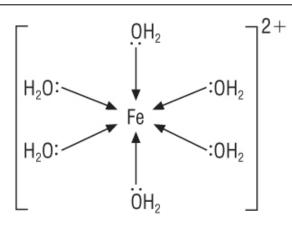
2.6 Reactions of ions in aqueous solution

Hydration of metal ions

- These are **complex ions** where the ligand is water.
- Often referred to as the metal aqua complex ion

Recap:


Complex ion: A central metal ion surrounded by ligands

Ligand:

A molecule or ion that forms a dative covalent bond with a central metal ion by donating a pair of electrons

Dative covalent bond (co-ordinate bond) A covalent bond where the pair of electrons have been donated by the same atom / molecule

Co-ordination number: Is the number of dative (co-ordinate) bonds to the central metal ion

 $[Fe(H_2O)_6]^{2+}$

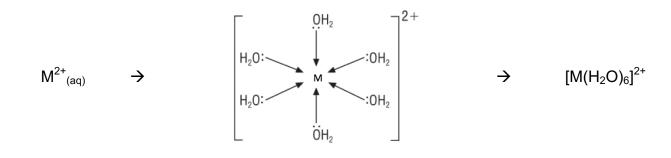
- Fe²⁺ is the Transition metal ion.
- Ligands are the water molecules.
- **Coordination number** is the number of coordinate bonds to the central metal ion = 6.
- Square brackets group the species and the overall charge is written outside the brackets.
- **Overall charge** is the sum of the charges of the metal ion and the ligands (if the ligands have a charge)

Coloured solutions:

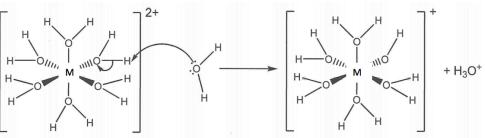
- Most transition metal solutions exist as hexa-aqua complex ions.
- With an incomplete d sub shell they will form coloured solutions.
- This is because specific frequencies (wavelengths) of light are absorbed.
- This happens as electrons move from the ground state to an exited state.
- The remaining frequencies (and therefore colours) are transmitted:

Metal ion	Formula of hexa-aqua ion	Colour
Fe ²⁺	[Fe(H ₂ O) ₆] ²⁺	Green
Cu ²⁺	[Cu(H ₂ O) ₆] ²⁺	Blue
Fe ³⁺	[Fe(H ₂ O) ₆] ³⁺	Purple (may look yellow – brown)
Al ³⁺	[AI(H ₂ O) ₆] ³⁺	Colourless

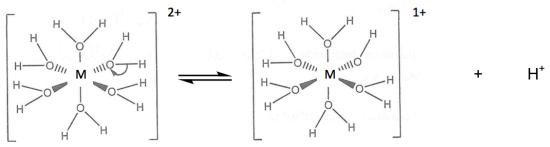
The acidic nature of metal aqua ions (recap from Period 3):


Bronsted – Lowry acid:

Acids are proton donors


Hydrolysis:

Breaking of a bond with water


• Consider a dissolved 2+ ion:

Proton donor:

- M^{2+} is a small highly charged ion, M^{2+} therefore has a high charge density.
- This high charge density will polarise the water molecule.
- This weakens the O H bond.
- The O H bond breaks releasing H⁺ ions, a proton donor, making the complex ion acidic:

• This reaction is often referred to as **hydrolysis** or **acidity** reaction as there is a reaction with water producing an acidic solution

Acidity of the metal aqua 2+ and 3+ ions: Example of a 2+ ion:

 $[Fe(H_2O)_6]^{2+}_{(aq)} + H_2O_{(I)} \implies [Fe(H_2O)_5(OH)]^{+}_{(aq)} + H_3O^{+}_{(aq)} pKa = 5.89$

Can be written as:

$$[Fe(H_2O)_6]^{2+}_{(aq)}$$
 \leftarrow $[Fe(H_2O)_5(OH)]^{+}_{(aq)}$ + $H^{+}_{(aq)}$

Example of a 3+ ion:

 $[AI(H_2O)_6]^{3+}$ +

= $[AI(H_2O)_5(OH)]^{2+}_{(aq)}$ + $H_3O^{+}_{(aq)}$ pKa = 2.46

Can be written as:

 $\left[AI(H_2O)_6 \right]^{3+}{}_{(aq)} \quad = \quad \left[AI(H_2O)_5(OH) \right]^{2+}{}_{(aq)} \quad + \quad H^+{}_{(aq)}$

• 3+ ions are smaller and more highly charged ion.

 $H_2O_{(I)}$

- Polarises water ligand more.
- More protons donated.
- Dissociates more.
- Larger Ka.
- Smaller pKa

Acid base reactions: 1) Reactions with hydroxides, OH⁻

M³⁺ ion: Consider the dissolved metal 3+ ion:

$[M(H_2O)_6]^{3+}_{(aq)}$	+	OH ⁻ _(aq)		$[M(H_2O)_5(OH)]^{2+}{}_{(aq)}$	+	$H_2O_{(I)}$
$[M(H_2O)_5(OH)]^{2+}{}_{(aq)}$	+	OH ⁻ _(aq)	~~	$\left[M(H_2O)_4(OH)_2\right]^*{}_{(aq)}$	+	$H_2O_{(I)}$
$\left[M(H_2O)_4(OH)_2\right]^*_{(aq)}$	+	OH ⁻ _(aq)	~``	[M(H ₂ O) ₃ (OH) ₃] _(s) Precipitate	+	$H_2O_{(I)}$

- Adding more OH⁻ shifts the equilibrium to the right
- The product has neutral charge and therefore precipitates out of solution.

Simplifying to:

$[M(H_2O)_6]^{3+}{}_{(aq)}$	+	3OH ⁻ _(aq)	~~	[M(H ₂ O) ₃ (OH) ₃] _(s) Precipitate	+	3H ₂ O _(I)
M ³⁺ _(aq)	+	3OH ⁻ _(aq)	~~	M(OH) _{3(s)} Precipitate		
Examples:						
[Fe(H ₂ O) ₆] ³⁺ (aq) Yellow – brown s		3OH ⁻ _(aq)		[Fe(H ₂ O) ₃ (OH) ₃] _(s) Brown precipitate	+	3H ₂ O _(I)
Fe ³⁺ _(aq) Yellow – brown s		3OH⁻ _(aq)	~~	Fe(OH) _{3(s)} Brown precipitate		
$[AI(H_2O)_6]^{3+}{}_{(aq)}$	+	30H ⁻ _(aq)	~~	[Al(H ₂ O) ₃ (OH) ₃] _(s) White precipitate	+	3H ₂ O _(I)
Al ³⁺ (aq)	+	30H ⁻ _(aq)	~~	AI(OH) _{3(s)} White precipitate		

• Adding acid will reverse these reactions.

The amphoteric nature of aluminium hydroxide, Al(OH)₃:

Amphoteric:								
A species that ca	an beh	ave as an	acid or	a base				
• Remember,	alumini	um hydro	kide can	be written	as:			
		A	N(OH)₃	or	[AI(H ₂ O) ₃ ((OH)₃]		
With an acid:								
[Al(H ₂ O) ₃ (OH) ₃] White precipitate	+	3H⁺	\rightarrow		Al(H ₂ O) ₆] ³ ourless so			
Can be simplified to	D:							
Al(OH)₃ White precip	+ itate	3H⁺	\rightarrow		∖l ³⁺ less solut	+ ion	3H ₂ O	
White precip	itate di	ssolves to	give a cl	ear colou	rless solu	tion		
With a base:								
[Al(H ₂ O) ₃ (OH) ₃] White precipitate	+	OH	\rightarrow		AI(H ₂ O) ₂ (0 colourless		+	H ₂ O
Can be simplified to	D:							
Al(OH)₃ White precip	+ itate	OH	\rightarrow		N(OH)₄⁻ less solut		H ₂ O	
M/hita procin	itata di		مايره م ما		-	tion		

• White precipitate dissolves to give a clear colourless solution

M²⁺ ion: Consider the dissolved metal 2+ ion:							
$[M(H_2O)_6]^{2+}{}_{(aq)}$		+ OH ⁻ _(aq)		$\left[M(H_2O)_5(OH)\right]^{+}_{(aq)}$	+	$H_2O_{(I)}$	
[M(H ₂ O) ₅ (OH)] ⁺ (a	ıq)	+ OH ⁻ _(aq)		[M(H ₂ O) ₄ (OH) ₂] _(s) Precipitate	+	$H_2O_{(I)}$	
The produ	uct ha	s neutral charge	and ther	efore precipitates out of solu	ution.		
Simplifying to:							
$\left[M(H_2O)_6\right]^{2+}{}_{(aq)}$	+	$2OH^{-}_{(aq)}$		[M(H ₂ O) ₄ (OH) ₂] _(s) Precipitate	+	2H ₂ O _(I)	
M ²⁺ (aq)	+	20H ⁻ _(aq)	~`	M(OH) _{2(s)} Precipitate			
Examples:							
$\begin{array}{l} \left[Cu(H_2O)_6\right]^{2+}{}_{(aq)}\\ \text{Blue solution} \end{array}$	+	$2OH^{-}_{(aq)}$	~`	[Cu(H ₂ O) ₄ (OH) ₂] _(s) Pale blue precipitate	+	2H ₂ O _(I)	
Cu ²⁺ _(aq) Blue solution	+	20H ⁻ _(aq)	~~	Cu(OH) _{2(s)} Pale blue precipitate			
[Fe(H ₂ O) ₆] ²⁺ (aq) Green solution	+	20H ⁻ _(aq)	+	[Fe(H ₂ O) ₄ (OH) ₂] _(s) Green precipitate	+	2H ₂ O _(I)	
Fe ²⁺ _(aq) Green solution	+	$2OH^{-}_{(aq)}$	~~	Fe(OH) _{2(s)} Green precipitate			
The greer	n prec	ipitate goes brov	vn in air a	as it is oxidised by the air			
					+		

$[Fe(H_2O)_4(OH)_2]_{(s)}$		[Fe(H ₂ O) ₃ (OH) ₃] _(s)	+	$H^{+}_{(aq)}$	+	e
Green precipitate		Brown precipitate				

• Adding acid will reverse these reactions.

2) Reactions with ammonia, NH₃:

M³⁺ ion:

- Reacts with ammonia in the same way as the hydroxide:
- Each NH₃ accepts a proton from the waters in the complex ion until a neutral salt is made:

$[M(H_2O)_6]^{3+}_{(aq)}$	+	$3NH_{3(\text{aq})}$	_	[M(H ₂ O) ₃ (OH) ₃] _(s) Precipitate	+	$3NH_4^+_{(aq)}$
---------------------------	---	----------------------	----------	---	---	------------------

• The product has neutral charge and therefore precipitates out of solution.

Examples:

[Fe(H ₂ O) ₆] ³⁺ _(aq) + Yellow – brown solution	$3\mathrm{NH}_{3(\mathrm{aq})}$	~~	[Fe(H ₂ O) ₃ (OH) ₃] _(s) Brown precipitate	+	$3NH_4^+_{(aq)}$
$[AI(H_2O)_6]^{3+}_{(aq)}$ + Clear colourless solution	$3\mathrm{NH}_{\mathrm{3(aq)}}$	~~	$[AI(H_2O)_3(OH)_3]_{(s)}$ White precipitate	+	$3NH_4^+_{(aq)}$
M^{2+} ion:		2			0.111 +

- $[M(H_2O)_6]^{2+}_{(aq)} + 2NH_{3(aq)} \longrightarrow [M(H_2O)_4(OH)_2]_{(s)} + 2NH_4^+_{(aq)}$ Precipitate
 - The product has neutral charge and therefore precipitates out of solution.

Examples:

3) Reactions with carbonates, CO_3^{2-} :

M³⁺ ion:

- Reacts in the same way as the hydroxide but, as it is more acidic, it reacts with the carbonate forming CO₂ and H₂O.
- Each CO_3^{2-} accepts a proton from the waters forming CO_2 and H_2O . The complex ion forms the neutral salt:

 $2[M(H_2O)_6]^{3+}{}_{(aq)} + 3CO_3^{2-}{}_{(aq)} \implies 2[M(H_2O)_3(OH)_3]_{(s)} + 3CO_{2(g)} + 3H_2O_{(l)} + 2H_2O_{(l)} + 2H_2O_{$

- The product has neutral charge and therefore precipitates out of solution.
- CO₂ gas is made so you will also see fizzing.

Examples:

 $\begin{array}{rcl} 2[AI(H_2O)_6]^{3+}{}_{(aq)} & + & 3CO_3{}^{2-}{}_{(aq)} & \rightarrow & 2[AI(H_2O)_3(OH)_3]_{(s)} & + & 3CO_{2(g)} & + & 3H_2O_{(I)} \\ Clear colourless solution & & White precipitate \end{array}$

M²⁺ ion:

- The M²⁺ is not acidic enough to produce CO₂ with the carbonates.
- They react to from the insoluble metal carbonate:

 $\begin{bmatrix} M(H_2O)_6 \end{bmatrix}^{2^+}_{(aq)} + CO_3^{2^-}_{(aq)} \rightarrow MCO_{3(s)} + 6H_2O_{(l)} \\ Precipitate \end{bmatrix}$

• The product has neutral charge and therefore precipitates out of solution.

Examples:

 $[Fe(H_2O)_6]^{2+}{}_{(aq)} + CO_3^{2-}{}_{(aq)} \rightarrow FeCO_{3(s)} + 6H_2O_{(l)}$ Green precipitate

 $\begin{array}{cccc} \left[\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_6 \right]^{2^+}{}_{(\mathsf{aq})} & + & \mathsf{CO}_3^{2^-}{}_{(\mathsf{aq})} & \rightarrow & \mathsf{CuCO}_{3(\mathsf{s})} & + & 6\mathsf{H}_2\mathsf{O}_{(\mathsf{l})} \\ & & \mathsf{Blue \ solution} & & \mathsf{Blue \ - \ green \ precipitate} \end{array}$

Generally: Transition metal carbonates with an oxidation state of 3+ do not exist

Summary – Required practical 11: Carry out test tube reactions to identify metal ions in solution:

Metal	Aqueous ion	Addition of NaOH	Addition of excess NaOH	Addition of NH₃(aq)	Addition of excess NH₃ (aq)	Addition of Na₂CO₃ (aq)
Fe(II)						
Cu(II)						
Fe(III)						
A <i>l</i> (III)						