2A - Amines

Something fishy about amines:

- Have an NH₂, amine group.
- Amines are derivatives of ammonia:

3 H atoms Ammonia, NH3

attached C to N Primary amine

1 H atom replaced: 1 2 H atoms replaced: 2 attached C's to N Secondary amine

3 H atom replaced: 3 attached C's to N **Tertiary amine**

Amines occur in nature and are known for their physiological effects:

Treats drowsiness and fatigue syndrome

Decongestant

'Fight or flight' to cope with sudden stress

Amines are also known for their unpleasant and often fishy smell.

Naming amines:

To the longest single alkyl chain add the suffix 'amine':

 NH_3

CH₃NH₂

CH₃CH₂NH₂

Ammonia

Methylamine

Ethylamine

Phenylamine

If there are 2 alkyl groups on the nitrogen:

CH₃CH₂CH₂ H_3C

- Start with the longest alkyl chain propylamine
- The shorter alkyl group is prefixed with 'N' N methyl propylamine
- The prefix 'N' tells you that the alkyl group comes off the nitrogen atom.
- A tertiary amine would have 2 prefixes of 'N' N,N methyl ethyl butylamine (for example)

Basicity in amines:

- Amines are weak bases proton acceptors.
- This is because they have a lone pair of electrons on the nitrogen available to donate in accepting a hydrogen ion:

$$H_3C$$
 H_3C H_4 H_4 H_3C H_3C H_4 H_5 H_5 H_6 H_7 H_8 H_8

The inductive effect:

- The basic properties of phenylamine are less than that of ammonia.
- The basic properties of amines are greater than that of ammonia.
- This can be explained by the inductive effect:

pH 8	Phenylamine	H_2N $COOC_2H_5$
pH 10 pH 12	Ammonia Butylamine	NH ₃ CH ₃ CH ₂ CH ₂ CH ₂ NH ₂

- Remember a base is a proton acceptor and the proton is accepted using the lone pair of electrons on the nitrogen.
- Groups attached to the functional group can have an effect on how available the lone pair of electrons for accepting a proton:

C_4H_9 \longrightarrow NH_2 H_2O	Alkyl groups have a positive inductive effect. This means that they give a small push of electrons towards the neighboring atom (the nitrogen). This gives an increased electrons charge density meaning a better chance of the lone pair being used to accept a proton – Stronger base
NH ₃ H ₂ O	Ammonia has no inductive effect as there is nothing attached to the functional group.
NH ₂ H ₂ O	Benzene rings have a negative inductive effect. This means that the benzene ring has a small pull of electrons away from the neighboring atom (the nitrogen). This gives a lower electron charge density making it harder for the lone pair of electrons to be used to accept a proton – Weaker base
NH ₂	This would be further compounded by the lone pair of electrons on the nitrogen being able to delocalize into the benzene ring.

Base reactions of amines:

• Just as ammonia forms salts with acids so do amines:

Base + Acid → Salt
$$NH_{3(aq)}$$
 + $HCI_{(aq)}$ → $NH_4^+CI_{(aq)}^ C_4H_9NH_{2(aq)}$ + $HCI_{(aq)}$ → $C_4H_9NH_3^+CI_{(aq)}^ C_6H_5NH_{2(aq)}$ + $HCI_{(aq)}$ → $C_6H_5NH_3^+CI_{(aq)}^-$

• Phenylamine reacts with nitric acid:

Questions 1 - 2 P37

Amines and their reactions

Preparation of primary aliphatic amines:

• These are made by warming halogenoalkanes with excess ammonia:

The excess ammonia reacts with the HCl formed:

Preparation of secondary / tertiary aliphatic amines:

• Propylamine can react further (like the ammonia) with more chloropropane:

$$CH_3CH_2CH_2CI + CH_3CH_2CH_2NH_2 \rightarrow (CH_3CH_2CH_2)_2NH + HCI$$

• And dipropylamine can react even further again:

$$CH_3CH_2CH_2CI + (CH_3CH_2CH_2)_2NH \rightarrow (CH_3CH_2CH_2)_3N + HCI$$

• Multiple substitution is avoided by having ammonia in excess. This minimises the 'chance' of further substitution.

Preparation of aromatic amines:

 Nitrobenzene (and other nitroarenes) can be reduced using a mixture of tin and concentrated hydrochloric acid:

Nitrobenzene
$$NO_2 + 6 [H]$$
 \rightarrow $NH_2 + 2 H_2 O$

- The excess HCl is neutralised at the end of the reaction.
- This is an important reaction as it is used in the manufacture of dyes.

Synthesis of dyes from phenylamine:

- There are 2 stages in this process:
- 1) Diazotisation
- 2) Coupling reactions

1) Diazotisation:

a) Making Nitrous acid:

Nitrous acid is unstable so must be made when needed.

$$NaNO_2 + HCI \rightarrow HNO_2$$

Sodium nitrite Hydrochloric acid **Nitrous acid**

b) Diazotisation reaction:

Phenylamine

Below 10 °C

$$NH_2 + HNO_2 + 2 HCI$$

Below 10 °C

 $N^+ = N + 2 H_2O$

Benzenediazonium chloride,
 $C_6H_5N_2^+CI^-$

 The diazonium ion, N₂⁺ is unstable and decomposes releasing nitrogen, this is why it needs to be kept below 10°C.

- The benzene ring in benzenediazonium salts allow the π electrons from the diazonium functional group to be delocalised over the benzene ring.
- This stabilises the benzenediazonium salts enough to be used at low temperatures.

2) Coupling reaction:

- The benzenediazonium salt is reacted with phenol under alkaline conditions.
- As the 2 molecules are now 'coupled' together we call it a coupling reaction.
- The Azo dye is now stable as there is extensive delocalisation over both arenas via the azo group, -N=N-.
- An everyday use of azo dyes is methyl orange indicator.

Questions 1 - 3 P39 Qu 9 P41 Qu 2a (ii) (iii) P42 Qu 11-13 P44,45

Amino acids

• Have an NH₂, amine and a COOH, carboxylic acid group:

- They are the building blocks for proteins which are held together by peptide links.
- The body has 20 different amino acids which, as proteins can be enzymes, hormones, antibodies.
- These proteins are responsible for body functions such as carrying oxygen in the blood, formation of bones etc.
- The 20 Naturally occurring amino acids have the general formula of:

• This arrangement is called α amino acids due to its optical isomerism (covered later)

- The R group can contain OH, SH, COOH or NH₂ group.
- Glycine is the simplest amino acid which means it will not contain an R group:

• Other examples of α amino acids are shown below with different R groups attached:

Zwitterion and the isoelectric point:

- Amino acids contain an acidic carboxylic acid group and a basic amine group.
- These can interact with each other to form a **zwitterion**:

- A proton is transferred from the COOH to the NH₂
- The zwitterion has no overall charge as the COO⁻ cancels out the NH₃⁺
- The **isoelectric point** is the pH at which there is no 'net' electric charge.
- This + / charge increases the intermolecular forces between amino acids considerably.
- They are often described as having unusually high melting points.
- You may expect this to be pH7. In actual fact is is usually around the pH6 region.
- This is due to the fact that the **COOH** is actually slightly more acidic than the **NH**₂ is basic.
- The rest of the molecule also has an influence on how acidic and how basic the COOH and NH₂ are which means that every amino acid will have a slightly different isoelectric point.

Comparison of melting points:

Me	olecule	Melting point
Glycine,	NH ₂ CH ₂ COOH	262°C
Propanoic acid	CH ₃ CH ₂ COOH	-21°C

Acid and base properties of amino acids:

- Amino acids are amphoteric.
- This means that they will react with both:

Acids: Due to the basic NH₂ present.

Alkalis: Due to the acidic COOH present.

pH < Isoelectric point:

pH > Isoelectric point:

- pH < Isoelectric point:
- In acidic conditions there is an abundance of H⁺ions.
- The amino acid acts as a base and accepts as many H⁺ions as possible.
- pH > Isoelectric point:
- In Alkaline conditions there is a defficit of H⁺ions.
- The amino acid acts as an acid and donates as many H⁺ions as possible.

Polypeptides and proteins

Amino acids and condensation reactions:

- When 2 amino acids join together we call it a dipeptide.
- When 3 amino acids join together we call it a tripeptide.
- When many join together we call it a polypeptide.
- Polypeptides are synthetic.
- Proteins are natural and are usually larger than polypeptides.
- The term 'Peptide linkage' (or bond) is the name for the amide link which in poly peptides or proteins.
- The reaction is called a condensation reaction as water is given off:

- The functional group (in purple) is an amide group (CONH)
- A different dipeptide can be made by joining them the other way round:

Forming polypeptides and proteins:

• This is a long chain of amino acids joined by peptide linkages:

- Each linkage forms a molecules of water.
- A polypeptide generally has >50 amino acids.

Hydrolysis of polypeptides and proteins:

- Polypeptides and proteins can be hydrolysed back into their constituent amino acids.
- This is the reverse of the reaction above.
- This is done by using an acid or alkaline catalyst. (like ester hydrolysis).

Acid hydrolysis:

- Heat under reflux with 6M HCl fro 24hrs
- As this is in acidic conditions, the acid amino acid ion is formed:

Alkali hydrolysis:

- Solution of aq NaOH above 100°C
- As this is in alkaline conditions, the alkali amino acid ion (salt) is formed:

Qu 1 - 3 P51

Condensation polymerisation: 1) Polyesters

- This is the joining of s monomers while eliminating a small molecule H₂O or HCl
- The functional group on one monomer joins with a different functional group in another molecule
- There are 2 types of condensation polymerisations covered
- Polyesters from alcohols and carboxylic acids
- Polyamides from amines and carboxylic acids

1) polyesters:

- A polyester is made by condensing an alcohol and carboxylic acid.
- The joining link is an ester functional group, hence polyester.
- A polyester is can be made in one of 2 ways:

a) 2 monomers: Diol and Dicarboxylic acids-

- Terylene is made from the reaction between the monomers ethane-1,2-diol and benzene-1,4-dicarboxylic acid.
- It is described as a condensation reaction as water is eliminated as the ester link is formed.
- Used in the manufacture of carpets.

b) 1 monomer: Hydroxycarboxylic acid

Hydroxycarboxylic acid monomer (one type of monomer) Polymerisation Repeat unit Polyester CH₃ CH₃ CH_3 OH H_2O H20 CH₃ CH_3 CH_3 Ĥ H Н Repeat unit

- Poly(lactic acid), PLA is made from the reaction between the same monomer containing an
 OH and a COOH group.
- It is described as a **condensation reaction** as **water** is eliminated as the **ester link** is formed.

Qu 1-3 P55

Condensation polymerisation: 2) Polyamides:

- Polyamides are made by an amine / carboxylic acid condensation reaction.
- The resulting link is an amide:

A polyester is can be made in one of 2 ways:

a) 2 monomers: Diamine and Dicarboxylic acids-

• Formed from the reaction between the 2 monomers containing 2 NH₂ and 2 COOH groups.

Diamine and dicarboxylic acid monomers

(two different types of monomer)

- Nylon is made from the reaction between the monomers 1,6-diaminohexanel and hexane-1,4-dioic acid.
- It is described as a condensation reaction as water is eliminated as the amide link is formed.
- Used in the manufacture of clothing.
- Another is **kevlar** very strong polymer used in fire and bullet proof vest and crash helmets:

b) 1 monomer: Hydroxycarboxylic acid

A monomer with an amine group at one end and a carboxylic acid group at the other.
 Amino acid monomer

Polypeptides and proteins - from the reaction between the same monomer containing an NH₂ and a COOH group.

 It is described as a condensation reaction as water is eliminated as the amide link is formed.

Qu 1-3 P57

Addition and condensation polymerisation

Addition polymers:

• This was covered in AS under the alkenes chapter:

- These are made from one monomer only containing a C=C
- Only one product is formed.
- Using different alkene molecules, different addition polymers can be made:

Condensation polymerisation:

- These polymers are when monomers are joined with the elimination of a small molecule, H₂O or HCl.
- The monomers must have 2 functional groups.

Comparison of addition and condensation polymers:

	Addition polymerisation	Condensation polymerisation	
		Polyester	Polyamide
Functional groups	C=C	соон / он	COOH / NH ₂
No monomers	1	1 or 2	1 or 2
Products	poly(alkene)	polyester + water	polyamide + water
linkage	C-C		. — C — N — H

Qu 1,2 P59

Breaking down condensation polymers

- If condensation polymerisation eliminates water then they can be hydrolysed with the addition of water (acid / base)
- 2 condensation polymers have been covered and both can be hydrolysed:

1) Hydrolysis of polyesters:

- In carbonyl compounds we saw that esters can be hydrolysed in acidic or basic conditions.
- This gave the corresponding alcohol and carboxylic acid (or salt of acid base)
- Polyesters can be hydrolysed in exactly the same way with hot aqueous acid / aqueous alkali.
- The monomers making up the polymer are produced (or salt if base hydrolysis used):

2) Hydrolysis of polyamides:

- Polyesters can also be hydrolysed with hot aqueous acid / aqueous alkali.
- The monomers making up the polymer are produced ammonium in acidic conditions carboxylate salts in basic:

Degradable polymers:

- Most plastic packaging is addition polymers which will not degrade in landfill sites.
- Environmental demand has produced biodegradable plastics.
- These have chemical bonds that will hydrolyse similar to polyesters and polyamides.
- A polymer based on tapiocha starch will decompose in 28 days when buried.

Photodegradable polymers:

- These become weak and brittle when exposed to light.
- The polymers are blended with light sensitive catalysts which will catalyse the decomposition of the polymer.
- Another way is to encorperate C=O bonds within the polymer structure.
- These absorb UV light and break.
- Photodegradable plastics break to form waxy shorter hydrocarbon molecules before bacteria breaks them further into CO₂ and H₂O.

Qu 1-3 P61 Qu 9 P41 Qu 2a (ii) (iii) P42 Qu 11-13 P44,45 Qu 1,2,4,5,6 P 69 / Qu 1a,2,3,4,5,6,9,10,11,12 P70-73