				2.4 Pe	riod 3	3		
Period 3								
	Na	Mg	AI	Si	Ρ	S	CI	Ar
Periodicity:								
Periodicity:								

The repeating trends in physical and chemical properties of elements as you go across the Periodic Table

- Periods often show gradual changes in properties.
- In A2, we need a bit more detail about the reactions with water, with oxygen and the reaction of the oxides with water and acids or bases:

1) Reactions of Na and Mg with water:

• They react with water to give the hydroxide and hydrogen gas:

Metal	+	Water	\rightarrow	Metal hydroxide	+	Hydrogen
2Na _(s) 0	+	2H ₂ O _(I)	÷	2NaOH _(aq) + +1 Strong alkali	H _{2(g)}	
Mg _(s)	+	2H ₂ O _(I)	÷	Mg(OH) _{2(aq)} + +2 Weak alkali	H _{2(g)}	

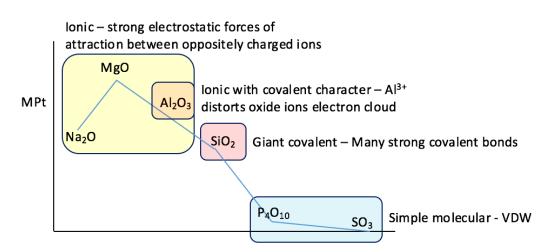
• Remember that the group 2 hydroxides increase in solubility as you go down the group:

Mg(OH) ₂		Least soluble	MgSO ₄	Most soluble
Ca(OH) ₂			$CaSO_4$	
Sr(OH) ₂			SrSO ₄	
Ba(OH) ₂	+	Most soluble	BaSO ₄	Least soluble

• Mg reacts with **steam** slightly differently:

2) Reactions with oxygen:

2Na _(s) 0	+	$1/_2O_{2(g)}$	÷	Na ₂ O _(s) +1	Vigorous	Yellow flame / white solid
Mg _(s) 0	+	1/2O _{2(g)}	\rightarrow	MgO _(s) +2	Vigorous	White flame / white solid
2AI _(s) 0	+	11/2O _{2(g)}	→	Al ₂ O _{3(s)} +3	Slow	
Si _(s) 0	+	O _{2(g)}	÷	SiO _{2(s)} +4	Slow	
P _{4(s)} 0	+	50 _{2(g)}	÷	P ₄ O _{10(s)} +5	Spontaneously	White flame
S _(s)	+	O _{2(g)}	\rightarrow	SO _{2(g)} +4	Steady	Blue flame / pungent smell


• SO_2 can form SO_3 in the presence of V_2O_5 catalyst and excess oxygen:

S _(s)	+	O _{2(g)}	\rightarrow	SO _{3(g)}
Ó		,		+6

• The colours of the flames can be used to distinguish between these oxides.

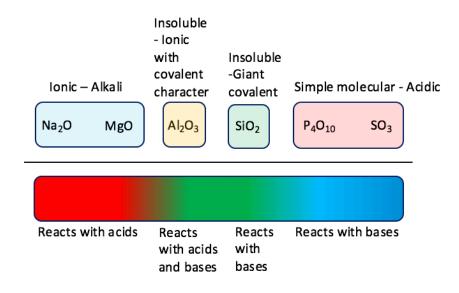
3) Reactions of the oxides with water:

• The oxides react differently with water due to their structure and bonding and the effect this has on the melting points of the oxides:

> Ionic oxides of metals form alkaline solutions, OH⁻_(aq)

$Na_2O_{(s)}$	+	$H_2O_{(I)}$	\rightarrow	$2NaOH_{(aq)}$	Soluble	pH 12 - 14
MgO _(s)	+	$H_2O_{(I)}$	\rightarrow	Mg(OH) _{2(aq)}	Sparingly Soluble	рН 9-10

Covalent oxides of non - metals form acidic solutions, H⁺_(aq)


P ₄ O _{10(s)} +	6H ₂ O _(I)	\rightarrow	$4H_3PO_{4(aq)}\\$	Phosphoric (IV) acid
$H_3PO_{4(aq)}$ \rightarrow	$3H^+_{(aq)}$	+	PO4 ³⁻ (aq)	
SO _{2(g)} +	$H_2O_{(I)}$	\rightarrow	$H_2SO_{3(aq)}$	Sulphuric (IV) acid
$H_2SO_{3(aq)} \rightarrow$	$2\text{H}^{+}_{(aq)}$	+	SO3 ²⁻ (aq)	
SO _{3(g)} +	$H_2O_{(I)}$	\rightarrow	$H_2SO_{4(aq)}$	Sulphuric (VI) acid
$H_2SO_{4(aq)} \rightarrow$	$2H^+_{(aq)}$	+	SO4 ²⁻ (aq)	

$AI_2O_{3(s)}$	Is insoluble in water Partially ionic / partially covalent so will react with acids and bases - Amphoteric
$SiO_{2(s)}$	Is insoluble in water Will react with bases, therefore classed as acidic.

Amphoteric

Amphoteric: A substance that has both acidic and basic properties

Summary of the oxides with water:

4) Reactions of the oxides with acids / bases:

+	Base	\rightarrow	Salt	+		Water	
xides:							
+	2HCI _(aq)	\rightarrow	2NaCl _(aq)		+	$H_2O_{(I)}$	
+	2HCI _(aq)	\rightarrow	MgCl _{2(aq)}		+	$H_2O_{(I)}$	
+	6HCI _(aq)	\rightarrow	2AICI _{3(aq)}		+	3H ₂ O _(I)	*Amphoteric
	xides: + +	xides: + 2HCI _(aq) + 2HCI _(aq)	xides: + $2HCI_{(aq)} \rightarrow$ + $2HCI_{(aq)} \rightarrow$	xides: + $2HCI_{(aq)} \rightarrow 2NaCI_{(aq)}$ + $2HCI_{(aq)} \rightarrow MgCI_{2(aq)}$	xides: + $2HCI_{(aq)} \rightarrow 2NaCI_{(aq)}$ + $2HCI_{(aq)} \rightarrow MgCI_{2(aq)}$	xides: + $2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} +$ + $2HCI_{(aq)} \rightarrow MgCI_{2(aq)} +$	xides: + $2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + H_2O_{(l)}$ + $2HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_2O_{(l)}$

*Tip:

 \triangleright

- Think of the oxides reacting with the water / aq to form the hydroxides.
- The hydroxides then react with the acids forming salt and water.
- > Acidic oxides:

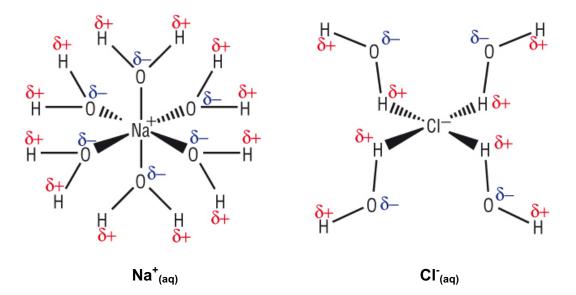
A	$I_2O_{3(s)}$	+	$2\text{NaOH}_{(\text{aq})}$	+	$3H_2O_{(I)} \rightarrow$	2Na/	AI(OH) _{4(aq)}	*Amphoteric
S	iO _{2(s)}	+	2NaOH _(aq)	\rightarrow	Na ₂ SiO _{3(aq)}	+	$H_2O_{(I)}$	
Ρ	40 _{10(s)}	+	12NaOH _(aq)	\rightarrow	$4Na_3PO_{4(aq)}$	+	6H ₂ O _(I)	
S	O _{2(g)}	+	2NaOH _(aq)	\rightarrow	$Na_2SO_{3(aq)}$	+	$H_2O_{(I)}$	
S	O _{3(g)}	+	2NaOH _(aq)	\rightarrow	$Na_2SO_{4(aq)}$	+	$H_2O_{(I)}$	

*Tip:

- Think of the oxides reacting with the water / aq to form the acids.
- The acids then react with the metal hydroxides forming salt and water.

*Tip:

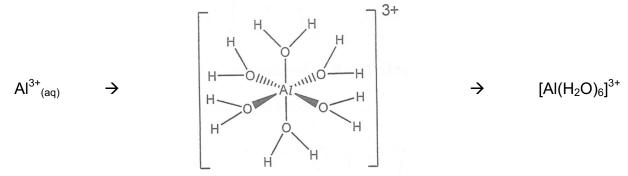
- You would be expected to balance these with any acid or base
- It is worth learning the unusual compounds formed and balancing accordingly ie NaAl(OH)₄ and Na₂SiO₃.

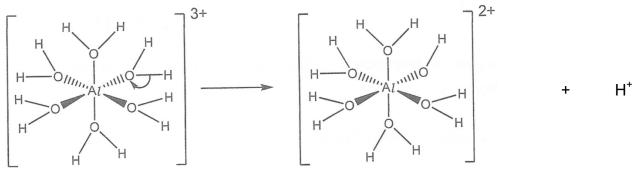

Questions:

- 1 Write a balanced chemical equation when magnesium reacts with water.
- 2 Write a balanced chemical reaction when magnesium reacts with steam. What would you observe during this reaction?
- 3 What observations would there be when sulphur is burnt in oxygen? Write a balanced chemical equation.
- 4 The melting point of phosphorus (V) oxide is 573K. Predict with a reason the melting point of sulphur (IV) oxide.
- 5 Predict the pH and write a chemical reaction when sulphur (IV) oxide is added to water
- 6 Samples of sodium oxide and magnesium oxide are added to water, predict their relative pH's and give a reason for your answer
- 7 Aluminium oxide is described as **amphoteric**. What does this mean and write balanced chemical equations to show its amphoteric nature.

8 Silicon dioxide is a macromolecule and does not dissolve in water. It still described as an acidic oxide. Explain with an equation why it is described as acidic.

The acidic nature of aluminium Recap:


• When ionic compounds dissolve in water, the ions become surrounded by water molecules.


• Central metals with a 2+ or 3+ charge, the resulting solution can be acidic in nature.

Complex ions:

Consider the dissolved aluminium ion:

- It is surrounded by 6 water molecules and each water molecule forms a **co-ordinate bond** with the central metal ion.
- Al³⁺ is a small highly charged ion, Al³⁺ therefore has a high charge density.
- This **high charge density** will **polarise** the water molecule by attracting electrons from the oxygen.
- This effect is felt through the whole water molecule and weakens the O H bond.
- The O H bond breaks releasing H⁺ ions, a proton donor, making the complex ion acidic:

Reactions of the aluminium hexaaqua ion – hydrolysis / NaOH:

• Consider the dissolved aluminium ion in equilibria:

 $\left[AI(H_{2}O)_{6}\right]^{3+}{}_{(aq)} \quad = \quad \left[AI(H_{2}O)_{5}(OH)\right]^{2+}{}_{(aq)} \quad + \quad H^{+}{}_{(aq)}$

• Adding OH⁻ reacts with H⁺ from the equilibrium according to the following reaction:

 OH^- + H^+ \rightarrow H_2O

• This shifts the equilibria to the right to oppose the change, it can be simplified to:

 $[AI(H_2O)_6]^{3+}_{(aq)} + OH^{-}_{(aq)} \iff [AI(H_2O)_5(OH)]^{2+}_{(aq)} + H_2O_{(I)}$

• Once all the $[AI(H_2O)_6]^{3+}$ is used up, a second equilibria is set up as more OH^- is added:

 $[AI(H_2O)_5(OH)]^{2+}_{(aq)} + OH^{-}_{(aq)} \implies [AI(H_2O)_4(OH)_2]^{+}_{(aq)} + H_2O_{(I)}$

• Once all the $[AI(H_2O)_5(OH)]^{2+}$ is used up, a third equilibria is set up as more OH^- is added:

 $[AI(H_2O)_4(OH)_2]^{+}_{(aq)} + OH^{-}_{(aq)} \longrightarrow [AI(H_2O)_3(OH)_3]_{(s)} + H_2O_{(l)}$ White precipitate

• The product has neutral charge and therefore precipitates out of solution.

Simplifying to:

$\left[\text{AI}(\text{H}_2\text{O})_6\right]^{3+}{}_{(\text{aq})}$	+	OH ⁻ _(aq)	~~	$[AI(H_2O)_5(OH)]^{2+}{}_{(aq)}$	+	$H_2O_{(I)}$
$[AI(H_2O)_5(OH)]^{2+}_{(aq)}$	+	OH ⁻ _(aq)	~``	$\left[\text{AI}(\text{H}_2\text{O})_4(\text{OH})_2\right]^*_{(\text{aq})}$	+	$H_2O_{(I)}$
$\left[\text{AI}(\text{H}_2\text{O})_4(\text{OH})_2\right]^{+}_{(\text{aq})}$	+	OH⁻ _(aq)		[Al(H ₂ O) ₃ (OH) ₃] _(s) White precipitate	+	$H_2O_{(I)}$

- Adding more OH⁻ shifts the equilibrium to the right
- The product has neutral charge and therefore precipitates out of solution.

Simplifying further to:

$\left[\text{AI}(\text{H}_2\text{O})_6\right]^{3+}{}_{(\text{aq})}$	+	30H ⁻ _(aq)		[Al(H ₂ O) ₃ (OH) ₃] _(s) Precipitate	+	3H ₂ O _(I)
Al ³⁺ (aq)	+	3OH ⁻ _(aq)		AI(OH) _{3(s)} White precipitate		

• Use this simplified version unless you are told otherwise.

The amphoteric nature of aluminium hydroxide:

• Remember, aluminium hydroxide can be written as:

 $AI(OH)_3$ or $[AI(H_2O)_3(OH)_3]$

• As it is amphoteric, it will react with an acid and a base:

With an acid:

 $\begin{bmatrix} AI(H_2O)_3(OH)_3 \end{bmatrix} + 3H^+ \rightarrow \begin{bmatrix} AI(H_2O)_6 \end{bmatrix}$ White precipitate colourless solution

Simplified to:

AI(OH) ₃	+	3H⁺	\rightarrow	Al ³⁺	+	3H ₂ O	
White precipitate			colourless solution				

• White precipitate dissolves to give a clear colourless solution

With a base:

[Al(H ₂ O) ₃ (OH) ₃]	+	OH	\rightarrow	[AI(H ₂ O) ₂ (OH) ₄] [−]	+	H_2O
White precipitate				colourless solution		

Simplified to:

AI(OH) ₃	ł	OH	\rightarrow	AI(OH)4 ⁻	+	H_2O	
White precipitate			colourless solution				

• White precipitate dissolves to give a clear colourless solution