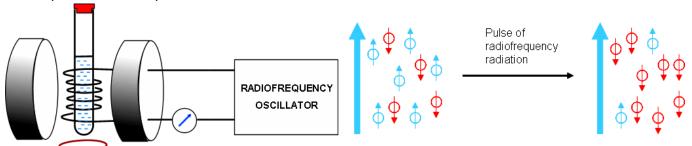
3B Analysis:

What is Nuclear Magnetic Resonance - NMR


- A very powerful analytical technique allowing chemists to identify even the most complex of structures.
- Developed by chemists and physicists together it works by the interaction of magnetic properties of certain nuclei and their chemical environment.
- This technique only works with atoms with an odd number of nucleons (protons and neutrons).
- At A2 this will be applied to ¹₁H and ¹³₆ C NMR.

Nuclear spin

- All nucleons spin, and pair up just as electrons do.
- Those with an odd number of nucleons will have a nucleon that has not been able to pair up.
- A spinning nucleus such as hydrogen behaves as a spinning charge and generates a magnetic field.
- For example ¹₁H and ¹³₆ C possess spin whereas ¹²₆C does not.
- It can be likened to a bar magnet:

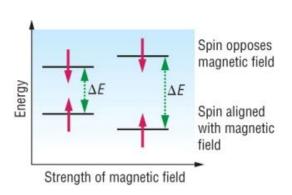


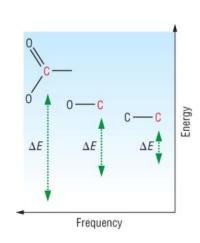
- When this is placed in an external magnetic field it will align with or against the field.
- The nuclei which align parallel are at a lower energy than those aligned anti parallel:

Resonance:

• When they are subjected to a pulse of radiofrequency radiation, some nuclei flip from parallel to anti parallel:

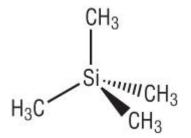
- This promotes the nuclei from low energy spin (parallel) to high energy spin (antiparallel) thus absorbing energy **excitation**.
- The frequency required to make this happen is specific to the difference in energy between the 'parallel' and 'antiparallel'
- The excited nuclei will at some point drop back to its low energy state (parallel) emitting the same amount of energy (that is specific for those nuclei)
- As electrons surround the nuclei, the energy needed to flip the nuclei depend on the environment they find themselves.
- This pulse oscillates so the nuclei continually flip or resonate back an forth, **absorbing and emitting energy.**
- The resonance is recorded as a trace.
- By looking at the field strength at which the nuclei absorb energy while resonating, we can
 work out the structure of a molecule

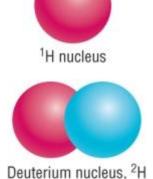

Nuclear shielding and chemical shift:


The magnetic field felt by a nucleus depends on:

1) Applied magnetic field

2) The weak magnetic fields generated from electrons surrounding the nuclei and nearby atoms (the environment)

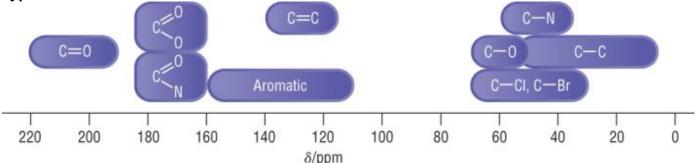

- The electrons in an atom also produce tiny magnetic fields which 'shield' the nucleus from the applied magnetic field.
- This is called nuclear shielding and the extent depends upon nearby atoms or groups of atoms.
- It alters the environment of a nucleus changing the energy gap.
- Nuclei in different environments will have different chemical resonance frequencies:


Chemical shift, δ :

- This is a place in the NMR spectrum where a nuclei absorbs and emits energy resonates
- The scale is in ppm or δ scale.
- The scale is measured against a reference signal, TMS = 0 chemical shift is measured from this.
- TMS is Tetramethylsilane:

- This molecule has 12 equivalent protons giving rise to a single peak.
- This peak is assigned the value = 0
- All peaks of a sample under study are related to it and reported in parts per million.

Solvents for NMR spectroscopy:

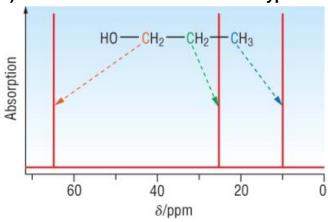

- NMR is carried out in solution.
- The best solvent are usually hydrocarbons which will also produce a signal.
- Deuterated solvent are used as these have an even number of nucleons. These do not give a signal.
- CDCl₃ is usually used.
- This is volatile so can be recovered by evaporation.

Qu 1 - 2 P85

Carbon - 13 NMR spectroscopy

- 99% of any sample of carbon ¹²C
- 1% of any sample of carbon ¹³C
- This 1% has an uneven number of nucleons, this means it will have a magnetic spin and be detected using NMR

Typical carbon - 13 chemical shifts:

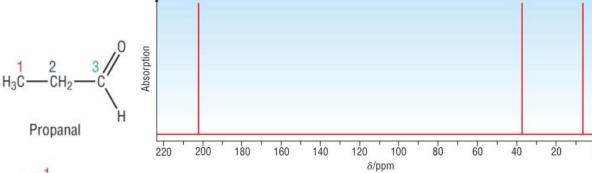


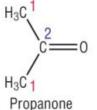
- The chemical shift indicates the environments the 'carbons' are in.
- An electronegative element causes a significant shift as carbon 13 is sensitive to nuclear shielding.

- The scale ranges 0 230, this means that each carbon is likely to have its own separate signal.
- Values will vary with different solvents.

Interpreting carbon - 13 NMR spectra

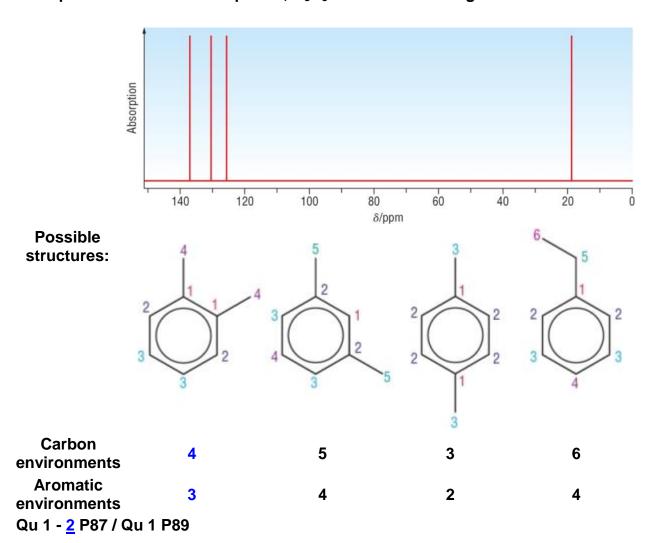
- 3 things obtained from a carbon 13 NMR is:
- 1) The number of different carbons
- 2) The carbon environment
- 3) The relative ratio of each of the types of carbons


Propan - 1 - ol:


- Propan 2 ol:
- 3 equally peaks indicating 3 different carbon environments
- A peak at ~ 64ppm: C O
- A peak at ~ 27ppm: C C (nearest the electronegative element O)
- A peak at ~ 10ppm: C C (furthest from the electronegative O)
- 2 different sized peaks indicating 2 different carbon environments with different amounts of carbons
- A peak at ~ 64ppm: C O
- A peak at ~ 27ppm: C C
- The peak at ~ 27ppm is 2x the size of the peak of the one at ~64ppm as there are 2 equivalent carbons responsible for this peak

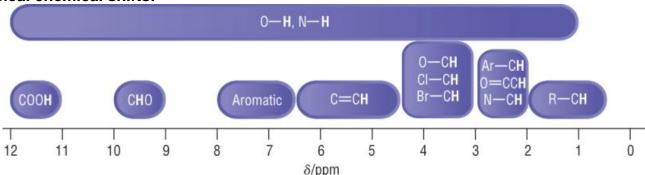
Analysis of carbon - 13 NMR spectra

Making predictions:


Example 1: A carbonyl compound, C₃H₆O has the following C - 13 NMR:

- 3 peaks indicating 3 different carbon environments
- A peak at ~ 205ppm: C = O
- A peak at ~ 37ppm: C C (nearest the electronegative element O)
- A peak at ~ 6ppm: C C (furthest from the electronegative O)
- Must be Propanal

Example 2: An aromatic compound, C₈H₈O has the following C - 13 NMR:

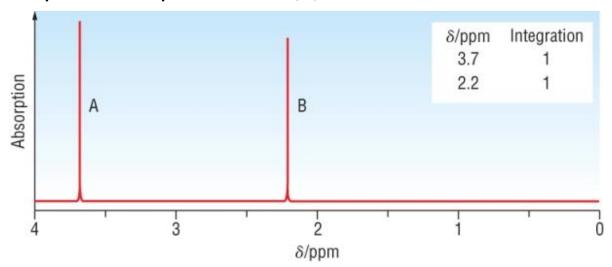


Proton NMR spectroscopy

Proton NMR:

- Is based around the ¹H which is a single proton.
- ¹H is much more abundant than ¹³C. 99.9% ¹H to 1.1% ¹³C.
- This means less needs to be used.
- Proton NMR is done in the same way as ¹³C NMR and gives all the same information as ¹³C NMR but for protons.
- In addition it gives you information about adjacent protons (later)

Typical chemical shifts:



- The scale is narrower which means some signals will overlap.
- · Actual chemical shifts can vary depending on environments.
- The scale should be used as a rule of thumb.

Integration traces:

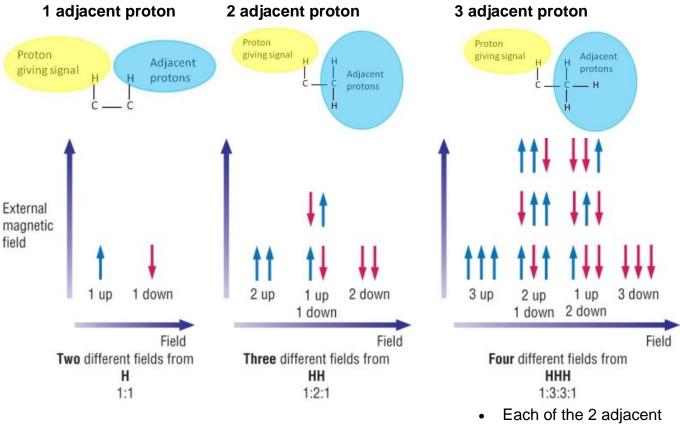
- The area under the peak is proportional to the number of protons.
- On the NMR spectrum, the spectrometer measures this and is recorded as an **integration** trace.
- This is usually an integration line above the peak and can be measured for relative abundances.

Example: This is the proton NMR for C₃H₆O₂

- 2 equally sized peaks indicating 2 different proton environments
- This means that there are 2 areas of 3 protons
- A) peak at ~ 3.7ppm: O CH₃ (nearest the electronegative element O)
- B) peak at ~ 2.2ppm: OC CH₃ (furthest from the electronegative O)
- Must be methyl propanoate CH₃COOCH₃

Spin - spin coupling in proton NMR spectra

Spin - Spin coupling:


- Splitting patterns are worked out by considering the effect that adjacent, chemically different hydrogen's have on another signal in a given environment.
- The spin of the proton producing the signal is affected by each of the two forms of the adjacent hydrogen's (parallel and anti parallel).
- One orientation enhances its field and the other reduces it.
- We can work this out by calculating the various possible combinations of alignment of adjacent protons.

Theory:

- The proton gives a signal by its magnetic field from its spin.
- Its signal is influenced by adjacent protons (on neighbouring carbons).
- Each proton will either spin in the same direction or the opposing direction.
- This means that each adjacent proton either enhances the magnetic field or diminishes it.
- There are 2 possibilities of equal chance per adjacent proton enhancing or diminishing the magnetic field.
- This splits the signal given by the proton

Analogy:

- Imagine you had an opinion on something. If nobody influenced you, your opinion would be the same.
- If another person had a view on the topic, they would either agree or disagree with you.
- Their ideas would either enhance what you thought or diminish it.
- There would be 2 possibilities of equal chance per person agreeing or disagreeing with you:

- The adjacent proton spins in the same or opposing direction.
- Agree
- Disagree

- Each of the 2 adjacent protons spins in the same or opposing direction.
- Agree Agree
- Agree Disagree / Disagree - Agree
- Disagree Disagree

- Each of the 2 adjacent protons spins in the same or opposing direction.
- Agree Agree Agree
- Agree Agree Disagree / Disagree Agree Agree / Agree Disagree Agree
- Disagree Disagree -Agree / Disagree -Agree - Disagree / Agree - Disagree -Disagree
- Disagree Disagree Disagree

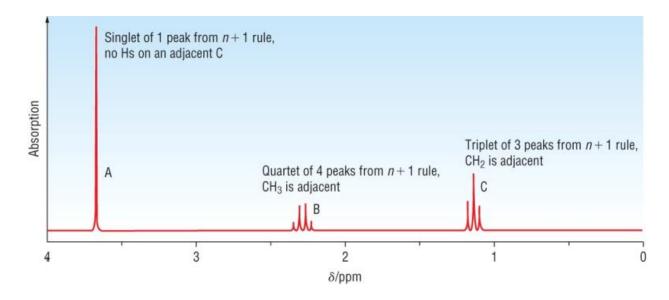
2 fields of equal intensity

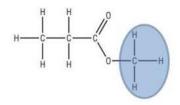
3 fields with an intensity of 1:2:1

4 fields with an intensity of 1:3:3:1

There is always an extra field than the number of adjacent protons - known as the n+1 rule:

n+1 rule:


n + 1 rule: Nu	mber of peaks	s = Number of	different H's	on adjacent atoms + 1
1 Neighbouring H	2 Peaks	DOUBLET	1:1	
2 Neighbouring H	3 Peaks	TRIPLET	1:2:1	
3 Neighbouring H	4 Peaks	QUARTET	1:3:3:1	
4 Neighbouring H	5 Peaks	QUINTET	1:4:6:4:1	
Signals for H in an C) - H bond are	unaffected by	hydrogen's	on adjacent atoms = singlet


NOTE: Pascal's triangles

• Just a note of interest. The signal peaks show the patterns described by Pascal's triangles:

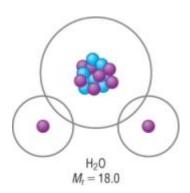
The proton NMR spectrum of methyl propanoate:

• There are 3 areas of protons - this will give 3 areas of signal:

- H C C C H

- These protons are adjacent to = 0 protons
- n+1 = 1 field
- Singlet

- These protons are adjacent to = 3 protons
- n+1 = 4 field
- Quartet

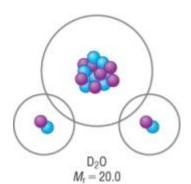

- These protons are adjacent to = 2 protons
- n+1 = 3 field
- Triplet

Qu 1 - 2 P93

NMR spectra of OH and NH protons

- These are not only difficult to identify but can also confuse the rest of the spectra.
- The reason for this is:
- 1) Peaks can appear over a wide range of chemical shifts
- 2) Signals are often broad
- 3) There is no splitting pattern (due to ease of proton exchange in OH / NH not needed)
 - These signals can be removed by using heavy water, deuterium oxide, D₂O
 - It is the same as water but the hydrogen's are replaced with deuterium.
 - Deuterium does not give a signal in NMR

Use of D₂O

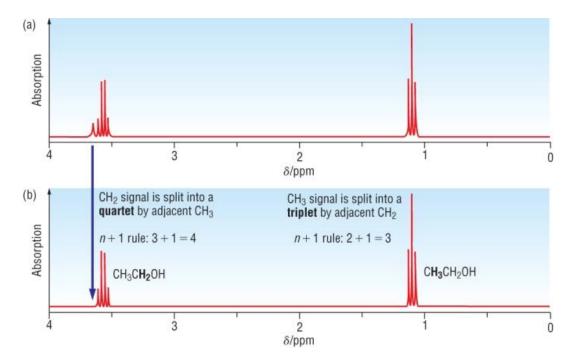

How D₂O is used:

- 1) An NMR is run as normal
- **2)** A small amount of D_2O is added to the mixture, shaken and a second NMR is run

The OH or NH signal disappears

How it works:

The Deuterium atoms in heavy water can replace the protons on OH or NH:



Remember only atoms with an odd number of nucleons gives an NMR peak.

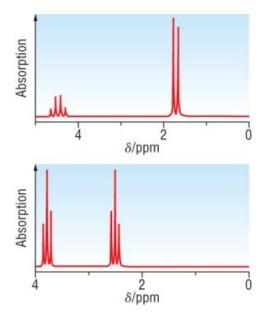
This means that the - $OH \rightarrow - OD$ and - $NH \rightarrow - ND$

Deuterium has an even number of nucleons which means the **- OD** and **- ND** will no longer give a signal.

Example: NMR spectra of ethanol, (a) CH₃CH₂OH in water and (b) in D₂O, CH₃CH₂OD

THE OH SIGNAL HAS DISAPPEARED

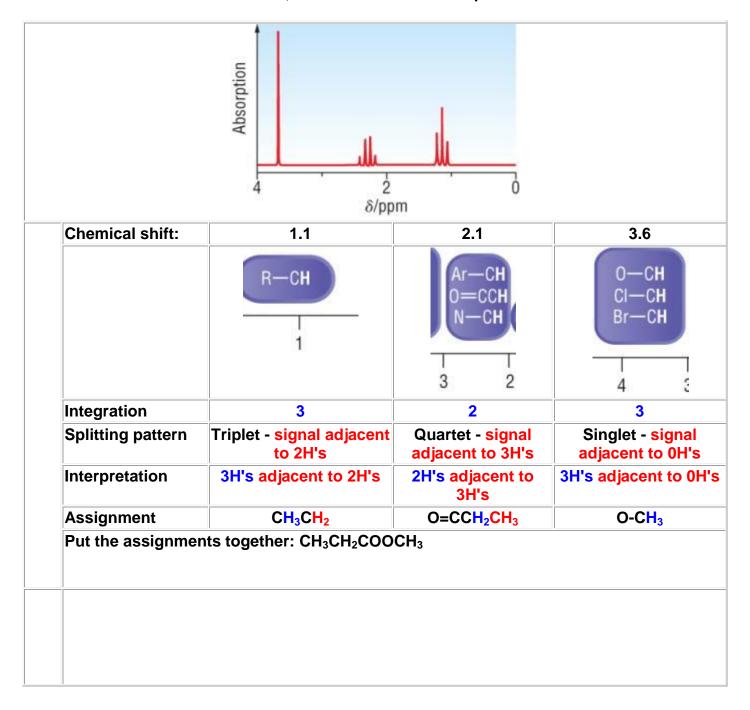
Splitting from -OH and -NH protons:

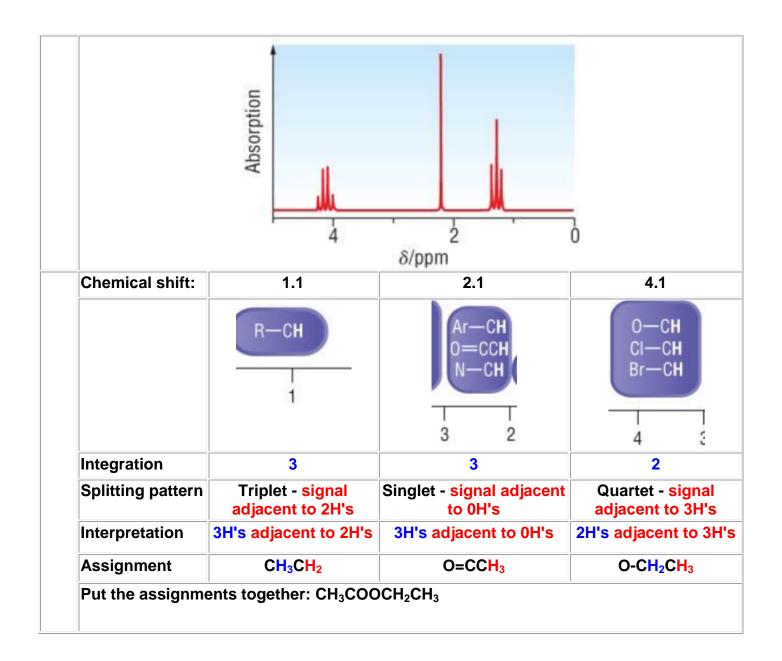

- -OH and -NH peaks <u>DO NOT</u> split and <u>DO NOT</u> contribute to splitting
- Hydrogen bonding between water (solvent) and -OH / -NH protons broaden the peak

Qu 1-2 P95

Spin - spin coupling examples

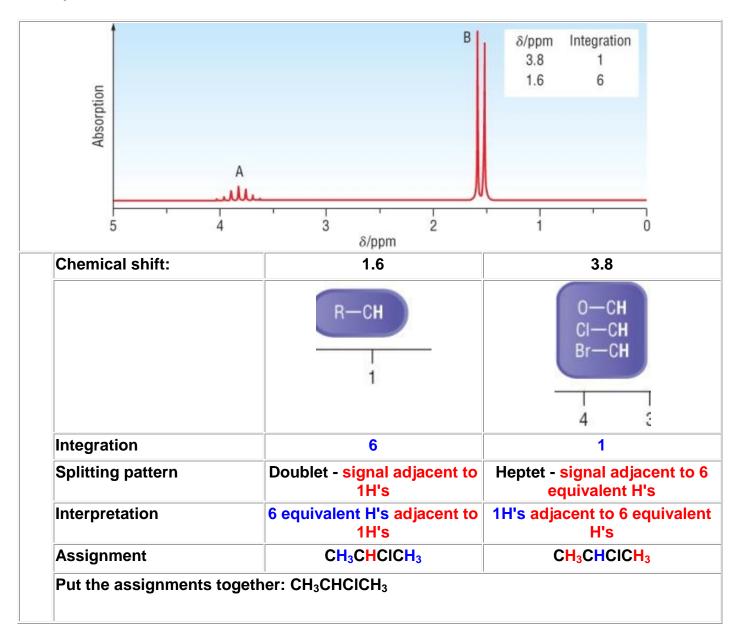
1) Using splitting patterns:

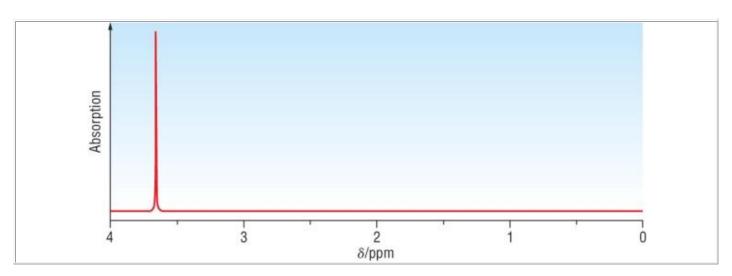

H - NMR of 2 isomers of C₃H₅CIO₂: 1) CH₃CHCICOOH and 2) CICH₂CH₂COOH both run in D₂O



As it is run in D₂O, we do not need to worry about the COOH signal.

- Quartet: is made from proton(s) adjacent to 3H (CH-CH₃)
- Doublet: is made from proton(s) adjacent to 1H (CH₃-CH)
- This leads to isomer 1) CH₃CHCICOOH
- Triplet: is made from proton(s) adjacent to 2H (CH₂-CH₂)
- As there is 2 of them, there must be 2 lots of CH₂'s next to each other
- This leads to isomer 2) CICH₂CH₂COOH


- 2) Using splitting, integration and chemical shift:
- H NMR of 4 isomers of the ester, C₄H₈O₂:
- A) CH₃CH₂COOCH₃ B) CH₃COOCH₂CH₃ C) HCOOCH₂CH₂CH₃ D) HCOOCH(CH₃)₂
- 2 of these esters are shown below, match the ester to the spectra:


3) Protons adjacent on both sides:

The spectra below is for CH₃CHCICH₃

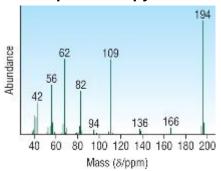
4) Equivalent protons not split:

The spectra below is for CICH₂CH₂CI

Chemical shift:	3.8			
	O—CH CI—CH Br—CH			
	4			
Integration	4			
Splitting pattern	Singlet - signal adjacent to 2H's			
Interpretation	2H's adjacent to 6H's			
Assignment	CICH ₂ CH ₂ CI x 2			
Put the assignments toget	her: CICH ₂ CH ₂ CI			

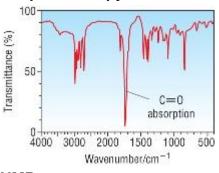
Qu 1 P97

NMR in medicine

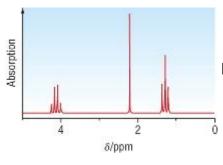

- It is used to determine the structure of synthetic drugs.
- It is used in MRI scans Magnetic Resonance Imaging.
- The word Nuclear was dropped as it was thought people would associate it with radiation.
- The patient is the sample and although their protons are resonating, it is painless and harmless.
- Only patients with ferromagnetic metal implants (Fe, Co, Ni) should not use MRI such as pacemakers.
- MRI takes a 3D image of the water in tissue as slices which a computer then puts together.
- Diseases affect the water in tissues and this can be identified cancers / spinal injuries
- Used in sporting injuries to identify tendon / muscle / ligament tears as dense materials such as bones appear darker due to less protons.

Qu 1 - 4 P 99

Combined techniques:


- A single spectroscopic technique tells you 'bits' of information on the structure of a molecule or compound.
- Combining the techniques give you lots of 'bits' of information that can be used to determine the actual structure of the molecule or compound:

Mass Spectroscopy:

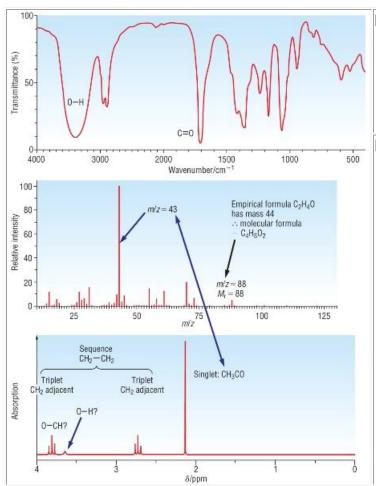

- Chemical analysis provides the empirical formula of the compound.
- Mass spectroscopy gives the Mr and hence the molecular formula.
- Fragmentation patterns give clues about the carbon skeleton.

IR spectroscopy:

- IR spectroscopy gives information about functional groups present in the molecule:
- O-H
- C = O
- C-O
- However many functional groups can have these bonds present

NMR spectroscopy:

Carbon - 13 NMR:


 Gives information about the numbers and types of carbon environments.

Proton NMR:

- Gives information about the numbers and types of protons.
- It also tells you the environments the protons are in.

Worked example:

Chemical analysis has identified the empirical formula as C_2H_4O (Mr = 44)

IR spectra:

- O H present
- C = O present

Mass Spectra:

- Molecule has a mass, Mr = 88
- Molecular formula = C₄H₈O₂

NMR:				
Chemical shift:	2.1	2.7	3.8	3.6
	Ar—CH 0=CCH N—CH	Ar—CH 0=CCH N—CH	O—CH CI—CH Br—CH	O-H can be in any region between 1.0 - 5.5
Integration	3	2	2	1
Splitting pattern	Singlet - signal adjacent to 2H adjacent to 2H		Triplet - signal adjacent to 2H's	Singlet
Interpretation	3H's adjacent to 0H's	2H's adjacent to 2H's	2H's adjacent to 2H's	O-H?
Assignment	O=CCH ₃	O=CCH ₂ CH ₂ -	O-CH ₂ CH ₂	-O-H

Put the assignments together: O C CH2 OH

Qu 1-2 P103 Qu 3-8 P105 Qu 2 - 8 P108/109