

hour

OXFORD CAMI	BRIDGE AND RSA EXAMI	NATIONS	
Advanced Sub	sidiary GCE		
CHEMISTRY	2811		
Foundation Ch			
Wednesday	8 JUNE 2005	Morning	1 hou
Candidates answer Additional materials Data Sheet for (on the question paper. :: Chemistry		

Candidate Number **Candidate Name Centre Number**

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name in the space above.

Scientific Calculator

- Write your Centre number and Candidate number in the boxes above. .
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	16			
2	13			
3	8			
4	7			
5	16			
TOTAL	60			

This question paper consists of 8 printed pages.

Answer all the questions.

2

1 The element titanium, Ti, atomic number 22, is a metal that is used in the aerospace industry for both airframes and engines.

A sample of titanium for aircraft construction was analysed using a mass spectrometer and was found to contain three isotopes, ⁴⁶Ti, ⁴⁷Ti and ⁴⁸Ti. The results of the analysis are shown in Table 1.1 below.

isotope	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti
relative isotopic mass	46.00	47.00	48.00
percentage composition	8.9	9.8	81.3

Table 1.1

(a) (i) Explain the term *isotopes*.

.....[1]

.....

(ii) Complete the table below for atoms of two of the titanium isotopes.

isotope	protons	neutrons	electrons
⁴⁶ Ti			
⁴⁷ Ti			

[2]

[2]

(b) Using the information in Table 1.1, calculate the relative atomic mass of this sample of titanium.

Give your answer to three significant figures.

(c) Complete the electronic configuration of a titanium atom.

(d)	Tita	anium has metallic bonding.				
	(i)	Explain what is meant by <i>metallic bonding</i> . Use a diagram in your answer.				
		[2]				
	(ii)	How does metallic bonding allow titanium to conduct electricity?				
		[1]				
(e)	A st	udent reacted 1.44 g of titanium with chlorine to form 5.70 g of a chloride X.				
	(i)	How many moles of Ti atoms were reacted?				
		[1]				
	(ii)	How many moles of Cl atoms were reacted?				
	(iii)	[2] Determine the empirical formula of X .				
		[1]				
	(iv)	Construct a balanced equation for the reaction between titanium and chlorine.				
		[1]				
	(v)	At room temperature, X is a liquid which does not conduct electricity. What does this information suggest about the bonding and structure in X ?				
		[2]				
		[Total: 16]				

The was maii	Gro disc n ore	up 2 element radium, Ra, is used in medicine for the treatment of cancer. Radium covered in 1898 by Pierre and Marie Curie by extracting radium chloride from its pitchblende.		
(a)	Prec	dict the formula of radium chloride.		
		[1]		
(b)	Pierre and Marie Curie extracted radium from radium chloride by reduction. Explain what is meant by <i>reduction</i> , using this reaction as an example.			
		[2]		
(c)	Rad	lium reacts vigorously when added to water.		
	Ra(s) + 2H ₂ O(I) \rightarrow Ra(OH) ₂ (aq) + H ₂ (g)		
	(i)	Use the equation to predict two observations that you would see during this reaction.		
		[2]		
	(ii)	Predict a pH value for this solution.		
		[1]		
(d)	Rea rem tren	actions of the Group 2 metals involve removal of electrons. The electrons are oved more easily as the group is descended and this helps to explain the increasing d in reactivity.		
	(i)	The removal of one electron from each atom in 1 mole of gaseous radium atoms is		
		called the[2]		
		The equation for this process in radium is:		
		[2]		
	(ii)	Atoms of radium have a greater nuclear charge than atoms of calcium.		
		Explain why, despite this, less energy is needed to remove an electron from a radium atom than from a calcium atom.		

[Total: 13]

- 3 A student had a stomach-ache and needed to take something to neutralise excess stomach acid. He decided to take some Milk of Magnesia, which is an aqueous suspension of magnesium hydroxide, Mg(OH)₂.
 - (a) The main acid in the stomach is hydrochloric acid, HC*l*(aq), and the unbalanced equation for the reaction that takes place with Milk of Magnesia is shown below.

5

.....Mg(OH)₂(s) +HCl(aq) \rightarrow MgCl₂(aq) +H₂O(I)

Balance the equation by adding numbers where necessary in the unbalanced equation above. [1]

(b) The student's stomach contained 500 cm³ of stomach fluid with an acid concentration of 0.108 mol dm⁻³. The student swallowed some Milk of Magnesia containing 2.42 g Mg(OH)₂. He wondered whether this dose was sufficient to neutralise the stomach acid.

Assume that all the acid in the stomach fluid was $0.108 \text{ mol dm}^{-3}$ hydrochloric acid.

(i) How many moles of HCl were in the 500 cm^3 of stomach fluid?

[1]

(ii) Calculate the mass of $Mg(OH)_2$ necessary to neutralise this stomach fluid.

[3]

(iii) Determine whether the student swallowed too much, too little, or just the right amount of Milk of Magnesia to neutralise the stomach acid.

.....[1]

(c) Chewing chalk has been used for many years to combat excess stomach acid and indigestion tablets often contain calcium carbonate, CaCO₃. Suggest, with the aid of an equation, how these tablets work.

.....[2]

[Total: 8]

- 4 Chlorine is used in the preparation of many commercially important materials such as bleach and iodine.
 - (a) Bleach is a solution of sodium chlorate(I), NaOC*l*, made by dissolving chlorine in aqueous sodium hydroxide.

 $Cl_2(g) + 2NaOH(aq) \rightarrow NaOCl(aq) + NaCl(aq) + H_2O(I)$

Determine the changes in oxidation number of chlorine during the preparation of bleach and comment on your results.

.....[3]

- (b) lodine is extracted commercially from seawater with chlorine gas. Seawater contains very small quantities of dissolved iodide ions, which are oxidised to iodine by the chlorine gas.
 - (i) Write an ionic equation for the reaction that has taken place.

.....[2]

(ii) Use your understanding of electronic structure to explain why chlorine is a stronger oxidising agent than iodine.

[Total: 7]

In this question, one mark is available for the quality of use and organisation of scientific

Nitrogen and oxygen are elements in Period 2 of the Periodic Table. The hydrogen

Draw a diagram containing two H₂O molecules to show what is meant by hydrogen

bonding. On your diagram, show any lone pairs present and relevant dipoles.

compounds of oxygen and nitrogen, H₂O and NH₃, both form hydrogen bonds.

5

terms.

(a) (i)

[3] State and explain two anomalous properties of water resulting from hydrogen **(ii)** bonding. _____[4] (b) The 'dot-and-cross' diagram of an ammonia molecule is shown below. Predict, with reasons, the bond angle in an ammonia molecule. _____[4]

- 8
- (c) The atomic radii of nitrogen and oxygen are shown below.

element	nitrogen	oxygen	
atomic radius /nm	0.075	0.073	

Explain why a nitrogen atom is larger than an oxygen atom.

		 •••••
	••••••	
		 •••••
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	
		 ••••••
		 [4]

Quality of Written Communication [1]

[Total: 16]

END OF QUESTION PAPER

OCR has made every effort to trace the copyright holders of items used in this Question Paper, but if we have inadvertently overlooked any, we apologise.