

OXFORD (Advanced	CAMBRIDGE AND RSA EXAMII Subsidiary GCE	NATIONS	
CHEMIS ⁻ Foundatio	2811		
Friday	17 JANUARY 2003	Morning	1 hour
Candidates a Additional ma Scientific Data She	nswer on the question paper. aterials: calculator et for Chemistry		

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	12			
2	17			
3	14			
4	8			
5	9			
TOTAL	60			

This question paper consists of 10 printed pages and 2 blank pages.

Answer **all** the questions.

- 1 Gallium, atomic number 31, exists naturally as a mixture of its isotopes, ⁶⁹Ga and ⁷¹Ga.
 - (a) Complete the table below to show the atomic structure of each isotope of gallium.

isotopo	number of				
isotope	protons	neutrons	electrons		
⁶⁹ Ga					
⁷¹ Ga					

-
- (b) A mass spectrometer can be used to identify the isotopes in a sample of an element. The diagram below shows a mass spectrometer.

Complete the diagram by adding the names of the processes that take place in each of the four labelled regions.

[2]

(c) A sample of gallium was analysed in a mass spectrometer to produce the mass spectrum below. The relative atomic mass of gallium can be calculated from this mass spectrum.

2

2811 Jan03

[Turn over

2 When magnesium is heated in air, it reacts with oxygen to form magnesium oxide.

$$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$$

(a)	Complete the electronic configuration of a magnesium atom.			
	1s²			
(b)	Wha	at is the oxidation state of magnesium in		
	(i)	Mg[1]		
	(ii)	MgO?[1]		
(c)	Wh nitri	en magnesium is heated in air, it also reacts with nitrogen to form solid magnesium de, Mg ₃ N ₂ .		
	(i)	Construct an equation, with state symbols, for this reaction between magnesium and nitrogen.		
	(ii)	Suggest why magnesium reacts with air to form much more MgO than Mg_3N_2 .		
(d)	I) Magnesium oxide has an extremely high melting point which makes it suitable as a lining for furnaces.			
	Exp	plain, in terms of its structure and bonding, why magnesium oxide has this property.		

- 5 (e) When magnesium oxide is added to warm dilute nitric acid, a reaction takes place forming a solution of magnesium nitrate. $MgO(s) + 2HNO_3(aq) \longrightarrow Mg(NO_3)_2(aq) + H_2O(l)$ A student reacted 0.0500 mol MgO with 0.400 mol dm⁻³ nitric acid. (i) What would you see during this reaction? _____[1] (ii) Calculate the mass of MgO that reacted. [2] (iii) Calculate the volume of 0.400 mol dm⁻³ HNO₃ required to react exactly with this amount of MgO. [2] The solution formed in this reaction contains ions. (i) Why does this solution conduct electricity?
 - (ii) State the formulae of two ions present in this solution.

(f)

[Total: 17]

3	This question is abou	it chlorine and	chlorine compounds.
---	-----------------------	-----------------	---------------------

(a) Chlorine reacts with water to form a solution.

 $Cl_2(g) + H_2O(I) \longrightarrow HCl(aq) + HOCl(aq)$

- (i) Why is chlorine added to water on a large scale?
-[1]

(ii) Green universal indicator is added to this solution.

What colour changes would you see

- immediately[1]
- after some time?[1]
- (b) Describe a simple test that you could carry out to show that chloride ions are present in a sample of sea water.

reagent
observation

[3]

(c) Some dry-cleaning solvents include the chlorine compound Perc.

Perc has the following percentage composition by mass: Cl, 85.6%; C, 14.4%.

The relative molecular mass of Perc is 166.

(i) Calculate the molecular formula of *Perc*.

[3]

(ii) Suggest why *Perc* would **not** react in the test in (b).

	••••
	[1]

(d) Sodium chlorate, $NaClO_3$, is a chlorine compound used as a weed killer.

When heated, NaClO₃ releases oxygen gas.

 $2NaClO_3(s) \longrightarrow 2NaCl(s) + 3O_2(g)$

Calculate the volume of O_2 that can be formed at room temperature and pressure by heating 4.26 g of NaClO₃.

1 mol of gas molecules occupies 24.0 dm³ at room temperature and pressure.

[4] [Total : 14] 4 The first six successive ionisation energies of an element **D** are shown in Table 4.1 below.

Table 4.1

olomont	ionisation energy / kJ mol ⁻¹					
element	1st	2nd	3rd	4th	5th	6th
D	1086	2353	4621	6223	37832	47278

(a) Define the term *first* ionisation energy.

	[3]
(b)	Write an equation, with state symbols, to represent the third ionisation energy of element D .
(c)	Use Table 4.1 to deduce which group of the Periodic Table contains element D . Explain your answer.
	group
	explanation
	[3]
	[Total : 8]

	9	For Examiner's
5	In this question, one mark will be awarded for the quality of written communication.	Use
	In the Periodic Table, describe and explain the trend in atomic radii shown by	
	• the Group 2 elements Be-Ra	
	• the Period 3 elements, Na-Ar.	
	[8]	
	Quality of Written Communication [1]	
	[Total : 9]	