

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY 2811

Foundation Chemistry

Thursday

10 JUNE 2004

Morning

1 hour

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific Calculator

			Candidate
Candidate Name	Ce	ntre Number	Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	13		
2	14		
.3	10		
4	12		
5	11		
TOTAL	60		

Answer all the questions.

- 1 A fifty pence coin contains nickel alloyed with a metal A.
 - (a) Nickel exists as a mixture of three isotopes, nickel-58, nickel-60 and nickel-62.
 Complete the table below to show the atomic structures of the isotopes in metallic nickel.

isotope	protons	neutrons	electrons
nickel-58			
nickel-60			
nickel-62			

[3]

(b) Metal A can be identified from its relative atomic mass.

Analysis of a fifty pence coin showed that two isotopes of metal **A** were present with the following percentage abundances.

isotope	isotope 1	isotope 2
relative isotopic mass	63.0	65.0
% abundance	77.2	22.8

(i)	What analytical method is used to obtain this information?
	[1]
(ii)	Define the term relative atomic mass.
	[3]

	(iii)	Calculate the relative atomic mass of the sample of metal A.
		Give your answer to three significant figures.
		answer[2]
	(iv)	Use your answer to (b)(iii) and the <i>Data Sheet</i> to suggest the identify of metal A .
		[1]
(c)		kel makes up 25% of the total mass of a fifty pence coin. A fifty pence coin has a ss of 8.0 g.
	(i)	Calculate how many moles of nickel atoms are in a fifty pence coin.
		answor mol [2]
		answer mol [2]
	(ii)	Calculate the number of atoms of nickel in a fifty pence coin.
		$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
		answer atoms [1]
		[Total: 13]
		[

2	Magnesium, fluorine and magnesium fluoride have different types of bonding and different
	properties.

(a)	Magnesium	has	metallic	bonding.
-----	-----------	-----	----------	----------

(i)	Draw a diagram to show what is meant by metallic bonding
	Label the diagram.

	(ii)	Why is magnesium a good conductor of electricity?
		[1]
(b)	Fluc	orine, F ₂ , has covalent bonding.
	(i)	State what is meant by a <i>covalent</i> bond.
		[2]
	(ii)	Draw a 'dot-and-cross' diagram to show the covalent bonding in fluorine. Show outer electron shells only.

[2]

(c) Ma	Magnesium fluoride, MgF ₂ , has ionic bonding.			
(i)	How does ionic bonding hold particles in MgF ₂ together?			
	[2]			
(ii)	Draw a 'dot-and-cross' diagram for magnesium fluoride, MgF ₂ . Show outer electron shells only.			
	[2]			
(iii)	Magnesium fluoride is produced when magnesium reacts with fluorine.			
	Complete the half-equations below to show the formation of the ions in magnesium fluoride in this reaction.			
	$Mg \rightarrow \dots + \dots$			
	$F_2 + \dots \rightarrow \dots $ [2]			
(iv)	A student found that magnesium fluoride has different electrical conductivities when solid and when dissolved in water.			
	Explain these two observations.			
	[2]			
	[Total: 14]			

A household bleach contains sodium chlorate(I), NaClO, as its active ingredient. 3

The concentration of NaClO in the bleach can be found by using its reaction with hydrogen peroxide, H₂O₂.

$$NaClO(aq) + H_2O_2(aq) \rightarrow O_2(g) + NaCl(aq) + H_2O(l)$$

(a) Chlorine has been reduced in this reaction. Use oxidation numbers to prove this.	
	[2]
(b) A student added an excess of aqueous hydrogen peroxide to 5.0 cm ³ of the b 84 cm ³ of oxygen gas were released.	oleach.
(i) How many moles of O ₂ were released?	
Assume that, under the laboratory conditions, 1.00 mol of gas molecules oc 24 dm ³ .	cupies
answer n	noi [1]
(ii) How many moles of NaClO were in 5.0 cm ³ of the bleach?	
answer n	nol [1]
(iii) What was the concentration, in mol dm ⁻³ , of NaClO in the bleach?	
answer mol dn	n ⁻³ [1]

(c)	The label on the bottle of household bleach states that the bleach contains a minimum of 4.5 g per 100 cm ³ of NaClO.
	Use your answer to (b)(iii) to decide whether or not the information on the label is correct.
	[3]
(d)	It is extremely important that household bleach is not used with acids. This is because a reaction takes place that releases toxic chlorine gas.
	Suggest an equation for the reaction of an excess of hydrochloric acid with household bleach.
	[2]
	[Total: 10]

- 4 This question is about elements and compounds of Group 2 of the Periodic Table.
 - (a) When calcium is added to water, a vigorous reaction takes place, releasing hydrogen gas.

$$Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$$

(i) Suggest a value for the pH of the solution formed in this reaction.

r.	4 7
[1]	11
	٠,

(ii) Complete the electronic configuration of calcium in

- (b) Carbon dioxide is bubbled through aqueous calcium hydroxide.
 - (i) A milky white precipitate A forms.Identify precipitate A and write down an equation for its formation.

(ii) As more carbon dioxide is bubbled through the solution, precipitate A disappears and a colourless solution B forms.Identify solution B and write down an equation for its formation.

(iii) Dilute hydrochloric acid is added to solution **B**. A gas is given off and a colourless solution **C** forms.

Suggest the identity of solution C.

_____[1]

When barium metal is added to water, the reaction taking place is much more vigorous than with calcium.	}
Explain why barium is more reactive than calcium.	
[4]
[Total: 12	1

[Turn over

5

a)	Describe the intermolecular bonding in CH ₄ and in H ₂ O.
	Use clear diagrams in your answer.
o)	State and explain two anomalous properties of H ₂ O that depend on its intermolecular forces.
	Quality of Written Communication [1
	Quality of written Communication [1