8 Examiner's Use Propene,  $CH_3CH == CH_2$ , is an alkene and undergoes an addition reaction with bromine. 4 State what you would see when propene reacts with bromine. (a) (i) .....[1] (ii) Complete, with the aid of curly arrows, the mechanism involved in the reaction between propene and bromine. Show any relevant dipoles and charges.  $H_3C - CH = CH_2$  ----Br Br [4] (b) Propene,  $CH_3CH == CH_2$ , also reacts with HBr to produce two bromoalkanes that are structural isomers. CH<sub>3</sub>CHBrCH<sub>3</sub>  $CH_3CH = CH_2 + HBr$ CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br Propyne, CH<sub>3</sub>C = CH, reacts like propene. It reacts with HBr to give three isomers with molecular formula C<sub>3</sub>H<sub>6</sub>Br<sub>2</sub>. Draw the three isomers with molecular formula C<sub>3</sub>H<sub>6</sub>Br<sub>2</sub>. [3] [Total: 8]

- 5 In this question, one mark is available for the quality of spelling, punctuation and grammar.
  - (a) The rates of hydrolysis of chloroethane, bromoethane and iodoethane are different.
    - Describe how you would monitor the reaction rates.
    - Explain why chloroethane, bromoethane and iodoethane react at different rates.

Use suitable equations in your answer.

..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....[6]

- For Examiner's Use
- (b) In 1930, an American engineer, Thomas Midgley, demonstrated a new refrigerant. As part of his demonstration, he inhaled a lung full of dichlorodifluoromethane,  $CCl_2F_2$ , and used it to blow out a candle.

Use Midgley's demonstration to suggest **two** properties of  $CCl_2F_2$ . Explain, with a reason, **two** other uses of chemicals such as  $CCl_2F_2$ , other than as a refrigerant.

## Quality of Written Communication [1]

[Total: 11]

#### END OF QUESTION PAPER