

	OXFORD CAM Advanced Sub CHEMISTRY Foundation Ch	XFORD CAMBRIDGE AND RSA EXAMIN dvanced Subsidiary GCE HEMISTRY oundation Chemistry		2811
	Wednesday	11 JANUARY 2006	Morning	1 hour
Candidat Name	Candidates answer Additional materials <i>Data Sheet for</i> Scientific calcul	on the question paper. Chemistry ator		
Centre Number IE 1 h	our .		Candidate Number	

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.

TIME

- Write your answers in blue or black ink, in the spaces provided on the question paper.
- Pencil may be used for diagrams and graphs **only**.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code. Do not write in the grey area between the pages.
- **DO NOT** WRITE IN THE AREA **OUTSIDE** THE BOX BORDERING EACH PAGE. ANY WRITING IN THIS AREA WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Mark			
1	20			
2	14			
3	12			
4	14			
TOTAL	60			

This question paper consists of 11 printed pages and 1 blank page.

SP (SLM/KS) S87699/5 © OCR 2006 [M/100/3423] Registered Charity Number: 1066969

Answer all the questions.

Magnesium exists naturally as a mixture of its isotopes, ²⁴Mg, ²⁵Mg and ²⁶Mg.

1

- (a) The isotopes in magnesium can be separated by mass spectrometry. The diagram below shows a mass spectrometer.
 - (i) Complete the diagram by adding the names of the two missing processes in the boxes.

[2]

(ii) Complete the table below to show the composition of the ²⁵Mg and ²⁶Mg isotopes.

	protons	neutrons	electrons
²⁵ Mg			
²⁶ Mg			

[2]

answer[2]

[Turn over

(iii) Complete the electronic configuration of an atom of ²⁴Mg.

1s².....[1]

(iv) Results from the mass spectrum of a sample of magnesium are shown below.

isotope	²⁴ Mg	²⁵ Mg	²⁶ Mg
relative isotopic mass	24.00	25.00	26.00
% abundance	78.60	10.11	11.29

Calculate the relative atomic mass of the sample of magnesium. Give your answer to two decimal places.

		4				
(b)	Мас	agnesium has a giant metallic structure held together by metallic bonding.				
	(i)	Draw a labelled diagram to show metallic bonding.				
		[2]				
	(ii)	Use your diagram to explain how magnesium conducts electricity.				
		[1]				
(C)	Мас	nesium reacts with oxygen to form magnesium oxide.				
		$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$				
	(i)	Use oxidation numbers to show that oxygen has been reduced in its reaction with magnesium.				
		[2]				

(ii) Draw a '*dot-and-cross*' diagram to show the arrangement of electrons in magnesium oxide. Show outer electron shells only and include any charges.

[2]

2

	5						
(d)	Old	samples of magnesium oxide become contaminated with magnesium carbonate.					
	(i)	Suggest how this contamination takes place.					
		[1]					
	(ii)	A student added an excess of hydrochloric acid to an old sample of magnesium oxide that is contaminated with magnesium carbonate.					
		State two observations that the student would make.					
		[2]					
	(iii)	Explain, with the aid of equations, why the resulting solution contained only one dissolved compound of magnesium.					
		[3]					

[Total: 20]

- 2 This question is about the simple molecular compounds water, ammonia and sulphur dioxide.
 - (a) Pairs of electrons in molecules may be present as *bonding pairs* or as *lone pairs*.
 - (i) Complete the table below for water, ammonia and sulphur dioxide.

molecule	H ₂ O	NH ₃	SO ₂
number of bonding pairs of electrons			4 (2 double bonds)
number of lone pairs of electrons around central atom			1

[2]

(ii) Use your answers to (a)(i) to help you draw the shape of a molecule of NH_3 and of SO_2 . Clearly show values of the bond angles in your diagrams.

molecule	NH ₃	SO ₂
shape of molecule with bond angles		

[4]

- (b) The O—H bonds in water and the N—H bonds in ammonia have dipoles.
 - (i) Why do these bonds have dipoles?

.....[1]

(ii) Molecules of NH₃ are able to form hydrogen bonds. Draw a diagram to show the hydrogen bonding in ammonia. Include any relevant lone pairs and dipoles.

[2]

		7
(c)	Des	cribe and explain the density of ice compared with water.
	·	
	••••	
	•••••	
	•••••	
		[2]
(d)	Wat follo	er, ammonia and sulphur dioxide react together to form a compound A which has the wing percentage composition by mass:
		N, 24.12%;
		H, 6.94%;
		S, 27.61%;
		O, 41.33%.
	(i)	Calculate the empirical formula of compound A.
		[2]
	(ii)	Suggest a balanced equation for the formation of compound A from the reaction of water, ammonia and sulphur dioxide.
		[1]
		[Total: 14]
		[

			8
3	A s	tuden	t carried out three experiments using chlorine gas, $Cl_2(g)$.
	(a)	In a bron	first experiment, the student bubbled chlorine through an aqueous solution of potassium nide, KBr(aq). A reaction took place.
		(i)	What colour is the solution after the reaction has taken place?
			[1]
		(ii)	Write an equation for this reaction.
			[2]
		(iii)	This reaction takes place because chlorine has a stronger oxidising power than bromine. Explain why chlorine has a stronger oxidising power than bromine.
			[3]
	(b)	In a of 0	second experiment, the student bubbled chlorine through 120 cm ³ of an aqueous solution .275 mol dm ⁻³ sodium hydroxide, NaOH(aq).
		The	equation for this reaction is shown below.
			$Cl_2(g) + 2NaOH(aq) \rightarrow NaCl(aq) + NaClO(aq) + H_2O(l)$
		Unc	ter the reaction conditions, 1 mole of $Cl_2(g)$ occupies 24.0 dm ³ .
		(i)	What is meant by the term the mole?
			· · · · · · · · · · · · · · · · · · ·
			[1]
		(ii)	How many moles of NaOH were in the 120 cm ³ volume of NaOH(aq)?
			answer mol [1]

÷.,

3

ŝ

1e

9			
(iii) Calculate the volume of $Cl_2(g)$ that was needed to react with the NaOH(aq) used.			
answer[2]			
(iv) What is a common use for the solution that the student prepared?			
[1]			
:) In a third experiment, the student repeated the procedure in (b) but with hot concentrated sodium hydroxide. A different reaction took place in which sodium chlorate(V) was formed instead of NaClO.			
Suggest the formula of sodium chlorate(V).			
[1]			
[Total: 12]			

ænner her skreder er skreder er skreder for skreder for skreder for skreder for skreder skreder for skreder sk Skreder skrede

- 4 In this question, you are provided with information about ionisation energies of elements. You are also provided with some additional information that will help you answer part (b).
 - (a) Define the term *first ionisation energy*.

(b) In this question, one mark is available for the quality of use and organisation of scientific terms.

Table 4.1 provides data on elements in **Period 2** of the Periodic Table.

Table 4.2 shows the first 6 successive ionisation energies of an element **X**, which is in **Period 3** of the Periodic Table.

- Using Table 4.1, describe and explain the trend in first ionisation energies shown by the Period 2 elements, Li–N.
- Using Table 4.2, identify element X. Explain how you decided on your answer.

[10]

element	Li	Be	В	С	N
number of protons	3	4	5	6	7
electron configuration	1s ² 2s ¹	1s ² 2s ²	1s ² 2s ² 2p ¹	1s ² 2s ² 2p ²	1s ² 2s ² 2p ³
1st ionisation energy /kJ mol ⁻¹	520	900	801	1086	1402

Table 4.1

element	ionisation energy/kJ mol ⁻¹					
	1st	2nd	3rd	4th	5th	6th
X	578	1817	2745	11 578	14831	18378

Table 4.2

11
[Turn over

12					
Quality of Written Communication [1]					
[Total: 14]					
END OF QUESTION PAPER					
OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.					

