An introduction to carbonyl compounds

Aldehydes and ketones: Н Н н Н Н Н н 0 -H н Ĥ н CH₃ Н Н Ö Ĥ Ĥ Ĥ ĊНз Aldehyde **Ketone**

- <u>Aldehydes</u> end in 'al' and have a carbonyl group (C = O) with 1 hydrogen and 1 Alkyl group attached
- Ketones end in 'one' and have a carbonyl group (C = O) with 2 alkyl groups attached.

p's to π's

• Like the alkenes, the carbonyl group consists of a σ **bond** and a π **bond** between the carbon and oxygen:

 $\sigma\text{-bond}$ above and below C and O atoms

- The difference in this set up is the difference in electronegativities of the carbon and oxygen atom.
- Oxygen is much more electronegative than carbon meaning that the π electrons will be highly distorted towards the oxygen atom as shown above.

• This sets up a permanent dipole across the C=O bond:

Naming aldehydes and ketones:

• Aldehydes and ketones are named in the same way as in AS:

- In aldehydes, the aldehyde carbon always starts at 1.
- In ketones, the ketone (or carbonyl group) is always counted to give it the smallest possible number.

Aromatic aldehydes and ketones:

• The simplest aldehyde is benzaldehyde and the simplest ketone is phenylethanone:

 These aromatic aldehydes and ketones have a fragrant smell, often found naturally in foods.

Qu 1 - 4 P21

Oxidation of alcohols and aldehydes

- In unit 2, module 2 we oxidised primary, secondary alcohols and aldehydes further.
- Tertiary alcohols however could not be oxidised further.
- We used acidified dichromate, H⁺ / Cr₂O₇²⁻ to oxidise (usually as sulphuric acid and potassium dichromate).
- We noticed that if we oxidise alcohols:

Primary alcohols:

• The oxidation reaction is complex so we use [O] to show oxidation and balance them accordingly:

CH ₃ CH ₂ OH	+	[0]	\rightarrow	CH₃CHO	+	H ₂ O
CH₃CH₂OH	+	2[O]	\rightarrow	CH₃COOH	+	H ₂ O

• Distilling to collect the adehyde and refluxing (then distilling) for the carboxylic acid.

Secondary alcohols:

• Refluxing is used. Distilling is not necessary as the product cannot oxidise further.

Aldehydes:

• The oxidation reaction:

 $CH_3CHO + [O] \rightarrow CH_3COOH + H_2O$

• Refluxing is used. Distilling is not necessary as the product cannot oxidise further.

Qu 1 - 3 P23

Reactions of aldehydes and ketones

Reducing aldehydes and ketones

- Alcohols can be oxidised to aldehydes and ketones by using an oxidising agent (earlier)
- This means that aldehydes and ketones can be reduced to form the corresponding primary or secondary alcohols.
- The reducing agent used is sodium tetrahydidoborate (III), NaBH₄ sometimes called sodium borohydride.
- The reaction(s) are complex so we use [H] in the equation (as we used [O] in the oxidation reactions).

Reduction of aldehydes:

Reduction of ketones:

$CH_3COCH_3 + 2[H] \rightarrow CH_3CH(OH)CH_3$

Nucleophilic addition reactions:

- NaBH₄ reacts with aldehydes and ketones by nucleophilic addition.
- NaBH₄ is a source of hydride ions, H⁻.
- This is the nucleophile and is attracted to the δ+ carbon in the carbonyl group.

The Mechanism:

Organic product is also an alcohol

Qu 1 - 4 P 25

Chemical tests on carbonyl compounds

1) Detecting the presence of a carbonyl group:

• Brady's reagent – 2,4-dinitrophenylhydrazine in methanol and sulphuric acid:

2,4-dinitrophenylhydrazine

• This reaction produces a **yellow/orange precipitate** specifically with the carbonyl group of an aldehyde or a ketone **only**:

Yellow / Orange crystals

- This is followed by elimination of water and is often described as a condensation reaction.
- The crystalline product can be separated and purified.
- Determining the melting point of the product allows you to find out which aldehyde or ketone was present.

Aldehyde or ketone?

2) Tollens' reagent

- This is used to identify whether the molecule is an aldehyde or ketone.
- Often referred to as the 'silver mirror' test or 'ammoniacal silver nitrate'
- This is a solution of silver nitrate in an excess of ammonia and is a weak oxidising agent.
- Silver nitrate contains Ag⁺ ions.
- They can be reduced to silver by a reducing agent / something that will itself be oxidised:

$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$

• Only aldehydes can be oxidised further which means that only aldehydes will produce a silver mirror with Tollens' reagent:

Summary – how to test / distinguish for aldehydes and ketones:

Reaction	Aldehyde	Ketone
2.4-DNPH	A yellow / orange crystalline solid is formed	A yellow / orange crystalline solid is formed
Tollen's reagent	A silver mirror is formed as Ag ⁺ is reduced to Ag	No reaction
Oxidation with acidified sodium dichromate (VI) (from AS)	Orange to green, as Cr ⁶⁺ is reduced to Cr ³⁺	No reaction

The orange crystals from 2,4-DNPH can be filtered, recrystallised and melting point determination. Once you know whether it is an aldehyde or ketone from Tollen's reagent, look up the MPt of the derivative in a table to identify the crystals and hence the aldehyde / ketone.

Qu 1 - 3 P27

Carboxylic acids

Introduction to carboxylic acids

• Carboxylic acids have the general formula:

Has carbonyl group C = O

and hydroxyl group C – OH

• These are present in many foods:

Ethanoic acid – vinegar Benzoic acid – used as flavouring in lemonade Citric acid – Used as flavouring in citrus drinks

1) Solubility and pH

• Solubility – C₁ - C₄ carboxylic acids mix readily:

н

- $C_5 \rightarrow$ solubility reduces due to length of insoluble R chain.
- All carboxylic acids H bond to each other and with water.

Acid reactions of carboxylic acids:

- Carboxylic acids are weak acids as they partially dissociate in water.
- They react as acids to form salts called carboxylates.
- Less than 1% ionised:-

 $RCO_2H_{(aq)} \rightarrow H^+_{(aq)} + RCO_2^-_{(aq)}$

2. Formation of salts:

• Carboxylic acids are acidic enough to react with:

Metals Metal hydroxides Metal carbonates

• They react in the usually acidic way making **salts**, hydrogen, water or water and carbon dioxide.

• The salt is a carboxylate ion.

a) With magnesium

 $2CH_3CO_2H + Mg$

→ (CH₃CO₂)₂Mg + H₂ Magnesium ethanoate

b) With sodium hydroxide

$$CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$$

Sodium ethanoate

c) With sodium carbonate

 $2CH_3CO_2H + Na_2CO_3 \rightarrow 2CH_3CO_2Na + H_2O + CO_2$ Sodium ethanoate

In each case the carboxylic acid has donated a proton, ${\rm H}^{\star}$ A salt is formed each time

Qu 1 - 2 P29

Esters Esters have the gen

Esters have the general formula:

- Esters are referred to as a derivative of carboxylic acids due to the easy substitution of the hydrogen in the hydroxyl group with an alkyl group. They are derived from carboxylic acids.
- Again these are found in foods and have a fruity aroma.

Making esters:

- From AS you made esters from carboxylic acids and alcohols using an acid catalyst and heat.
- The reaction is known as esterification. It is a reversible reaction (later) and the yield of ester was low:

Esters from acid anhydrides

- Esters can be produced from acid anhydrides with gentle heating.
- This gives a better yield of ester as acid anyhdrides are a lot more reactive than carboxylic acids:

The reaction:

Ester hydrolysis:

• This is the break down of esters with the reaction with water.

Ester + water
$$\rightarrow$$
 Carboxylic acid + Alcohol

• It is the reverse reaction of the esterification reaction.

Carboxylic acid + Alcohol \rightarrow Ester + water

• It can be done using an acid or alkaline catalyst. The products formed are slightly different:

1) Acid hydrolysis:

• The hydrolysis of any carboxylic acid derivative results in the carboxylic acid.

• The reaction is in equilibrium which means molecules of reactants and products are present in the reaction mixture.

2) Alkaline hydrolysis:

• When a base is used, the product is the sodium salt of the carboxylic acid:

- The reaction is non reversible which means that only products are present in the final reaction mixture.
- This reaction is also called 'saponification' as soaps are made in this way by the hydrolysis of fats (later).

Esters as perfumes and flavourings:

- Esters occur naturally in foods and flowers so can be used as perfumes.
- Esters are also found in essential oils, 'oil of wintergreen' used as deep heat.
- Benzyl ethanoate gives and apple and pear flavour / smell.

Qu 1 - 3 P31

Fats and oils - building triglycerides

Fats and oils:

• Fats and oils are basically esters made from propan-1,2,3-triol or glycerol (a triol) and long chain carboxylic acids, fatty acids:

Glycerol

Long chain carboxylic acid, fatty acid - hexadecanoic acid

- Its melting point determines whether it is a fat or oil.
- If its melting point is above room temperature it is a solid which makes it a fat, eg margarine and butter.
- If its melting point is below room temperature it is a solid which makes it an oil, eg olive oil.

Triglycerides - the building blocks:

- Triglycerides are naturally occurring fats. They are triesters of propan 1,2,3 triol, glycerol and fatty acids.
- Glycerol has 3 alcohol groups which can react with a carboxylic acid (stearic acid) to form an ester.
- If all 3 join we make a triglyceride (an ester).
- The carboxylic acids occur naturally and because they make fats (upon esterification) we call them fatty acids.
- Fatty acids are saturated if they contain only C C and unsaturated if they contain C=C.
- Fatty acids contain an even number of carbon atoms due to their synthesis in nature.

Forming triglycerides:

These are basically esters:

- Most triglycerides (fats) actually form using different fatty acids •
- Triglycerides (fats) can be saturated or unsaturated depending on whether the fatty acids they are made of are saturated or not
- Qu 1 4 P33

Triglycerides, diet and health

Isomerism in unsaturated fatty acids:

In AS we covered the Cis Tranz (E/Z) isomerism involving a C=C: •

Trans but-2-ene

(E-but-2-ene)

(Z-but-2-ene)

- Remember the C=C stops free rotation around the C=C.
- Fats and oils come from saturated and unsaturated fatty acids:

Fatty Acid		Risk	Reason	Packing	State	Cause
Saturated		Heart disease	Raises blood cholesterol	Close	Solid	Blocks arteries
Unsaturated	Trans	Coronary heart disease	Raises blood cholesterol	Close	Solid	Blocks arteries
	Cis	No Health risk		Cannot pack close together	Liquid	No effect

Unsaturated packing:

- The food industry often removes some of the C=C by hydrogenation (adding H₂ across the C=C)
- This makes them more solid = margarine manufacture.
- A side effect of this is that the structure of the fat is changed from a liquid (little health risk) to a solid (Heart risk)

Trans fats cholesterol:

High Density Lipoproteins

Low Density Lipoproteins

- These carry cholesterol out of the blood and out of the body.
- Good

- These carry about 65% of cholesterol around the blood
- End up depositing lipids (fats) onto artery walls
- This restricts blood flow
- Bad

Fatty Acids as Biodiesel:

- The waste oil is filtered then reacted with methanol and sodium hydroxide (catalyst) to form biodiesel.
- This also increases the atom economy of fats.

Qu 1 - 4 P35 Qu 5 - 8 P41 / 4 - 10, 14 P42 - 45