# 3.2 The alkanes

### Prior knowledge:

- Types of formula general, empirical, molecular, structural, displayed and skeletal.
- Nomenclature
- Structural isomers chain and position isomers
- Free radicals

### **Aliphatic Alkanes**

- General formula: CnH2n+2
- Saturated hydrocarbons
- Can have unbranched or branched chains
- All carbon- carbon bonds are single bonds
- All bond angles are 109.5°

Saturated: Contains C – C single bonds only

Hydrocarbon: Only contains the elements hydrogen and carbon

#### Isomerism:

Alkanes with 4 or more carbons show a type of *structural isomerism* called *chain isomerism* 

Structural isomerism: Same molecular formula but different structural formula

Chain Isomerism: Same molecular formula but different arrangement of the carbon skeleton

#### Chain isomers of C<sub>4</sub>H<sub>10</sub>

|                    | butane | Methylpropane |
|--------------------|--------|---------------|
| displayed formula  |        |               |
| structural formula |        |               |
| skeletal formula   |        |               |

Cyclic alkanes have the general formula  $C_nH_{2n}$ , 2 less hydrogen than a straight chain alkane

e.g C6H12

1. cyclohexane

2. methylcyclopentane

# Physical properties of the alkanes:

# **Polarity:**

- C and H have very similar electronegativities so the bonds are non polar.
- This means that all alkane molecules will also be non polar.
- The only intermolecular force (IMF) holding the alkanes together will therefore be Van Der Waals (VDW) forces of attraction.

# Solubility:

• Water molecules are held together by hydrogen bonds and these are much stronger that VDW so the alkanes are not soluble in water.

# Boiling points:

# A) Chain length effect



Boiling point of various alkanes

# Trend:

• As the carbon chain **increases**, the boiling point of the alkanes also **increases**.

# Explanation

- This is because there are **more electrons** in the molecule (due to the extra CH<sub>2</sub>) so the **Van der Waals** forces of attraction become **stronger**.
- This means more energy is required to overcome this increased attraction.

# **B)** Branching effect

| Chain Isomer        | Shape                | Boiling point |
|---------------------|----------------------|---------------|
| Pentane             | - <del>} } } }</del> | 309K          |
|                     | - <del></del>        |               |
| 2-methylbutane      |                      | 301K          |
|                     |                      |               |
| 2,2-dimethylpropane |                      | 283K          |
|                     |                      |               |

#### Trend:

• As the amount of **branching increases**, the **boiling point** of the alkane **decreases**.

# **Explanation:**

- This is because there are **less points of contact / smaller surface area** between the molecules.
- This means the Van der Waals forces of attraction become weaker so less energy is required to overcome attraction.

# Fractional distillation of crude oil

Crude oil is a mixture of hydrocarbons and is our main source of fuels and petrochemicals

**Fractional Distillation** is the continual evaporation and condensation of a mixture causing components to separate due to a difference in their boiling points.

**Fraction** is a group of compounds that have similar boiling points and are removed at the same level in of a fractionating column



- Crude oil vapour is introduced near the bottom of the column.
- The vapour rises causing a temperature gradient.
- The temperature at the bottom is high and the top is low.
- Fractions with low boiling points (low numbers of carbons) rise to the top of the column and condense.
- Fractions with high boiling points (high numbers of carbons) condense in the lower chambers
- The largest hydrocarbons will not vaporise and are tapped off at the bottom of the column.
- Each fraction contains a mixture of hydrocarbons with similar boiling points and similar numbers of carbon atoms in the molecules.



- The yellow colour of the flame is due to incomplete combustion.
- The yellow colour is due to particles of carbon glowing in the heat.
- More oxygen (air) increases oxidation of the carbon.
- The products of complete combustion are water and carbon dioxide.
- The C in the hydrocarbon reacts with oxygen in the air forming CO2
- The H in the hydrocarbon reacts with oxygen in the air forming  $H_2O$



# Complete combustion – plentiful supply of oxygen

| CH <sub>4(g)</sub> | + | 2O <sub>2(g)</sub> | $\rightarrow$ | <b>CO</b> <sub>2(g)</sub> | + | 2H2O(g)      |
|--------------------|---|--------------------|---------------|---------------------------|---|--------------|
|                    |   | ( <b>•</b> )       |               | ( <b>•</b> )              |   | ( <b>•</b> ) |

# Incomplete combustion – limited supply of oxygen

| CH4(g) + | <b>1</b> 1/2 <b>O</b> 2(g) | $\rightarrow$ | CO(g) | + | 2H2O(g) |
|----------|----------------------------|---------------|-------|---|---------|
|----------|----------------------------|---------------|-------|---|---------|

- Carbon monoxide is a poisonous gas. It has no colour or odour so is not noticed.
- Deaths occur from faulty gas fires or boilers in poor ventilated rooms.
- Landlords are now required to have gas appliances serviced annually.

# Further Incomplete combustion – further limited supply of oxygen

 $CH_{4(g)}$  +  $O_{2(g)}$   $\rightarrow$  C(s) +  $2H_2O(g)$ 

# Examples:

Complete combustion producing carbon dioxide and water

- 1. ethane
- 2. octane

Incomplete combustion producing carbon monoxide and water

- 3. ethane
- 4. octane

Further incomplete combustion producing **solid** carbon and water

- 5. ethane
- 6. octane

# Combustion and the internal combustion engine:

- Most of a barrel of crude oil is used as a fuel in engines.
- The issue is that the demand for petrol, diesel and jet fuel does not match the natural abundancies in a barrel of crude oil:

# Supply and demand abundance per barrel of oil:



# Cracking:

• Where long less useful alkanes are broken into shorter more useful molecules by breaking C-C bonds.

# 1) Thermal Cracking:

- 1000K 70 atm approximately 1s
- If these conditions occur for too long, decomposition to C and H may occur
- Produces alkanes and alkenes
- Any C-C bond can break which gives a mixture of alkanes and
- High % of alkenes made

| C12H26                  | $\rightarrow$ | C10H22                 | + | $C_2H_4$ |
|-------------------------|---------------|------------------------|---|----------|
| C12H26                  | $\rightarrow$ | <b>C</b> 8 <b>H</b> 18 | + | $C_4H_8$ |
| <b>C</b> 12 <b>H</b> 26 | $\rightarrow$ | C8H18                  | + | 2C2H4    |

2) Catalytic cracking:



- 800K 2atm approximately 4s zeolite catalyst
- Zeolite catalyst consists of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>
  - Produces branched, cyclic alkanes and aromatic compounds which are good fuels in the motor industry.



#### Examples:

• Show how these molecules can undergo thermal cracking and break up in different ways:

C14H30 →

C14H30 →

• Show how these molecules can undergo catalytic cracking producing molecules that would be good as fuels:

 $C_{6}H_{14} \rightarrow$ 

 $C_6H_{14} \rightarrow$ 

# Pollution from combustion:

- 1) Nitrogen Oxides, NOx
- Under the high temperatures and pressures in a car engine, the triple bond in nitrogen, N<sub>2</sub> can break.
- This will react with oxygen producing several oxides of nitrogen, NOx

| Nitrogen      | + | Oxygen                   | $\rightarrow$ | Nitrogen (II) oxide |
|---------------|---|--------------------------|---------------|---------------------|
| N2(g)         | + | O2(g)                    | $\rightarrow$ | NO(g)               |
| Nitrogen      | + | Oxygen                   | $\rightarrow$ | Nitrogen (IV) oxide |
| <b>N</b> 2(g) | + | <b>O</b> <sub>2(g)</sub> | $\rightarrow$ | NO <sub>2(g)</sub>  |

# 2) Sulphur dioxide, SO<sub>2</sub>

- Sulphur compounds can also be present in fuels as impurities.
- These also react with oxygen forming sulphur dioxide, SO2

| Sulphur  | + | Oxygen | $\rightarrow$ | Sulphur dioxide |
|----------|---|--------|---------------|-----------------|
| compound |   |        |               |                 |

# 3) Unburnt hydrocarbons

- Some of the fuel can pass through the combustion engine without being combusted.
- These can go straight through the system and out through the exhaust.

### The effects from pollution:

| Carbon          | - May cause breathing problems         |
|-----------------|----------------------------------------|
| Carbon monoxide | - toxic gas                            |
| Carbon dioxide  | - global warming                       |
| Nitrogen oxides | - acid rain                            |
| Sulphur dioxide | - acid rain                            |
| Hydrocarbons    | <ul> <li>photochemical smog</li> </ul> |

# **Dealing with pollution:**

- 1) The catalytic converter:
- These are made from **Pt Rh Pd** metals in a honeycombed structure to increase surface area forming the catalyst.

| N <sub>2</sub> ,H <sub>2</sub> O, CO <sub>2</sub> | Three-way catalyst |
|---------------------------------------------------|--------------------|
|                                                   |                    |
|                                                   | HC, CO, NOx        |

# Removal of NO and CO:

| 2NO(g) | +             | 2CO(g) | $\rightarrow$ | <b>N</b> 2(g)            | + | 2CO <sub>2(g)</sub> |
|--------|---------------|--------|---------------|--------------------------|---|---------------------|
| 2NO(g) | $\rightarrow$ | N2(g)  | +             | <b>O</b> <sub>2(g)</sub> |   |                     |

# Removal of unburnt hydrocarbons:

| Hydrocarbon | + | Nitrogen monoxide | $\rightarrow$ | nitrogen +          | Car | bon d | ioxide  | + | Water   |
|-------------|---|-------------------|---------------|---------------------|-----|-------|---------|---|---------|
| C8H18(g)    | + | 25NO(g)           | $\rightarrow$ | 121/2 N2(g) +       |     | 8CO2  | (g)     | + | 9H2O(g) |
|             |   |                   |               |                     |     |       |         |   |         |
| Hydrocarbon | + | Oxygen            | $\rightarrow$ | Carbon dioxid       | le  | +     | Water   |   |         |
| C8H18(g)    | + | 121/2 O2(g)       | $\rightarrow$ | 8CO <sub>2(g)</sub> |     | +     | 9H2O(g) |   |         |

# 2) Flue gas desulphurisation:

- SO<sub>2</sub> can be removed using either CaO or CaCO<sub>3</sub>
- A spray of water and CaO or CaCO<sub>3</sub> reacts with the SO<sub>2</sub>:

| CaO(aq)               | + | <b>SO</b> <sub>2(g)</sub> | $\rightarrow$ | CaSO <sub>3(s)</sub>   |                    |
|-----------------------|---|---------------------------|---------------|------------------------|--------------------|
| CaCO <sub>3(aq)</sub> | + | <b>SO</b> <sub>2(g)</sub> | $\rightarrow$ | CaSO <sub>3(s)</sub> + | CO <sub>2(g)</sub> |

### Halogenation of alkanes - Substitution reactions

- Alkanes are unreactive due to the lack of polarity.
- In the presence of ultraviolet light a halogen will substitute a hydrogen in an alkane, a • halogenoalkane and hydrogen halide is produced:



• For the reaction with butane:



- Reactions that occur in light are called photochemical reactions. •
- These are all **substitution** reactions ٠

### Formation of position isomers:

• Alkanes with 3 or more carbons can form **position isomers**:



Hydrogen on Carbon 2 substituted

Further substitution reactions:



### Free radical substitution mechanism for the chlorination of methane

#### Initiation – Free radicals are made



#### Propagation – Free radicals are used up and made



#### Termination – Free radicals are used up



### Overall



# Summary:

### Initiation:

 $Cl_2 \xrightarrow{U_V} 2Cl_{\bullet}$ 

# **Propagation:**

| $CH_4$           | + | CI∙    | $\longrightarrow$ | ●CH <sub>3</sub> | + | HCI |
|------------------|---|--------|-------------------|------------------|---|-----|
| ●CH <sub>3</sub> | + | $Cl_2$ |                   | CH₃CI            | + | Cl∙ |

# **Termination:**



 $CH_4$  +  $CI_2$   $\longrightarrow$   $CH_3CI$  + HCI

Example: Have a go for the reaction between bromine and butane:

Initiation:

Propagation:

Termination:

Overall:

# Example: Have a go for the reaction between lodine and cyclohexane:

Initiation:

Propagation:

Termination:

Overall: