1.11 Electrochemistry

Recap from 1.7:

Oxidation and Reduction:

Oxidation and Reduction:

• Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer:

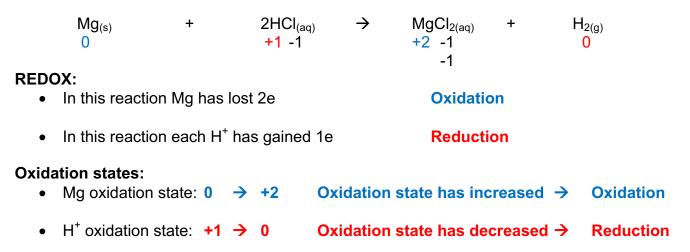
Definitions:

Oxidation Is Loss of electrons

Reduction Is Gain of electrons

- Oxidation and reduction must occur simultaneously as all reactions involve a movement of electrons.
- These reactions are given the shorthand term of REDOX reactions. As they involve

REDuction and **OX**idation


Example: Identify what has been oxidised and reduced:

1) Overall chemical equation:

 $MgCl_{2(aq)}$ + $Mg_{(s)}$ + 2HCl_(aq) \rightarrow $H_{2(q)}$ 2) Covert to ionic equation and identify spectator ions: $2CI_{(aq)} \rightarrow Mg^{2+}_{(aq)} +$ Mg_(s) $2H_{(aq)}^{+}+$ $2CI_{(aq)}$ + $H_{2(q)}$ 3) Remove spectator ions and identify what will be in each $\frac{1}{2}$ equation: $Mg^{2+}_{(aq)}$ + \rightarrow $2H^{+}_{(aq)}$ Mg_(s) + $H_{2(a)}$ 4) Write the half equation and determine REDOX using OILRIG: \rightarrow Mg²⁺_(ag) Oxidation – lost electron $Mg_{(s)}$ + 2e⁻ $2e^{-} \rightarrow H_{2(g)}$ Reduction – gained electron $2H_{(aq)}^{+}$ +

Oxidation states and REDOX reactions

• As oxidation states show the movement of electrons in a reaction it is possible to use these to identify what has been oxidised and what has been reduced:

Summary:

Oxidation is an increase in oxidation state

<u>Reduction</u> is a decrease in oxidation state

(Its oxidation state REDUCES)

	Oxidation	1
1	state	
	+7	
	+6	
	+5	
uo	+4	Re
Oxidation	+3	Reduction
cid	+2	cti
ô	+1	n l
	0	
	-1	
	-2	
	-2 -3 -4	
	-4	•

Oxidising and reducing agents:

Mg _(s)	+	2HCI _(aq)	\rightarrow	MgCl _{2(aq)}	+	$H_{2(g)}$
0		+1 -1		+2 -1		0
				-1		

- Mg oxidation state has been increased from $0 \rightarrow +2$ Oxidised (electrons lost)
- H oxidation state has been reduced from $0 \rightarrow -1$ Reduced (electrons gained)

So:

- **Mg** can only lose its electrons if there is a species to accept these electrons
- As **H** accepted the electrons from magnesium for it to be oxidised we say that **hydrogen** is the **oxidising agent**
- H can only gain electrons if there is a species to lose these electrons to
- As **Mg** gave the electrons to hydrogen for it to be reduced we say that **magnesium** is the **reducing agent**:

Oxidation – Reducing agents Is Loss of electrons

Reduction – Oxidising agents Is Gain of electrons

Basically:

If it is oxidised it is a reducing agent

If it is reduced it is an oxidising agent

1) Look at the following reactions and decide whether they are oxidation or reduction reactions:

a. Ca	→ Ca ²⁺	+	2e⁻
b. Cl ₂	+ 2e ⁻	\rightarrow	2Cl ⁻
c. 2Br⁻	\rightarrow Br ₂	+	2e⁻

2) Convert the following reaction into half equations, then identify the species that has been oxidised and which species has been reduced:

Overall reaction:

 $2KI_{(aq)}$ + $CI_{2(aq)}$ \rightarrow $2KCI_{(aq)}$ + $I_{2(aq)}$ Ionic equation:

Half equations and state which is oxidation and which is reduction:

3) Write the formulas for the following compounds:

Manganese (IV) oxide Sodium sulphate (VI)

Sodium sulphate (IV)

lodate (V) with a 1- charge

4) Find the oxidation state of the element in **bold**

 VO_3 MgSO₃ NaClO₃ Na₂Cr₂O₇

5) Assign oxidation numbers, identify and explain which has been oxidised and reduced: a) $2Mg_{(s)} + O_{2(g)} \rightarrow 2MgO_{(s)}$

Ox No's Oxidised: Reason: Reduced: Reason: b) $MgSO_{4(aq)}$ $H_2SO_{4(aq)}$ Mg_(s) + \rightarrow $H_{2(g)}$ + Ox No's Oxidised: Reason: Reduced: Reason: c) LiNO_{3(aq)} HNO_{3(aq)} Li_(aq) $H_{2(g)}$ \rightarrow + Ox No's Oxidised: Reason: Reduced: Reason: 6) Assign oxidation numbers, identify and explain which has been oxidised and reduced: a) 2Ca_(s) \rightarrow 2CaO_(s) + $O_{2(g)}$ Ox No's Oxidising agent: Reason: Reducing agent: Reason: b) Sr_(s) $H_2SO_{4(aq)}$ $H_{2(g)}$ SrSO_{4(aq)} + \rightarrow + Ox No's Oxidising agent: Reason: Reducing agent: Reason: c) NaNO_{3(aq)} Na_(s) HNO_{3(aq)} \rightarrow $H_{2(l)}$ + + Ox No's Oxidising agent: Reason: Reducing agent: Reason:

The reactivity series - GCSE

- Most reactive prefer to exist in their oxidised form (positive ions)
- Least reactive prefer to exist in their reduced form (as elements)

Element	Oxidised form	Reduced form	
			Consider the reactions: $Mg_{(s)} + Zn^{2+}_{(aq)} \rightarrow Mg^{2+}_{(s)} + Zn_{(s)}$
Potassium	K⁺	К	
Sodium	Na⁺	Na	The half equations:
Lithium	Li⁺	Li	$Mg_{(s)} \rightarrow Mg^{2+}_{(aq)} + 2e^{-}$ Oxidised
Calcium	Ca ²⁺	Ca	$Zn^{2+}_{(aq)}$ + $2e^{-} \rightarrow Zn_{(s)}$ Reduced
Magnesium	Mg ²⁺	Mg	
Aluminium	Al ³⁺	AI	
Zinc	Zn ²⁺	Zn	
Iron	Fe ²⁺	Fe	
Tin	Sn ²⁺	Sn	$Zn_{(s)}$ + $Cu^{2+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $Cu_{(s)}$
Lead	Pb ²⁺	Pb	
(Hydrogen)	H⁺	Н	The half equations:
Copper	Cu ²⁺	Cu	$Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$ Oxidised
Mercury	Hg ²⁺	Hg	
Silver	Ag⁺	Ag	$Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$ Reduced
Gold	Au ⁺	Au	
		/	

- In these 2 reactions, zinc has been oxidised and reduced.
 - This means that the zinc reaction could be better written as an equilibrium:

$$Zn^{2+}$$
 + $2e^{-}$ Zn

Apply Le Chateliers Principle:

•

1. Add electrons to the system, the equilibrium shifts to remove electrons – Forward 2. Remove electrons from the system, the equilibrium shifts to add electrons – Reverse

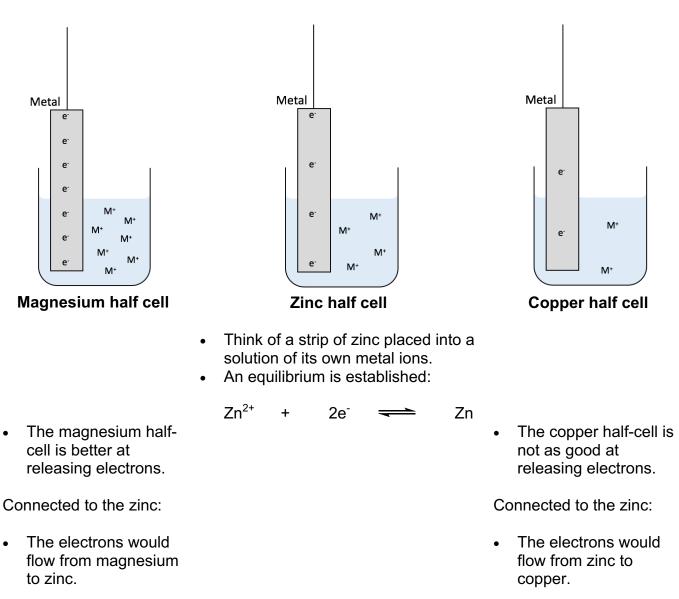
With a metal ion / metal whose tendency to lose electrons is greater, the Zn²⁺ / Zn will gain electrons, the equilibrium shifts – Forward direction

 Zn^{2+} + $2e^{-}$ \rightarrow Zn

With a metal ion / metal whose tendency to gain electrons is greater, the Zn²⁺ / Zn will lose electrons, the equilibrium shifts – Reverse direction

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

Electricity from chemical reactions

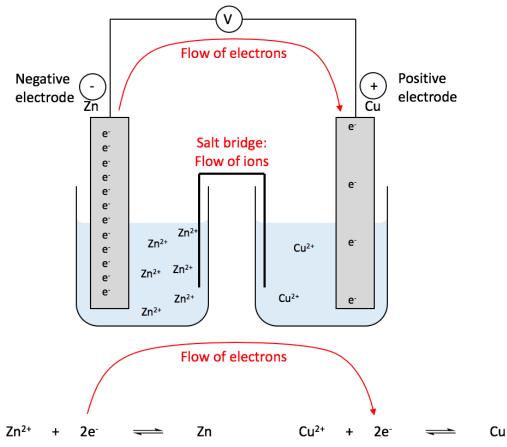

• Chemical reactions involve a transfer of electrons:

 $Zn_{(s)}$ + $Cu^{2+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $Cu_{(s)}$

- It is possible to make these electrons move from one system to another through an external wire electrical current.
- This is the basis of all batteries cells
- All cells are made from 2 half-cells:

Chemical reactions to flow of electrons:

- Each metal in the reactivity series has its own equilibrium position.
- Some will release electrons better than others half cells:



As with any equilibrium:

- If zinc was accepting electrons, the equilibrium would shift to the right in order to remove them
- If zinc was donating electrons, the equilibrium would shift to the left in order to replace them

Cells and half cells - completing the circuit

- The cell is made up from 2 half cells joined together giving a flow of electrons.
- To complete the circuit a salt bridge is added allowing ions (charges) to flow.
- The salt bridge is made by soaking filter paper in a saturated solution of KNO₃.

- Electrons are being removed from the equilibrium.
- Equilibrium shifts to the left to replace them:

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Oxidation at the negative electrode

- As electrons are removed from one metal/ion system, the equilibrium shifts to replace the electrons.
- As electrons are added to the other metal/ion system, the equilibrium shifts to remove the electrons.
- A continuous flow of electrons occurs until either the metal or ions in the solution run out:

 $Zn_{(s)}$ + $Cu^{2+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $Cu_{(s)}$

• The same chemical reaction where the electron transfer has moved through an external wire – current.

The voltage:

- The potential difference gives a voltage / EMF reading between the 2 half cells.
- In this case = 1.1V

- Electrons are being added to the equilibrium.
- Equilibrium shifts to the right to remove them:

Reduction at the positive electrode

The electrochemical series – A level

- The reactivity series is replaced with the **electrochemical series**:
- Each element is placed according to its affinity to lose electrons
- One half cell has to be chosen to be zero as the voltage / EMF is the difference between 2 half cells.
- The hydrogen half-cell is chosen as this determine what will react with acids later.
- Each half-cell is given an $\mathbf{E}^{\theta}_{cell}$ value in volts (measured against hydrogen later)

	Element	Oxidised form	Reduced form	Ε ^θ cell				
	Potassium	K⁺	К	-2.92				
	Sodium	Na⁺	Na	-2.71	Reducing			
Oxidising power	Lithium	Li⁺	Li	-2.59	power			
	Calcium	Ca ²⁺	Ca	-2.44				
	Magnesium	Mg ²⁺	Mg	-2.37				
	Aluminium	Al ³⁺	Al	-1.66				
	Zinc	Zn ²⁺	Zn	-0.76				
	Iron	Fe ²⁺	Fe	-0.44				
	Tin	Sn ²⁺	Sn	-0.14				
	Lead	Pb ²⁺	Pb	-0.13				
	(Hydrogen)	H⁺	Н	0.00				
	Copper	Cu ²⁺	Cu	+0.34				
	Mercury	Hg ²⁺	Hg	+0.79				
	Silver	Ag⁺	Ag	+0.80				
	Gold	Au⁺	Au	+1.89				

- E^{θ}_{cell} values are arranged with the most negative values at the top.
- They are arranged with the highest oxidation number on the left.
- The more negative a value, the greater the tendency for the electrode system to lose electrons.
- This means that the most negative of the 2 systems will move to the left whereas the least negative will move to the right.

This means:

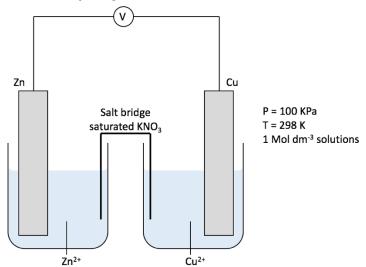
• The systems at the top of the table have a greater tendency to go from right \rightarrow Left.

Most negative produces (releases) electrons more readily.

• The systems at the bottom of the table have a greater tendency to go from left \rightarrow right.

Most positive reacts (accepts) the electrons more readily.

Summary:


The most negative E ^θ value	The most positive E ^θ value				
Negative electrode	Positive electrode				
Releases electrons	Gains electrons				
Oxidation	Reduction				
Electrons flow from negative to positive					

Standard conditions:

- As with any equilibria, the position of the equilibria will be sensitive to:
 - > Pressure 100KPa
 - > Temperature 298K
 - Concentration 1 mol dm⁻³ solutions

Drawing cell diagrams:

- Always draw the most positive electrode (half-cell) on the right.
- Unless using the standard hydrogen half-cell later

• Write the equations at each electrode:

Negative electrode on the left:

Positive electrode on the right:

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Releases electrons

 $Cu^{2+} + 2e^{-} \rightarrow Cu$

Accepts electrons

• Write the overall equation – balance using electrons:

$$Zn_{(s)}$$
 + $Cu^{2+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $Cu_{(s)}$

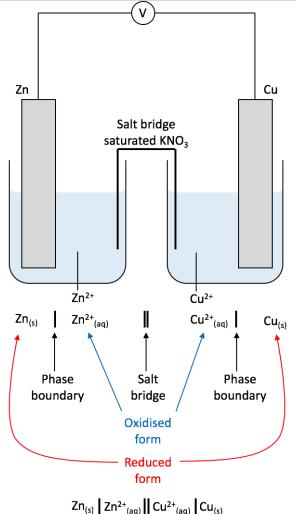
• Calculate the emf / pd / voltage – this is the difference between the 2 half cells:

Ε ^θ cell	=	Ε ^θ ρο	s -	E^{θ}_{neg}	Ε ^θ _{cell}	=	E^{θ}_{rhs}	-	E^{θ}_{lhs}
I	Ξ ^θ cell	=	0.34 -	- 0.76					
E	Ξ^{θ}_{cell}	=	1.10 V						

- 1) An electrochemical cell can be made using Mg^{2+} / Mg half-cell and Pb^{2+} / Pb half-cell.
 - a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Calculate the E^{θ}_{cell} value, use the electrochemical series on P9.
- 2) An electrochemical cell can be made using Ca²⁺ / Ca half-cell and Sn²⁺ / Sn half-cell.
 a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Calculate the E^{θ}_{cell} value, use the electrochemical series on P9.


3) An electrochemical cell can be made using Li⁺ / Li half-cell and Cu²⁺ / Cu half-cell.
 a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Calculate the E^{θ}_{cell} value, use the electrochemical series on P9.
- 4) An electrochemical cell can be made using Al³⁺ / Al half-cell and Ag⁺ / Ag half-cell.
 a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Calculate the E_{cell}^{θ} value, use the electrochemical series on P9.

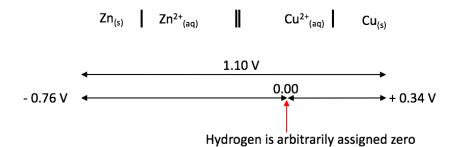
IUPAC convention for an electrochemical cell:

- Drawing out electrochemical cells is quite onerous.
- There is an IUPAC convention to represent the electrochemical cells:

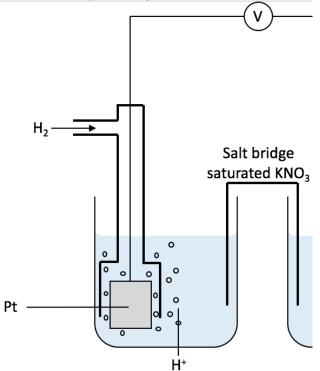
• Again, the most positive half-cell is always written on the right in the cell diagram.

Questions:

Write the IUPAC conventional cell diagrams for:


- 1) An electrochemical cell can be made using Mg^{2+} / Mg half-cell and Pb^{2+} / Pb half-cell.
- 2) An electrochemical cell can be made using Ca^{2+} / Ca half-cell and Sn^{2+} / Sn half-cell.

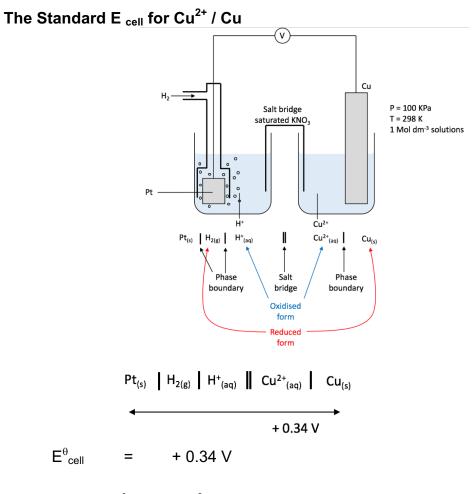
3) An electrochemical cell can be made using Li⁺ / Li half-cell and Cu²⁺ / Cu half-cell.


4) An electrochemical cell can be made using AI^{3+} / AI half-cell and Ag^{+} / Ag half-cell.

The standard Hydrogen electrode – The reference electrode:

• E_{cell}^{θ} is measured by the difference between 2 half-cells:

- Hydrogen is used as it is a primary standard reference
- This is chosen as it gives a list of which metals react with acids, H⁺, later.
- The hydrogen electrode throws up some problems:


The standard hydrogen electrode is always written on the left

- > As hydrogen is a gas it is bubbled through the acid and over a platinum electrode.
- > The Pt electrode allows reduction / oxidation reactions to occur.
- To measure standard electrode potentials, it must be carried out under standard conditions:
 - ➤ P = 100KPa

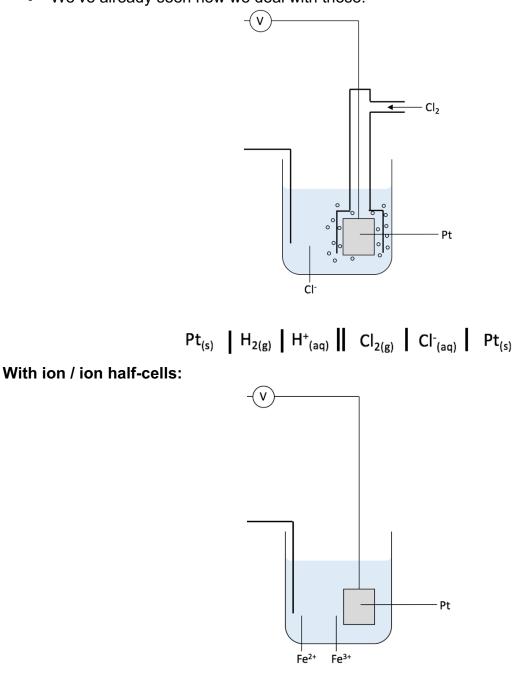
➤ 1 Mol dm⁻³

 E^{θ}_{cell} and the Standard Hydrogen electrode:

•

• The Standard E^{θ}_{cell} for Zn^{2+} / Zn

 $\mathsf{Pt}_{(s)} \hspace{0.1 cm} \left| \hspace{0.1 cm} \mathsf{H}_{2(g)} \hspace{0.1 cm} \right| \hspace{0.1 cm} \mathsf{H}^{+}_{(aq)} \hspace{0.1 cm} \left| \hspace{0.1 cm} \mathsf{Zn}^{2+}_{(aq)} \hspace{0.1 cm} \right| \hspace{0.1 cm} \mathsf{Zn}_{(s)}$ - 0.76 V V Zn P = 100 KPa Salt bridge T = 298 K 1 Mol dm⁻³ solutions saturated KNO Pt Zn2+ Ĥ' . H*_(aq) Pt_(s) H_{2(g)} Zn²⁺(aq) Zn_(s) Phase Phase Salt boundary bridge boundary Oxidised form Reduced form


 E^{θ}_{cell} = -0.76 V

- 1) Write the IUPAC conventional cell diagrams to measure the standard electrode potential: For each one state its standard electrode potential (using P9): a) Mg^{2+}/Mg

 - b) Zn²⁺ / Zn
 - c) Sn²⁺ / Sn
 - d) Pb²⁺ / Pb
 - e) Ag⁺ / Ag
- 2) Use your answers in Q1 to write fully balanced chemical equations for these electrochemical cells. You may need to refresh your memory on how to do this - P10: a) Mg^{2+}/Mg
 - b) Zn²⁺ / Zn
 - c) Sn²⁺ / Sn
 - d) Pb²⁺ / Pb
 - e) Ag⁺ / Ag
- 3) Which of the above metals react with acids?

With gas / ion half-cells:

• We've already seen how we deal with these:

 $\mathsf{Pt}_{(s)} \hspace{0.2cm} \left| \hspace{0.2cm} \mathsf{H}_{2(g)} \hspace{0.2cm} \right| \hspace{0.2cm} \mathsf{H}^{+}_{(aq)} \hspace{0.2cm} \left| \hspace{0.2cm} \mathsf{Fe}^{3+}_{(aq)} \hspace{0.2cm} \right| \hspace{0.2cm} \mathsf{Fe}^{2+}_{(aq)} \hspace{0.2cm} \left| \hspace{0.2cm} \mathsf{Pt}_{(s)} \hspace{0.2cm} \right|$

- > Note: a comma separates the 2 aqueous ions as this is not a phase boundary.
- > Remember the species with the highest oxidation state goes nearer the salt bridge
- This allows an electrochemical series that extends to non-metals / gases and ions data sheet.

- 1) An electrochemical cell can be made using Mg^{2+} / Mg half-cell and Cl_2 / Cl^- half-cell.
 - a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Write the IUPAC conventional cell diagram
- g) Calculate the E^{θ}_{cell} value, use the data sheet.
- 2) An electrochemical cell can be made using Cl₂ / Cl⁻ half-cell and Fe³⁺ / Fe²⁺ half-cell.
 a) Construct a cell diagram:

- b) Write the half equations at each electrode
- c) Identify the positive and negative electrode
- d) Show the direction of the flow of electrons
- e) Write an overall equation
- f) Write the IUPAC conventional cell diagram
- g) Calculate the E^{θ}_{cell} value, use the data sheet.

- 3) Write the IUPAC conventional cell diagrams for following and state the E^θ_{cell} value (Data sheet). Write balanced chemical reactions:
 a) Mg²⁺ / Mg and Br₂ / Br⁻ IUPAC conventional cell diagrams:
 E^θ_{cell} = ____ V
 Balanced chemical equation:
 b) Ca²⁺ / Ca and Sn⁴⁺ / Sn²⁺ IUPAC conventional cell diagrams:
 E^θ_{cell} = ____ V
 Balanced chemical equation:
 E^θ_{cell} = ____ V
 - IUPAC conventional cell diagrams:

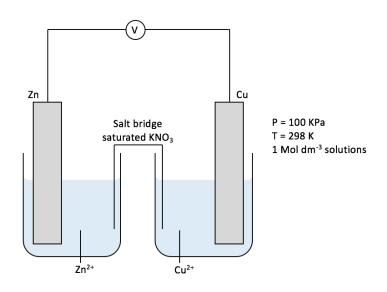
Balanced chemical equation:

 d) Al³⁺ / Al and Cr₂O₇²⁻ / H⁺ / Cr³⁺ IUPAC conventional cell diagrams:

Balanced chemical equation:

e) Cu²⁺ / Cu and MnO₄⁻ / H⁺ / Mn²⁺ IUPAC conventional cell diagrams:

Balanced chemical equation:


 $E^{\theta}_{cell} = __V$

 $E_{cell}^{\theta} = V$

 E^{θ}_{cell} = _____ V

19

Changes at the electrodes:

• Consider what is happening at each of the electrodes:

• With an overall chemical equation, it is possible to do a moles calculation:

 $Zn_{(s)}$ + $Cu^{2+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $Cu_{(s)}$

 The moles of Zn lost will be equal to the moles of copper gained as the reaction is a 1:1 ratio.

Example:

An electrochemical cell was made using Zn / Zn^{2+} and Ag / Ag^{+} . The cell was used and the Zn electrode lost 0.654g in mass. Calculate the gain in mass at the Ag electrode:

$$Zn_{(s)} | Zn^{2+}_{(aq)} | Ag^{+}_{(aq)} | Ag_{(s)}$$

> Use the electrochemical series to construct an equation:

 $Zn_{(s)}$ + $2Ag^{+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $2Ag_{(s)}$

Calculate moles of Zn lost:

n Zn lost = 0.654 / 65.4 n Zn lost = 0.01

Calculate moles of Ag gained:

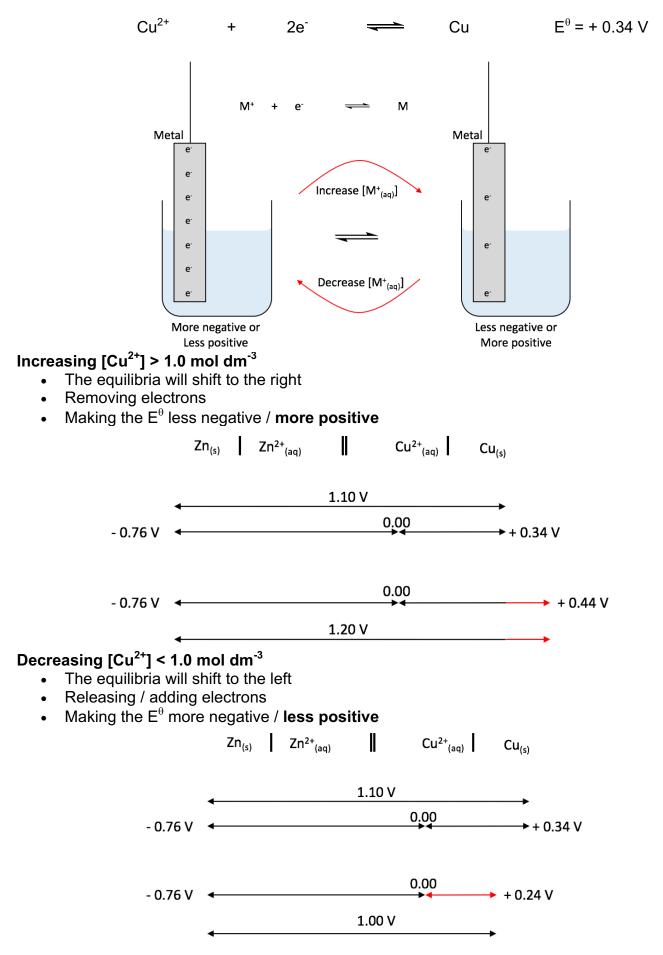
n Ag gained = 0.01×2 (1:2 ratio) n Ag gained = 0.02

Calculate mass of Ag gained:

mass Ag gained = 0.02 x 107.9 mass Ag gained = 2.158g

- 1) An electrochemical cell was made using Li⁺ / Li half-cell and Sn²⁺ / Sn half-cell. There was a change in mass at the lithium electrode of 1.38g.
 - a) State and explain whether the Li electrode gained or lost mass.
 - b) Calculate the loss / gain in mass of the Sn electrode. State whether it gained or lost mass in your answer.

- 2) An electrochemical cell was made using Zn²⁺ / Zn half-cell and Cl₂ / Cl⁻ half-cell. There was a change in mass at the Zn electrode of 1.31g.
 - a) State and explain whether the Zn electrode gained or lost mass.
 - b) Calculate the loss / gain in volume of chlorine gas at the Cl₂ / Cl⁻ electrode. State whether there was a loss / gain in volume in your answer.


- 3) A student constructs a cell using
- A half-cell made of a strip of iron metal and a solution of aqueous iron(III) sulfate.
- A second half-cell made of a strip of metal **X** and a solution of **X**SO₄(aq).

The half cells are connected and a current is allowed to pass. The iron electrode loses 1.05 g in mass and the electrode made of metal **X** gains 1.79 g in mass.

Determine the identity of metal X

Non - standard conditions – Le Chatelier's Principle

- The symbol θ represents standard conditions of 298k and 1 molar solutions.
- Consider the half reactions:

For each of the following state and explain what would happen to E^{θ} cell if:

- You may wish to draw the IUPAC conventional cell diagram
 The [Mg²⁺] was increased in a Mg²⁺ / Mg and Pb²⁺ / Pb cell.

2) The $[Ca^{2+}]$ was decreased in a Ca^{2+} / Ca and Sn^{2+} / Sn cell.

3) The $[Cu^{2+}]$ was increased in a Li⁺ / Li f and Cu²⁺ / Cu cell.

4) The $[Ag^+]$ was decreased in an AI^{3+} / AI and Ag^+ / Ag cell.

Predicting reactions using standard electrode potentials

The electrochemical series came from the reactivity series which can be used to predict the • feasibility of a reaction:

	Element	Oxidised form	Reduced form	Ε ^θ cell	
	Potassium	K⁺	К	-2.92	
	Sodium	Na⁺	Na	-2.71	Reducing
Oxidising power	Lithium	Li⁺	Li	-2.59	power
	Calcium	Ca ²⁺	Са	-2.44	
	Magnesium	Mg ²⁺	Mg	-2.37	
	Aluminium	Al ³⁺	AI	-1.66	
	Zinc	Zn ²⁺	Zn	-0.76	
	Iron	Fe ²⁺	Fe	-0.44	
	Tin	Sn ²⁺	Sn	-0.14	
	Lead	Pb ²⁺	Pb	-0.13	
	(Hydrogen)	H⁺	Н	0.00	
	Copper	Cu ²⁺	Cu	+0.34	
	Mercury	Hg ²⁺	Hg	+0.79	
	Silver	Ag^+	Ag	+0.80	
	Gold	Au⁺	Au	+1.89	
			<u></u>		

Example: Work out the chemical reaction that occurs, if any, when Zn is dropped into a solution of Cu²⁺ ions:

> Find the 2 half equations and use the electrochemical series to write the half reactions in the correct direction:

Negative electrode on the left:

Positive electrode on the right:

Zn²⁺ Zn 2e⁻ →

Releases electrons

2e⁻

Cu

→

Accepts electrons

+

Cu²⁺

Balance and combine using electrons

 $Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} +$ Zn_(s) Cu_(s)

> This is the direction of the feasible reaction

> If calculating the emf / pd / voltage – this is the difference between the 2 half cells, P10:

$E^{\theta}_{\ cell}$	=	E^{θ}_{pos}	s -	E^{θ}_{neg}	Ε ^θ cell	=	$E^{\theta}_{\mathrm{rhs}}$	-	E^{θ}_{lhs}
	E^{θ}_{cell}	=	0.34 -	- 0.76					
	E_{cell}^{θ}	=	1.10 V						

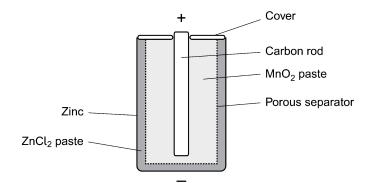
Questions:

- 1) State the feasibility of the following reactions. If they are feasible, write a balanced chemical equation:
 - a) Na and Ag^+
 - b) Cu and Al³⁺
 - c) Mg and Pb²⁺
 - d) Zn and H^+
 - e) Ag and H^+
 - f) Mg and HNO₃
- 2) Using the electrochemical series on P24:
 - a) Which is the strongest reducing agent, explain your answer
 - b) Which is the strongest oxidising agent, explain your answer

Electrochemical cells

- These are used in every day life as a source of electricity, more commonly known as batteries.
- They all work on the same principle electrochemistry involving 2 redox reactions

Modern cells / batteries:


• There are 3 types of electrochemical cells:

1) Non – rechargeable cells:

Provides electricity until the chemicals have reacted away – non-reversible reaction.

Example: An alkaline Zinc / Carbon dry cell battery is made from the following half cells:

 $Zn_{(s)} \rightleftharpoons Zn^{2+}_{(aq)} + 2e^{-} \qquad E^{\theta} = -0.76V$ $2MnO_{2(s)} + 2NH_{4^{-}(aq)} + 2e^{-} \oiint Mn_2O_{3(s)} + 2NH_{3(aq)} + H_2O_{(l)} \qquad E^{\theta} = +0.75V$

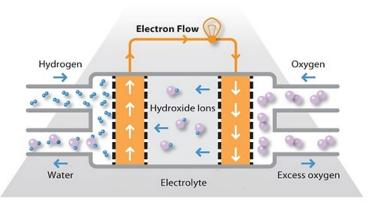
Questions:

- a) Identify the positive and negative electrode
- b) Write an overall equation
- c) Calculate the E^{θ}_{cell} value
- d) What do you think the porous pot separator act as?
- e) Suggest why these cells tend to leak over time? Explain your answer

2) Rechargeable cells:

- The chemicals react providing electricity until they have reacted away.
- The difference is that the chemicals can be regenerated by reversing the flow of electrons during charging reversible reaction:

Example: A lithium cell battery is made from the following half cells:


$$Li_{(s)}$$
 \leftarrow $Li^+_{(aq)}$ + $e^ E^{\theta} = -3.04V$

 $Li^{+}_{(aq)}$ + $CoO_{2(s)}$ + e^{-} $Li^{+}_{(CoO_{2})}$ $E^{\theta} = +0.56V$

Questions:

- a) Identify the positive and negative electrode
- b) Write an overall equation when the cell is discharging
- c) Calculate the E^{θ}_{cell} value
- d) Write the overall equation when the lithium cell is recharging
- > Used in laptops, phones etc as lithium metal is not very dense.
- 3) Fuel cells:
 - The chemicals react providing electricity but the chemicals needed are constantly supplied non-reversible reaction

The hydrogen oxygen fuel cell:

- The modern fuel cell uses hydrogen and oxygen to create a voltage.
- The difference is stationary alkaline electrolyte giving a large voltage.
- The fuel (hydrogen) and oxygen flow into the cell.
- This produces electricity:

Example: A lithium cell battery is made from the following half cells:

$2H_2O_{\left(I\right) }$	+	2e⁻	~``	$H_{2(g)}$	+	20H ⁻ _(aq)	E^{θ} = -0.83V
O _{2(g)}	+	$2H_2O_{(I)}$	+	4e ⁻ 🛁		40H ⁻ _(aq)	E^{θ} = +0.40V

Questions:

- a) Identify the positive and negative electrode
- b) Write an overall equation for the fuel cell
- c) Calculate the E^{θ}_{cell} value

Fuel cells – advantages and disadvantages

Advantages of fuel cells:

1) Water is produced

2) Normal hydrocarbons produce CO_2 and CO which needs to be removed by catalytic converters

3) Fuel cells are about 40 - 60% efficient / engines are 20% as most energy is converted to heat

Disadvantages of fuel cells:

1) As a flammable gas, it is very difficult to store in a tank like liquids (petrol).

- 2) Limited infrastructure.
- 3) Hydrogen is made by the electrolysis of water. Using electricity generated from fossil fuels.