Mark Scheme	Unit Code	Session	Year		Version
Page 3 of 5	2815/01	June	2008	Fina	l Mark Scheme
Question	Expected Ansv			Marks	Additional Guidance
2 (a)		· Al ₂ O ₃ + Mo (1	,	1	Ignore state symbols Allow correct multiples
(b)	[Kr] 4d ³ and (Mo	[Kr] 4d ³ and (Mo ³⁺) has an incomplete filled d-subshell (1)			Allow has incomplete 4d sub-shell / incomplete d orbital lgnore errors in [Kr]
(c)	Correct molar ra 3MoO ₂ + Cr ₂ O ₇	Correct molar ratio of Mo and Cr species $3\text{MoO}_2 + \text{Cr}_2\text{O}_7^{2-} \rightarrow 2\text{Cr}^{3+} + 3\text{MoO}_4^{2-}$ (1); But			Ignore H ⁺ , H ₂ O and e [−] in equation
	3MoO ₂ + Cr ₂ O ₇ 3MoO ₄ ²⁻ (2)	^{,2–} + 2H ⁺ → 2Cr ⁻	³⁺ + H ₂ O +		For the second mark the H ⁺ and H ₂ O must be cancelled down to 2 and 1
(d) (i)	K ₂ FeO ₄ (1)			1	
(ii)	Moles of Fe ₂ O ₃	= 0.00627 (1);		3	
	Moles of OH ⁻ = 0	0.0400 (1);			
	Fe ₂ O ₃ in excess moles of OH ⁻ / e reagent in exces	vidence of workir			Allow reverse argument e.g. 0.0400 moles of OH ⁻ can only react with 0.004 moles of Fe ₂ O ₃ Allow ecf from wrong moles
				Total = 8	wrong moles

Mark Scheme	Unit Code	Session	Year		Version
Page 4 of 5	2815/01	June	2008	Fina	l Mark Scheme
Question	Expected Answers			Marks	Additional Guidance
3 (a)	$Ca^{+}(g) \rightarrow Ca^{2+}(g)$ atomisation (of constant Second electrons $Ca(g) \rightarrow Ca(g)$	exygen) / $\Delta H_{\rm at}$ (1) affinity (of oxyge	; en) / ΔH _{ea2} (1);	4	State symbols needed
(b)	attraction between AICI ₃ /AI ₂ CI ₆ – va	an der Waals / tei	mporary dipole –	3	Allow giant ionic / giant intermediate
	interactions / inte	ermolecular force			Allow simple molecular
	Correct comparisintermediate bor (1)	son of strength of ads stronger than	forces e.g. van der Waals		Comparison of forces dependent on forces being
(c)	Alada does not o	lissolve / does no	at road (1)	3	correct
(9)	AlCl ₃ reacts / Al0 water molecules	Cl₃ is hydrolysed by aluminium ior olourless solutior	Polarisation of (1)	3	Allow mark from an appropriate equation Allow acidic solution / gets hot / exothermic
(d) (i)	XX X Cl X X X X X Cl X P X X X X X	eross diagram (1)		1	Ignore lack of charge Ignore inner shells
(ii)	Tetrahedral / con Has four bond pa pairs / four bonds	airs / repulsion be	trahedral (1); tween four bond	2	Allow ecf from wrong dot and cross diagram for a PCI ₄ ⁺ species
				Total 13	

Mark Scheme	Unit Code	Session	Year 2008		Version
Page 5 of 5	2815/01	June	2000	Fina	l Mark Scheme
Question	Expected Answ		1	Marks	Additional Guidance
4	electron pair (1); Dative (covalent	an electron pair) / coordinate (1)	/ copper accepts	2	Allow even if not a copper complex Allow marks from a diagram
	Correct shape o or clear drawing (1); Correct bond an e.g. [Cu(H e.g. [CuCl.	formula of copper for a copper complement of the copper complement of the copper complement of the copper c	tetrahedral and	3	Allow last two marking points if not a copper complex
	involving a copp Correct equation	e of ligand substit er complex (1); n (1);	ution reaction	3	Allow all marks from an equation Allow last two marking points if not a copper complex
	Colour Correct colour of mark for each co	f two copper com orrect colour	plex ions one	2	If one colour given is wrong max 1 If two colours wrong score 0
	Answer must ad	the following tern one pair s l	n set and include	1	
	- IVIOIECUIE			Total	
				= 11	

2815/06 Transition Elements

Mark Scheme	Unit Code	Session	Year	Version
Page 1 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates ma NOT = answers which () = words which	arking points ch are not worthy of cre are not essential to gai key words which <u>must</u> forward ording	n credit	nt
Question	Expected Answers			Marks
1 (a) (i)	Pink to blue			1
(ii)	Tetrahedral			1
(iii)	<u>Ligand</u> substitution Accept ligand excha			1
(b)		H C N 1-1 1-1 n both nitrogens one pair shown on nit		1
(c) (i)	Optical			1
(ii)	en Co	€n e	n Comen	2
	Accept three loops Accept other correct Ignore charges or la	ways of showing 3-d	structure	Total: 7

; = separates man NOT = answers which a () = words which a = (underlining) k ecf = error carried for AW = alternative wo	rking points In are not worthy of creditions In are not essential to gain the sey words which must borward Irding	it credit	nt
Expected Answers			Marks
Fe ³⁺ / Fe ²⁺ half cell Combined with a (sta Solutions all 1 mol dn and	ndard) hydrogen half	cell	1
and	n / 100 / 101 kPa		1
		•	1 1 1
		salt bridge	
	; = separates man NOT = answers which a	; = separates marking points NOT = answers which are not worthy of credi () = words which are not essential to gain	separates marking points NOT = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument Expected Answers The emf / voltage / potential difference of a cell made from a Fe³+ / Fe²+ half cell Combined with a (standard) hydrogen half cell Solutions all 1 mol dm³ (accept equimolar solutions) and Temp 298 K / 25 °C and Pressure of gas 1 atm / 100 / 101 kPa (all three needed) Complete circuit including voltmeter and salt bridge Platinum electrode for Fe³+ / Fe²+ half cell labelled Fe³+ / Fe²+

(c) (i)	Emf = (+) 0.23 V	1
(ii)	$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$	1
	Electrons must be cancelled	
	Accept multiples	
		Total: 8

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of				
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates r NOT = answers wh () = words which	narking points nich are not worthy of h are not essential to y) key words which <u>m</u> d forward wording		
Question	Expected Answer	'S		Marks
4 (a)	Standard cell poter			1
	Standard cell poter is feasible Alternative: Second equilibrium right to left supplyir First equilibrium wi to right so that equ	1		
(b)	Oxidation <u>and</u> redu	uction		1
	Of the same specie	1		
(c)	As solid / in non aq aqueous solution	ueous solvents / wl	nen <i>not</i> in	1
				Total: 5

Mark Scheme	Unit Code	Session	Year	Version		
Page 5 of						
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument					
Question	Expected Answer	S		Marks		
5 (a)	Zinc (Accept Zn)			1		
(b)	to straw coloured / accept colour starts Starch indicator add coloured End point is when the 'off white' precipitate 2Cu²+ + 4l⁻ → 20 mark for balanced)	ded close to end poolue/black colour disce / solid Cul + I_2 (1 mark for balanced) communication: for correct spelling,	raw coloured / int / when straw appears to leave correct species 1 k for correct	1 1 1 2 2		

2815/06 Mark Scheme June 2008

(c)	Moles $S_2O_3^{2-}$ used = 0.00378 moles	1
	$25 \text{ cm}^3 \text{ Cu}^{2+} = 0.00378 \text{ moles}$	1
	$500 \text{ cm}^3 \text{ Cu}^{2+} = 0.0756 \text{ moles Cu}^{2+}$	1
	Mass of Cu = 0.0756 x 63.5 = 4.80 g	1
	% Cu = (4.80/6.00) x 100 = 80.0%	1
	Allow ecf on the calculation.	
		Total: 15

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question	Expected Answers				20 20	Marks	
1 (a)	$K_c = \frac{\text{[CH_3COOH] [CH_3COOH]}}{\text{[CH_3COOH]}}$	$K_c = \frac{[CH_3COOH][C_2H_5OH]}{[CH_3COOC_2H_5][H_2O]} \checkmark$					
	Square brackets reg	Square brackets required.					
and the second s	Do not award if p us	ed anywh	ere				
(b)(i)	componentCH ₃ COO		H ₂ O	CH₃COOH	C ₂ H ₅ OH	[2]	
	initial amount /mol	8.0	5.0	0.0	0.0		
	⇒ amount /mol	6.0	3.0	2.0	2.0		
		✓		✓			
(ii)	Allow 6, 3, 2 and 2 (i	e without	'.0')				
	moles of compone	ent _				[2]	
	total number of mo	v					
/							
	For 'component', allo	w a spec	ific examp	ole or 'substa	nce'		
	moles of a componer	nt relative	to OR co	mpared with	total		
//	number of moles						
	credit 'amount' in pla	ace of 'mo	les'				
	2/total moles in (i) = 2	2/13 OR 0	.15(4) 🗸				
	ie answer depends o	ie answer depends on total moles in (i)					
//	allow 0.153846153 a	allow 0.153846153 and any correct rounding back to 2 sig					
	figs				3		
	If 2/13 is shown, ther	ignore a	nything th	at follows.			
	$K_c = \frac{2.0 \times 2.0}{6.0 \times 3.0} = 4.1$	0/18.0 =	0.22222	✓		[3]	
			(ie to 2 sig				
	One alife for it also	no units	OR '-' C	R 'none' ✓			
	Credit units if shown	cancelled	ı ın workir	ng			
	For ECF, the values	used show	ald be the	candidate va	lues		
	from (b)(i). If K_c expression is inc	parroat th	on the e-	ly appendable	FOE		
	response is from an '				e ECF		
		•					
(c)	equilibrium/reaction products ✓	has shif	ted to the	right/in favou	ır of	[3]	
	forward reaction is er	dothormi	2 -/				
	allow 'it is endotherm			is endotherr	nic'		
			50.50.01				
	K _c has increased ✓					11	
						11	

2 (a)(i)	Expt 2: initial rate = $4.6 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	[3]
	Expt 3: initial rate = $2.3 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	
	Expt 4: initial rate = $5.75 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	
	If powers of ten are not shown, then do not credit on the first occasion. Then treat as <i>ECF</i> .	
(ii)	$k = \frac{\text{rate}}{[H_2O_2][I^-]} OR \frac{2.30 \times 10^{-6}}{0.020 \times 0.010} \checkmark$	[3]
	= 1.15 x 10 ⁻² / 0.0115 / 0.012 ✓ units: dm³ mol ⁻¹ s ⁻¹ ✓ allow: mol ⁻¹ dm³ s ⁻¹ Correct numerical value automatically gets the 1st mark also, even if values from a different experiment have been used.	
	If an incorrect rate value is used from (a)(i), then mark 2nd mark and units mark are available (ie <i>ECF</i>)	
(iii)	Overall reaction: 1 mol H₂O₂ reacts with 2 mol I⁻ and 2 mol H⁺ / shows stoichiometry/shows mole ratio ✓	4 marking points
	2nd order (overall) OR 1st order wrt H ₂ O ₂ and 1st order wrt I ⁻	giving 3 max
	/ rate determining step involves H₂O₂ and I⁻ ✓	
	rate is not affected by H ⁺ / the reaction is zero order wrt H ⁺ / the rate determining step does not involve H ⁺ ✓ Note that '[H ⁺] is a catalyst' will CON this marking point.	
	reaction must proceed via more than one step ✓	
(b)		[1]
	rate of reaction	
	straight line increasing through 0,0 √	
	0 [l ⁻ (aq))] /mol dm ⁻³	
	Allow 2 mm tolerance on 0,0	

(c)	H: O: N: C = 6.38/1: 51.06/16: 29.79/14: 12.77/12 <i>OR</i> = 6.38: 3.19: 2.13: 1.06 ✓ empirical/molecular formula = $H_6O_3N_2C\checkmark$ Correct empirical formula automatically gets 1st mark $M_r = 6 + 48 + 28 + 12 = 94 \checkmark$ 150 cm³ of solution needs 2.30 x 150/1000 = 0.345 mol \checkmark mass required = 94 x 0.345 = 32.43 g \checkmark ———————————————————————————————————	[5]
	Use of atomic numbers can gain final 4 marks ECF from 1st marking point gives $H_3O_3N_2C \checkmark M_r = 91 \checkmark 150 \text{ cm}^3$ of solution needs 2.30 x 150/1000 = 0.345 mol \checkmark mass required = 91 x 0.345 = 31.395 g \checkmark (or <i>ECF</i> from 2 steps above) For all possible routes, allow rounding back to 2 sig figs	
	in final answer	
		15

3 (a)	partly dissociates/ionises ✓ proton/H ⁺ donor ✓	[2]
(b)	$(K_w =)$ [H ⁺ (aq)] [OH ⁻ (aq)] \checkmark state symbols not needed	[1]
	[H ⁺ (aq)] = 10 ^{-pH} = 10 ^{-12.72} = 1.91/1.9 x 10 ⁻¹³ mol dm ⁻³ ✓ [KOH] / [OH ⁻ (aq)] = $\frac{K_w}{[H^+(aq)]}$ = $\frac{1.0 \times 10^{-14}}{1.91 \times 10^{-13}}$ = 0.0524 mol dm ⁻³ ✓ (calculator: 0.052480746)	[2]
	Accept any value between 0.052 and 0.053 (answer depends on degree of rounding for H ⁺ but 2 sig fig minimum.)	
	Alternatively via pOH pOH = $14 - 12.72 = 1.28 \checkmark$ [KOH] / [OH ⁻ (aq)] = $10^{-pOH} = 0.0524 \text{ mol dm}^{-3} \checkmark$ (calculator: 0.052480746)	
(c)	$n(\text{vitamin C}) = 0.500/176 = 2.84 \times 10^{-3} \checkmark$	
	[vitamin C] = $1000/125 \times 2.84 \times 10^{-3} = 0.0227(2) \text{ mol dm}^{-3}$	[6]
	$K_{a} = \frac{[H^{+}][C_{6}H_{7}O_{6}^{-}]}{[C_{6}H_{8}O_{6}]} \checkmark = \frac{[H^{+}]^{2}}{[C_{6}H_{8}O_{6}]}$	
	$[H^{+}] = \sqrt{(K_a \times [C_6 H_8 O_6])} OR \sqrt{(6.76 \times 10^{-5} \times 0.0227)} \checkmark$	
	= 1.24 x 10 ⁻³ mol dm ⁻³ ✓ (must involve a square root of two numbers multiplied together)	
	pH = $-\log(1.24 \times 10^{-3})$ = 2.91 \checkmark Accept a calculated value between 2.90 to 2.91	
	Common incorrect responses: 4.41 would score 5 marks (uses cm³ instead of dm³) 5.91 would score 5 marks (conversion multiplies by 1000 instead of dividing by 1000)	
	5.81 would score 5 marks (no square root) 2.1 would score 1 mark in isolation ($[H^+] = \sqrt{K_a}$)	
		13

4	Buffer A buffer solution minimises/resists/opposes pH changes ✓ Do not allow 'keeps pH constant'.	[1]
	How a buffer works Mark this part for any of the possible buffer systems above. equilibrium: $HA \square H^+ + A^- \checkmark$	[5]
	HA reacts with added alkali / HA + $OH^- \rightarrow$ / added alkali reacts with H^+ / H^+ + $OH^- \rightarrow \checkmark$	
	\rightarrow A ⁻ / Equil \rightarrow right \checkmark	
	A⁻ reacts with added acid / [H⁺] increases ✓	
	→ HA / Equil → left ✓	[2]
	Components methanoic acid / HCOOH ✓ sodium methanoate / HCOONa ✓ ECF: salt of weak acid chosen above. Do not allow a carboxylate ion	[1]
	Quality of Written Communication A correct equation and a correct chemistry sentence related to buffers ✓ Write Q by equation and tick through QWC prompt	
		9