

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY 2811

Foundation Chemistry

Tuesday 11 JANUARY 2005 Morning

orning 1 hour

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific Calculator

		Candidate
Candidate Name	Centre Number	Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE								
Qu.	Max.	Mark						
1	17							
2	14							
3	17							
4	12							
TOTAL	60							

Answer all the questions.

- 1 Carbon is in the p-block of the Periodic Table. Naturally occurring carbon contains a mixture of two isotopes, ¹²C and ¹³C.
 - (a) Complete the table below for the atomic structure of the isotopes ¹²C and ¹³C.

isotope	protons	neutrons	electrons
¹² C			
¹³ C			

[2]

(b)	A sample of carbon	was found to contain	95% of	¹² C and 5% of ¹³ C
-----	--------------------	----------------------	--------	---

(i)	How could this information be obtained experimentally?	

The ¹³ C isotope has a relative isotopic mass of 13.00

(ii)	The ¹³ C isotope has a relative isotopic mass of 13.00. Define the term <i>relative isotopic mass</i> .

(iii) Calculate the relative atomic mass of this sample of carbon to three significant figures.

.....[2]

$$A_{\rm r} = \dots [2]$$

(c) Complete the electronic configuration of carbon.

. 0		_
1s ²	[1	

(d) The burning of fossil fuels containing carbon produces carbon dioxide.

Draw a 'dot-and-cross' diagram of carbon dioxide, showing outer shell electrons only.

(e)	Lim	e water is used as the common laboratory test for carbon dioxide.
	(i)	State the name or formula of the chemical that is dissolved in water to make lime water.
		[1]
	(ii)	Write the chemical equation that takes place in this test for carbon dioxide. Include state symbols.
		[2]
(f)		bon dioxide can be prepared easily in the laboratory by the action of heat on most ponates.
	Cor	nstruct an equation to illustrate this reaction.
		[1]
(g)	In 2 hou	000, the mass of CO_2 emitted in the UK was equivalent to 1 kg per person in every r.
	(i)	Calculate the volume of 1 kg of carbon dioxide. Assume that 1 mole of ${\rm CO_2}$ occupies 24 ${\rm dm^3}.$
		volume = dm^3 [2]
	(ii)	The UK has set a target to cut ${\rm CO_2}$ emissions by 60% of the 2000 value by 2050. Calculate the reduction needed in the volume of ${\rm CO_2}$ emissions each hour per person if the target is to be met.
		answer: dm ³ [1]
		[Total: 17]
		[Total: 17]

2811 Jan05

A student prepared an aqueous solution of calcium chloride by reacting calcium with 2 hydrochloric acid. Calcium chloride contains Ca²⁺ and Cl⁻ ions. (a) Complete and balance the following equation for this reaction.Ca(s) +HCl(aq) \rightarrow CaCl₂(aq) + [2] (b) This is a redox reaction. Use oxidation states to show that calcium has been oxidised.[2] (c) Draw a 'dot-and-cross' diagram for CaCl₂. [2] (d) Aqueous silver nitrate was added to the solution of CaCl₂. (i) State what you would expect to see.

.....[1]

.....[1]

(ii) Write an ionic equation for this reaction.

(e)		prepare the aqueous calcium chloride, the student added the exact amount of cium so that all the hydrochloric acid had reacted. She used $50\mathrm{cm^3}$ of $2.0\mathrm{moldm^{-3}}$ l.
	(i)	How many moles of HCl had she used?
	(ii)	[1] Calculate the mass of calcium that she used.
		[2]
((iii)	The student added some more calcium and she was surprised that a reaction still took place.
		• Explain this observation.
		Write a balanced equation for this reaction.
		[3]
		[Total: 14]

2811 Jan05

[Turn over

[1]

[1]

3 This question refers to the elements in the first three periods of the Periodic Table:

							Н										Не
Li	Be										В	С	Ν	0	F	Ne	
Na	Mg												Si	Р	S	CI	Ar

(a)		ntify an element from the first three periods that fits each of the follow criptions.	<i>i</i> ing
	(i)	The element that forms a 2– ion with the same electronic configuration as Ne.	
			[1]
	(ii)	The element that forms a 3+ ion with the same electronic configuration as Ne.	
			[1]
	(iii)	The element that has the electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ³ .	
			[1]
	(iv)	An element that forms a compound with hydrogen with tetrahedral molecules.	
			[1]
	(v)	An element that forms a compound with hydrogen with pyramidal molecules.	
			[1]
	(vi)	The element that forms a chloride XCl_2 with a molar mass of 95.3 g mol ⁻¹ .	

(vii) The element with the largest atomic radius.

(viii) The element in Period 3 with the highest boiling point.

.....

.....[1]

(b) The diagram below shows the variation in the first ionisation energies of elements across Period 2 of the Periodic Table.

(i)	Define the term first ionisation energy.
(ii)	Explain why the first ionisation energies show a general increase across Period 2.
	[2]
(iii)	Explain why the first ionisation energy of B is less than that of Be.
	[2]
(iv)	Estimate a value for the first ionisation energy of the element with atomic number 11. Explain how you made your choice.
	First ionisation energy = kJ mol ⁻¹
	[2]

4	In th	nis question, one mark is available for the quality of spelling, punctuation and grammar.
	The tem	halogens chlorine, bromine and iodine each exist as diatomic molecules at room perature and pressure.
	(a)	The halogens all have van der Waals' forces.
		Explain how van der Waals' forces are formed.
		Explain the trend in volatilities of the halogens chlorine, bromine and iodine.
		[6]

o)	in displacement reactions involving halides, using reactions on a test tube scale.		
	Include equations and observations in your answer.		
,			
,			
,	Overline (1M in a C		
	Quality of Written Communication [1]		
	[Total: 12]		

END OF QUESTION PAPER