

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/01

Trends and Patterns

Friday

23 JANUARY 2004

Afternoon

1 hour

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu	Max.	Mark	
1	15		
2	7		
3	9		
4	14		
TOTAL	45		

This question paper consists of 11 printed pages and 1 blank page.

Answer all the questions.

1 The Born-Haber cycle below can be used to calculate the lattice enthalpy for magnesium oxide.

first and second electron affinities = $+650 \,\text{kJ mol}^{-1}$ of oxygen $Mg^{2+}(g) + 2e^{-} + O(g)$ enthalpy change $= +248 \, \text{kJ mol}^{-1}$ of atomisation of oxygen $Mg^{2+}(g) + 2e^{-} + \frac{1}{2}O_2(g)$ second ionisation $= +1450 \, \text{kJ mol}^{-1}$ enthalpy of magnesium lattice $Mg^+(g) + e^- + \frac{1}{2}O_2(g)$ oxide $\Delta H_3 = +736 \,\text{kJ mol}^{-1}$ $Mg(g) + \frac{1}{2}O_2(g)$ $\Delta H_2 = +149 \,\text{kJ mol}^{-1}$ $Mg(s) + \frac{1}{2}O_2(g)$ $\Delta H_1 = -602 \, kJ \, mol^{-1}$ MgO(s)

enthalpy of magnesium

(i) Write down the name for each of the following enthalpy changes.

ΔН.	
ΔΗ	
ΔΗ	[3]

(ii) Write down the missing formulae on the dotted line at the top of the Born-Haber cycle. Include state symbols.

(iii)	The equations	representing	the fir	rst and	second	electron	affinities	for	oxygen	are
	shown below.									

Suggest why the enthalpy change for the second of these processes is positive.	

(b) (i) Use the Born-Haber cycle to calculate the lattice enthalpy of magnesium	(b)	(b)	(i)	Use the Born-Haber	cycle to	calculate the	e lattice entha	alpy of magn	esium o	xide.
---	-----	-----	-----	--------------------	----------	---------------	-----------------	--------------	---------	-------

		answer	. kJ mol ⁻¹ [2]
(ii)	Describe how, and explain why, from that of barium oxide.	the lattice enthalpy of magnesium	oxide differs
•			•••••••••••
•			
•	***************************************	***************************************	[0]

(c) Give one reason why magnesium oxide is a good material to make the lining of a furnace.

2	Copper is a typical transition elemer					
	•	It forms coloured compounds.				
	•	It forms complex ions.				

substitution.

•	It fo	rms coloured compounds. rms complex ions. as more than one oxidation state in its compounds.
(a)	Sta	te one other typical property of a transition element.
	••••	[1]
(b)	Dilu liga	te aqueous copper(II) sulphate is a blue solution containing $[Cu(H_2O)_6]^{2+}$ ions. A nd substitution involving $[Cu(H_2O)_6]^{2+}$ is shown below.
		$ \begin{array}{ccc} [Cu(H_2O)_6]^{2+} & \xrightarrow{reagent X} & [CuCl_4]^{2-} \\ blue solution & vellow solution \end{array} $
		blue solution yellow solution
	(i)	Suggest a shape for the $[{\rm CuC}l_4]^{2-}$ ion. Include the bond angles in your diagram.
		[2]
	(ii)	State the formula of the ligand in $[CuCl_4]^{2-}$.
		[1]
((iii)	State the name or formula of reagent X.

(iv) Explain, with the aid of a balanced equation, what is meant by the term ligand

[Total: 7]

3 Aqueous hydrogen peroxide, $\rm H_2O_2$, is used to sterilise contact lenses. $\rm H_2O_2$ decomposes to make oxygen and water as shown in the equation.

 $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

(a) Decomposition of hydrogen peroxide is a redox reaction. Use oxidation numbers to show that oxidation and reduction take place.

[2]

(b) The concentration of an aqueous solution of hydrogen peroxide can be determined by titration. Aqueous potassium manganate(VII), KMnO₄, is titrated against a solution of hydrogen peroxide in the presence of acid.

The half-equation for the oxidation of $\mathrm{H_2O_2}$ is as follows.

$$\mathrm{H_2O_2(aq)}\,\longrightarrow\,\mathrm{O_2(g)}\,+\,2\mathrm{H^+(aq)}\,+\,2\mathrm{e^-}$$

The half-equation for the reduction of acidified MnO_4^- is as follows.

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$$

(i) Construct the equation for the reaction between H_2O_2 , MnO_4^- ions and H^+ ions.

.....[2]

(ii) A student takes a 25.0 cm³ sample of aqueous hydrogen peroxide and places this into a conical flask and then adds sulphuric acid to acidify the hydrogen peroxide.

The student titrates this sample of acidified hydrogen peroxide against a solution containing $0.0200\,\mathrm{mol\,dm^{-3}}\,\mathrm{MnO_4^-(aq)}$ ions. For complete reaction with the acidified hydrogen peroxide, the student uses $17.5\,\mathrm{cm^3}$ of this solution containing $MnO_4^-(aq)$ ions.

Calculate the concentration, in mol dm⁻³, of the aqueous hydrogen peroxide.

2 mol MnO $_4^-$ reacts with 5 mol H $_2$ O $_2$.

	concentration mol dm ⁻³ [3]
(c)	Acidified hydrogen peroxide oxidises Fe ²⁺ (aq) to Fe ³⁺ (aq).
	Describe a simple chemical test to show the presence of Fe ³⁺ (aq).
	name of reagent used
	observation
	[2]
	[Total: 9]

- 2 A cell can be constructed between a Ni^{2+}/Ni half-cell and an I_2/I^- half-cell.
 - (a) Draw a labelled diagram of this cell operating under standard conditions.

[5]

(b) The standard electrode potentials for the half-cells in this cell are given below.

$$Ni^{2+}/Ni$$
 $E^{+} = -0.25 \text{ V}$

$$I_2/I^ E^{\Theta} = + 0.54 \text{ V}$$

(i) What is the standard cell potential of this cell?

 ٧	[1]

(ii) Write equations for the reactions that occur in each half-cell.

••

(iii) Write the overall equation for the reaction that occurs in the cell.

	.[1	1
***************************************	۴.	1

(iv) State, and explain, the direction of flow of electrons in the external circuit.

[1]

[Total: 10]

4

Titanium(IV) oxide, TiO ₂ , can be used as a white pigment in horseradish sauce. However, many compounds of transition elements are coloured.
(a) Complete the electronic structures of a
Ti atom 1s ² 2s ² 2p ⁶
Ti^{4+} ion $1s^22s^22p^6$ [2]
(b) In this question, one mark is available for the quality of written communication.
Explain why compounds of transition elements are usually coloured.
Explain why titanium (IV) oxide is not coloured.
<u></u>
<u></u>
[6]
Quality of Written Communication [1]
[Total: 9]

- 5 Chrome alum is used in dyeing and in tanning leather.
 - (a) On heating chrome alum gently, it loses its water of crystallisation. The equation for this is given below.

$$KCr(SO_4)_2.xH_2O \rightarrow KCr(SO_4)_2 + xH_2O$$

chrome alum

It was found that when 1.73 g of chrome alum was heated, 0.75 g of water was lost.

Show that the value of x in the formula $KCr(SO_4)_2.xH_2O$ is 12.

[3]

- (b) Chrome alum contains the complex ion $[Cr(H_2O)_6]^{3+}$.
 - (i) Draw a diagram of this complex ion showing its shape and bond angle clearly.

[2]

(ii) What name is given to this shape of complex ion?

. . .

[Turn over

[3]

[Total: 10]

c)	And wat	Another complex ion of chromium contains one chromium(III) ion, four molecules of water and two chloride ions. This complex shows <i>cis-trans</i> isomerism.				
	(i)	Write the formula of this complex ion.				
		[1]				
	(ii)	Draw labelled diagrams to show the cis and trans isomers of this complex ion.				

END OF QUESTION PAPER

Answer all the questions.

1 The formation of ethyl ethanoate and water from ethanoic acid and ethanol is a reversible reaction which can be allowed to reach equilibrium. The equilibrium is shown below.

$$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

(a) Write the expression for K_c for this equilibrium system.

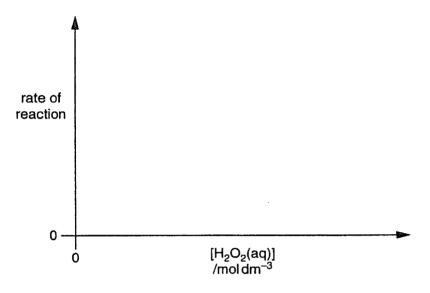
[2]

- (b) A student mixed together 6.0 mol ethanoic acid and 12.5 mol ethanol. A small amount of hydrochloric acid was also added to catalyse the reaction. He left the mixture for two days to reach equilibrium in a water bath at constant temperature, after which time 1.0 mol ethanoic acid remained.
 - (i) Complete the table below to show the equilibrium composition of the equilibrium mixture.

component	CH ₃ COOH	C ₂ H ₅ OH	CH ₃ COOC ₂ H ₅	H ₂ O
initial amount/mol	6.0	12.5	0.0	0.0
equilibrium amount/mol				

[2]

(ii) Calculate K_c to two significant figures. State the units, if any. The total volume of the equilibrium mixture is 1.0 dm³.


 $K_c =$ units [2]

(c)	What could he do to be sure that equilibrium had been reached?				
		[2]			
(d)		student added more ethanol to the mixture.			
(α,	(i)	State, giving a reason, what would happen to the composition of the equilibrium			
	(-)	mixture.			
		[2]			
	(ii)	What happens to the value of K_c ?			
		[1]			
(e)	Stat	student added more of the acid catalyst to the mixture. te, giving a reason, what would happen to the composition of the equilibrium ture.			
	••••				
	•••••	[2]			
(f)		student repeated the experiment at a higher temperature and found that the value ζ_c decreased.			
	(i)	State, giving a reason, what would happen to the composition of the equilibrium mixture.			
		[2]			
	(ii)	What additional information does this information tell you about the reaction?			
		[1]			
		[Total: 16]			

iodine, I	e of acid, H+(aq)					
		aqueous iodine).		veen H ₂ O ₂ (aq), I	
••••	***************************************					
(b) Thr I ⁻ (a	ee experim (q) and H+(a	ents were carr aq). The initial r	ied out using o ate of formation	different initial on of I ₂ was mea	oncentrations of lasured for each ex	n ₂ O ₂ (a perime
The	experimer	ntal results are s	shown below.			
е	xperiment	[H ₂ O ₂ (aq)] /mol dm ⁻³	[I (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	rate /mol dm ⁻³ s ⁻¹	
	1	0.010	0.010	0.005	1.15×10 ^{−6}	
	2	0.010	0.020	0.005	4.60×10 ⁻⁶	
		0.010	0.020	0.010	4.60×10 ⁻⁶	
(i)	Showing a	0.010			ers for I ⁻ and for h]
(i)		all your reasoni	ng, determine t	the reaction ord	ers for I ⁻ and for I	
(i)	Showing a	all your reasoni	ng, determine t	the reaction ord	ers for I ⁻ and for h	
(i) (ii)	Showing a	all your reasoni	ng, determine t	the reaction ord	ers for I ⁻ and for I	
	This reaction.	all your reasoni	er with respect to	to H ₂ O ₂ .	ers for I ⁻ and for h	ion for
	This reaction. rate =	all your reasoni	er with respect of your answers	to H ₂ O ₂ .	ers for I ⁻ and for h	ion for

(c) This reaction was shown to be first order with respect to H_2O_2 by plotting a rate-concentration graph.

Using the axes below, sketch a graph to show how the rate of this reaction changes with increasing $\rm H_2O_2$ concentration.

[2]

(d) Hydrogen peroxide readily decomposes to give water and oxygen.

Hydrogen peroxide is sold by volume strength. For example, 20-volume $\rm H_2O_2$ yields 20 volumes of oxygen gas for each volume of aqueous $\rm H_2O_2$ solution.

(i) Construct an equation for the decomposition of hydrogen peroxide.

r	47
. If	11
	٠,

(ii) Determine the concentration, in mol dm⁻³, of 20-volume hydrogen peroxide.

Show all your working clearly.

answer mol dm⁻³ [3]

[Total: 17]

Carbonic acid, H₂CO₃, is a weak Bronsted-Lowry acid formed when carbon dioxide dissolves in water. Blood contains several buffer solutions and healthy blood is buffered to a pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and hydrogencarbonate ions, HCO₃⁻.

The equilibrium in the carbonic acid / hydrogencarbonate buffer system is shown below.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$
 $K_a = 4.17 \times 10^{-7} \, \mathrm{mol} \, \mathrm{dm}^{-3}$

(a) Carbonic acid is a weak Bronsted-Lowry acid.

What is meant by the following terms?

(i)	A Bronsted-Lowry acid.	
(ii)	A weak acid.	
(iii)	pH.	[4]
(iv)	A buffer solution.	
		[1]

[4]

[Total: 13]