Question		on	Expected Answers			Marks
1	(a)	(i)	has at least one ion with a partially filled d-orbital		1	
		(ii)	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$			1
	(b)	(i)	Fe(OH) ₂ gr	reen		2
			Fe(OH) ₃ / Fe ₂ O ₃ .xH ₂ O bre	own/red-brown/rust coloured/orange-	brown	2
			both solid			1
		(ii)	$\left[\text{Cu}(\text{H}_2\text{O})_6 \right]^{2^+} \ + \ 2\text{OH}^- \ \rightarrow \ \text{Cu}(\text{OH})^{-1}$	$)_2 + 6H_2O / Cu^{2+} + 2OH \rightarrow Cu(OH)$	2	1
			Cu(OH)₂ obtains 1 mark if not par	rt of balanced equation		1
			$\left[\text{Cu}(\text{H}_2\text{O})_6\right]^{2^+} + 4\text{NH}_3 \rightarrow \left[\text{Cu}(\text{NH}_2\text{O})_6\right]^{2^+} + 4\text{NH}_3 \rightarrow \left[\text{Cu}(\text{NH}_2$	$(H_3)_4(H_2O)_2)^{2+} + 4H_2O$		1
			$[Cu(NH_3)_4(H_2O)_2]^{2+}$ / $[Cu(NH_3)_4]^{2+}$ =1mark if not part of balanced equation			1
			N.B. Correctly balanced equation		[Total:	11]
Que	estic	on				
2			Expected Answers	;		Marks
	(a)	absorbs violet/blue / 400 nm - 450 No other absorbance below 650 n) nm nm		Marks 1
	(a)	•	absorbs violet/blue / 400 nm - 450	nm		
) _	absorbs violet/blue / 400 nm - 450 No other absorbance below 650 n	nm ur it transmits		1
,	(b)	absorbs violet/blue / 400 nm - 450 No other absorbance below 650 n absorbs the complementary colou	nm ur it transmits		1
)	(b)	absorbs violet/blue / 400 nm - 450 No other absorbance below 650 n absorbs the complementary colou K: Cr: F = 0.818: 0.410: 2.46 (nm ur it transmits		1 1
,	(b))	absorbs violet/blue / 400 nm - 450 No other absorbance below 650 n absorbs the complementary colou K: Cr: F = 0.818: 0.410: 2.46 (2K: 1Cr: 6F / K ₂ CrF ₆	nm ur it transmits		1 1 1

Question	Expected Answers	Marks
3 (a)	correctly labelled: atomisation of caesium	1
	1 st ionisation energy + 1 st electron affinity	1
	formation of CsCl + LE	1
(b)	-443 = + 76 + (+122) + (+376) + (-349) + LE	1
	LE = -668 kJ mol ⁻¹ (allow ecf here if 1 mistake only in step 1)	1
(c)	Na ⁺ smaller than Cs ⁺ (don't accept sodium smaller first time)	1
	Na [*] has a larger charge density	1
	attracts the anion/Cl ⁻ more strongly/ sodium chloride has the stronger bonding	1
(d)	dissolves / no reaction do not accept "nothing"	1
	colourless / neutral / pH 7	1
(e)	add aqueous AgNO₃	1
	chloride gives a white ppt	1
	iodide gives a yellow ppt	1
	Alternative answer	
	Pass chlorine/use NaOCl & HCl	
	No change with CsCl	
	lodine displaced/brown solution with Csl	

[Total: 13]

Q	uestion	Expected Answers	Marks
4	(a)	$2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	2
		1 mark for correct species, 1 mark for correct balancing including electrons if present	
	(b)	amount of $C_2O_4^{2-}$ = (25.0/1000) × 0.0400 = 0.001 mol	1
		amount of MnO_4 required = 0.001 × (2/5) = 0.0004 mol	1
		vol of MnO_4^- required = 0.0004/0.0200 × 1000 = 20 cm ³ / 0.02 dm ³	1.
		(Allow ecf on parts 2 & 3)	

[Total 5]

Question	Expected Answers	Marks
1 (a)	coordination number 4	1
	oxidation state +2	1
(b)	$[Cu(NH_3)_4(H_2O)_2]^{2^+}$ colour dark blue / deep blue / Royal blue shape octahedral	1
	$[Cu(H_2O)_6]^{2+}$ colour blue shape octahedral	1
	[CuCl ₄] ²⁻ colour yellow / green shape tetrahedral	· 1
(c) (i)	[CuCl4] ²⁻	1
(ii)	the ion transmits yellow/green light / complementary colour	1
(d) (i)	concentrated / excess	1
	NH_3 (not NH_4^+)	1
	Allow from equation	
(ii)	concentrated	1
	HCI / NaCI	1
	Allow from equation	
		[Total 14]

Question	Expected Answers	Marks
2 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	1
(b) (i)	octahedral	1
(ii)	oxidises easily/reacts with air	1
(c) (i)	Ti ⁴⁺ has no electrons in the d-orbital	1
	Ti ³⁺ has 1 electron in the d-orbital	1
	colour is associated with partly filled d-orbital / d-orbital electron absorbs energy from the visible/coloured region	1
(ii)	white paint / pigment. Accept paint but NOT dyes	1
	По	tal: 71

[Total: 7]

Question		Expected Answers		Marks
3	(a)	+2		1
	(b)	0.0022 mol		1
	(c)	0.0011 mol		1
	(d)	0.0022 mol		1
	(e)	$8.8 \times 10^{-2} \text{ mol dm}^{-3}$	(allow ecf on parts c, d and e)	1
				(Total: 5)

[Total: 5]

Question		Expected Answers	Marks
4 (a)	(i)	Cr electrode + Cr ³⁺ (aq)	1
		Cd electrode + Cd ²⁺ (aq)	1
•		salt bridge + 1 mol dm ⁻³ solutions + complete circuit	1
	(ii)	Cr → Cd (on wire, not through salt bridge)	1
	(iii)	oxidation takes place at Cr/Cr loses electrons	1
		because it has the most negative E^θ value/is the anode/is negatively charged	1
		Allow reverse idea relating to cadmium. Don't accept reference to electronegativity	
(b)		$2Cr + 3Cd^{2+} \rightarrow 3Cd + 2Cr^{3+}$	1
(c)	(i)	0.34 (V)	1
	(ii)	non-standard conditions / concentration is no longer 1mol.dm ⁻³	1
		Don't accept concentration is decreased [Total:	9]

Question	Expected Answers	Marks
5 (a)	optical isomerism/chirality/description of non super-imposable mirror images showing the two isomers example	1 1 1
	geometrical isomerism / cis & trans isomerism showing the two isomers example	1 1 1
(b)	add acid to CrO ₄ ²⁻ to get Cr ₂ O ₇ ²⁻ or visa versa	1
	correct colours for both	1
	$2 \text{ CrO}_4^{2-} + \text{ H}^+ \rightarrow \text{ Cr}_2\text{O}_7^{2-} + \text{ OH}^- / 2 \text{ CrO}_4^{2-} + 2\text{H}^+ \rightarrow \text{ Cr}_2\text{O}_7^{2-} + \text{ H}_2\text{O}$	1
	QWC - SPAG?	1

[Total: 10]

1. (a)(i)
$$K_c = \frac{[NO_2(g)]^2}{[N_2O_4(g)]}$$
 [1]

(ii)
$$K_c = \frac{(0.0150)^2}{(0.0390)} = 5.77 \times 10^{-3} \checkmark \text{ mol dm}^{-3} \checkmark \text{ accept } 5.76923 \text{ to } 5.8 \times 10^{-3}$$

If (i) is upside down: $\frac{[\text{N}_2\text{O}_4(g)]}{[\text{NO}_2(g)]^2}$, then ans = 173 \checkmark dm³ mol⁻¹ \checkmark accept 173.33333.....to 170

if no square in (i): $\frac{[\text{NO}_2(g)]}{[\text{NO}_2(g)]}$ then ans = 0.384615 \checkmark no units \checkmark (must be

if no square in (i): $\frac{[NO_2(g)]}{[N_2O_4(g)]}$, then ans = 0.384615.. \checkmark no units \checkmark (must be stated)

if no square in (i) and inverse: $\frac{[N_2O_4(g)]}{[NO_2(g)]}$, 2.6 \checkmark no units \checkmark (must be stated)

(b)
$$\Delta H = (2 \times 33)^{-}(9) \checkmark = (+)57 \text{ kJ mol}^{-1} \checkmark$$

common errors: $-57 \checkmark \times +24 \checkmark \times +75 \checkmark \times -24 \times \times$
[2]

(c) change more NO₂ / less N₂O₄ ✓
explanation equilibrium position → right or forwards / K₅ increases ✓
reaction is endothermic ✓

THIS ANSWER IS CONSEQUENTIAL ON SIGN OF THE ANSWER TO (i)

BUT, a candidate interpreting a '+' enthalpy change as 'exothermic' (or vice versa) will lose the 3rd mark but the 2 'logic marks' before are still consequentially available.

(d) 1 mol N₂O₄ reacts with 2 mol NaOH amount of NaOH required = 0.00930 mol volume NaOH = 1000 x 0.0093/0.300 = 31.0 cm³ / 0.0310 dm³ Common errors

3.1 x 10^x (where x is incorrect) $\checkmark \checkmark \times$ 15.5 cm³ / 0.0155 dm³ $\checkmark \checkmark \times$ 62 cm³ / 0.062 dm³ $\checkmark \checkmark \times$ 6.2 x 10^x (where x is incorrect) $\checkmark \times \times$ [3]

[Total: 11]

[2]

2. (a) $k = \frac{\text{rate}}{[\text{H}_2(g)][\text{NO}(g)]^2}$ $k = 8.3 \times 10^4 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1} \text{ calculator value: } 8.33333... \times 10^4$ If [NO] is not squared: $\frac{\text{rate}}{[\text{H}_2(g)][\text{NO}(g)]} \times$, ans = 250 \checkmark units: dm³ mol $^{-1}$ s $^{-1}$ \checkmark If the expression is upside down: $\frac{[\text{H}_2(g)][\text{NO}(g)]^2}{\text{rate}} \times$, ans = 1.2 \times 10 $^{-5}$ \checkmark units: mol 2 s dm $^{-6}$ \checkmark upside down and not squared: $\frac{[\text{H}_2(g)][\text{NO}(g)]}{\text{rate}} \times \times$, ans = 0.004 mol s dm $^{-3}$ \checkmark [3]

(b)(i) effect on rate x 2 ✓

reason 1st order wrt H₂(g) ✓

[2]

(ii) effect on rate x 1/4 ✓

reason 2nd order wrt NO(g) ✓

(iii) effect on rate × 27 ✓ [1]

(c)(i) slowest step ✓ [1]

(ii) step 1 (RDS) $H_2(g) + 2 NO(g) \checkmark \longrightarrow N_2O(g) + H_2O(l)$ step 2 $H_2(g) + N_2O(g) \longrightarrow N_2(g) + H_2O(l)$ rest of equations \checkmark [2]

(d)(i) NH₃, -3 ✓ NO, +2 ✓ HNO₃ +5 ✓

(ii) 4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l)
 products + reactants → 1 mark; balancing → 1 mark

[2]

(iii) molar masses NH₃ = 17; HNO₃ = 63 \checkmark mass = 700 000 x 17/63 = 1.89 x 10⁵ tonnes \checkmark calc value 1.888888.... x 10⁵ ans: mark could be consequential on incorrect molar masses. [2]

[Total: 18]

(c)(i)

3. (a) Empirical formula = C : H : O = 40.0/12 : 6.7/1 : 53.3/16 = 3.33 : 6.7 : 3.33 \checkmark = CH_2O \checkmark mass CH_2O = 30; M_r = 90 : molecular formula = $C_3H_6O_3$ \checkmark [3]

(b) $K_{a} = \frac{[H^{+}(aq)] [A^{-}(aq)]}{[HA(aq)]} / \frac{[H^{+}(aq)]^{2}}{[HA(aq)]} \checkmark$ $\therefore 1.2 \times 10^{-5} = \frac{[H^{+}(aq)]^{2}}{1.5}$

 $[H^{+}(aq)] = \sqrt{\{(1.2 \times 10^{-5}) \times (1.5)\}} = 4.2 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$ $pH = -log[H^{+}(aq)] \checkmark = -log 4.2 \times 10^{-3} = 2.4 / 2.37 \checkmark$

4 marks: K_a expression√; [H[†]]√:

pH expression√:

calculation of pH from [H⁺] (ecf) ✓

Common error: Without square root, answer is 4.7/ 4.7447... ✓ ✓ ⋆

A solution that minimises changes/resists change in pH after addition of acid/alkali

NOT 'maintains constant pH' or 'cancel out' [1]

(ii) $CH_3COOH = H^+ + CH_3COO^- / CH_3COOH + H_2O = H_3O^+ + CH_3COO^-$ [1]

(iii) The weak acid or CH₃COOH reacts with added alkali / added alkali reacts with H⁺ ✓

The base or CH₃COO⁻ reacts with added acid ✓

Direction of movement indicated for one change / indication of the products formed for one change ✓

(d) effect on pH increases ✓

explanation equilibrium → left ✓

H⁺ removed by CH₃COO⁻ ✓

[3]

[Total: 15]

[4]

4. (a) Pressure: 3 marks

high pressure ✓ fewer gaseous moles on right ✓

Compromise: pressure used but too much is requires too much energy/high costs/causes safety issues/thick pipes ✓

Temperature: 4 marks

low temperature ✓ reaction is exothermic ✓

Increased temperature needed to increase the rate/low temperature gives a slow rate 🗸

Compromise: idea of a compromise between rate and equilibrium amount ✓

7 marking points —— 6 max

Clear, well-organised, using specialist terms √

[7]

(b)(i)

what citric acid does-

citric acid dissociates ✓

H⁺ released / H₂O accepts H⁺/behaves as a base ✓

equation_:

$$H_3A + 3H_2O \longrightarrow 3H_3O^{\dagger} + A^{3-}$$

or $H_3A \longrightarrow 3H^{\dagger} + A^{3-}$

or
$$H_3A + H_2O \longrightarrow H_3O^{\dagger} + H_2A^{-}$$

or $H_3A \longrightarrow H^+ + H_2A^- \checkmark$ (or other intermediate dissociation)

The equation alone will also score the 2 'what citric acid does' marks.

how H+ reacts-

H⁺ now reacts with HCO₃⁻ ions/NaHCO₃ ✓

equation:

$$H^{+} + HCO_{3}^{-} \longrightarrow H_{2}O + CO_{2} \checkmark$$

The equation alone will also score the 'how H' reacts' mark.

5 marks \longrightarrow [4] max

(ii) Molar mass of NaHCO₃ = 84.0 ✓

amount of NaHCO₃ = $0.5/84.0 = 5.95 \times 10^{-3} \text{ mol } \checkmark$

3 mol NaHCO₃ reacts with 1 mol citric acid ✓

amount of citric acid = $5.95 \times 10^{-3}/3 = 1.98 \times 10^{-3}$ mol \checkmark

mass of citric acid required = $1.98 \times 10^{-3} \times 192 = 0.380 \text{ g}$ (allow 0.4 g)

Answer of 0.127g / 0.12698 g from dividing by 3 twice $\longrightarrow \checkmark \checkmark \checkmark \checkmark \times$

[5]

[Total: 16]