Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument Expected answers Marks Additional guidance			
1 (a) (i)	Electron affinity -696 (1 mark); Atomisation of Cl ₂ +244 (1 mark); From top to bottom 2 nd IE +1150, 1 st IE +590, atomisation of Ca +178 formation -796 (1 mark)	3	Allow 244, 1150, 590 and 176 i.e. without plus sign	
(ii)	-796 - 178 - 590 - 1150 - 244 + 696 (1); But -2262 (with no working) (2)	2	Allow ecf from the wrong figures on the Born- Haber cycle 1 error max one mark 2 errors 0 mark	
(iii)	Magnesium fluoride more exothermic than calcium chloride / ora because lonic radius of Mg²+ is less than that of Ca²+ / charge density of magnesium ion is greater than that of calcium ion / ora (1); lonic radius of F is less than that of Cl / charge density of fluoride ion is greater than that of chloride ion / ora (1); Stronger (electrostatic) attraction between cation and anion in MgF₂ than in CaCl₂ / stronger ionic bonds in MgF₂ (1)	3	Answer must refer to the correct particle. Not Mg or magnesium has a smaller radius or fluorine has a smaller radius Allow magnesium or fluorine has a smaller ionic radius	
(b)	Any two from For second ionisation energy the electron lost is closer to the nucleus / AW (1); For second ionisation energy the electron is lost from a particle that is already positive (1); For second ionisation energy there is one more proton than electron (1) So outer electron more firmly attracted to the nucleus (1)	2	Allow ora	
	,	Total = 10		

2815/01	Mark Scheme January 2005				
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same mar; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain ceff = error carried forward AW = alternative wording ora = or reverse argument	credit			
Question	Expected answers	Marks	Additional guidance		
2 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1); Has an incomplete set of 3d electrons (1)	2	Allow 3d orbitals are not completely occupied / incomplete 3d sub-shell Allow has half-filled d orbitals		
(b) (i)	Any two from Variable oxidation state / variable valency (1); Act as catalysts (1); Form complexes / form complex ions (1); Form coloured compounds (1)	2	Not high melting point / good thermal and electrical conductors / high density etc		
(c)	Iron (II) ions give a green ppt (1); Iron (III) ions give an orange-rust ppt (1)	2	Precipitate must be used once Allow solid instead of ppt		
(d)	4Fe ²⁺ + O ₂ + 4H ⁺ → 4Fe ³⁺ + 2H ₂ O Correct reactants and products (1); Correct balancing (1)	2	•		
(e) (i)	Copper may react with potassium manganate(VII) / iron(III) ions formed in titration may be reduced back to iron(II) ions by the copper (1)	1			
(ii)	MnO ₄ gains electrons and is reduced / Mn oxidation state changes from +7 to +2 so it is reduced (1); Fe ²⁺ loses electrons and is oxidised / Fe oxidation state changes from +2 to +3 so it is oxidised (1)	2			
(iii)	Moles of MnO ₄ ⁻ = 4.50 × 10 ⁻⁴ (1); Moles of Fe ²⁺ = 5 × moles MnO ₄ ⁻ / 2.25 × 10 ⁻³ (1); Mass of Fe = moles of Fe ²⁺ × 55.8 / 0.1256 (1); Percentage = 18.6 % (1)	4	Allow answers that use 56 for A _r of Fe this gives 18.7 Allow ecf		
		Total = 15			

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	swers which are not worthy of credit ords which are not essential to gain credit orderlining) key words which must be used to gain credit or carried forward ernative wording		
Question	Expected answers	Marks	Additional guidance	
3 (a)	(Pale blue solution) to a (light) blue ppt (1); with excess dark blue solution (1)	2		
(b)	Octahedral shape with clear indication of 3D either by construction lines or wedges etc (1); 90° (1)	2	Ignore mistakes with the ligands question focuses on octahedral and the bond angle	
(c)	Water molecule 2 lone pairs (and 2 bond pairs) (1); Water ligand 1 lone pair and 3 bond pairs / lone pair is now a bond pair / water has one less lone pair when it is a ligand (1); Lone pairs repel more than bond pairs (1)	3	Not atoms repel	
		Total =		

2815/06

Abbreviations, annotations and conventions used in the Mark Scheme	; = separat NOT = answer () = words v	es markin s which are which are ning) key arried forw ive wordir	g points re not worthy on ot essential to words which <u>reard</u> ard	of credit o gain credit	ame marking p	oint
Question	Expected Ans					Marks
1 (a)	Vanadium use Vanadium(V) o (Don't accept j	d in alloy	ed as a cata	lyst		1
(b)	Diagram to sho V/V ²⁺ system Hydrogen elect Salt bridge + vot Temp 298K, cot All 3 = 2 marks	trode (P oltmeter oncentra	+ complete tion 1 mol.c	circuit		1 1 1 2
(ii)		V ²⁺	VO ₂ ⁺	VO ²⁺	V ³⁺	
(4)	Oxidation Number	+2	+5	+4	+3	
	Colour	lilac	yellow	blue	Green	4
	Correct calcula Because it is – Alternative: V better reduce Because the E	ve, reading ager	etion not fea nt than Zn	sible	V	1 1 Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected Answers	Marks	
2 (a) (i)	Central ion surrounded by molecules/ions/ligands	1	
(ii)	Molecule/ion with a lone pair of electrons Able to form a dative covalent or co-ordinate bond /	1	
	which can be donated	1	
(b)	Two lone pairs/ able to form two dative covalent / co- ordinate bonds	1	
(c)	Stereoisomerism – same atoms with same order of bonds but a different spatial arrangement / same structure but different arrangement of atoms Both isomers drawn for cis / trans Both isomers drawn for optical (must be mirror images) (all diagrams to show 3-D arrangement) Enantiomers/non superimposable mirror images Rotate plane polarised light in opposite direction by same number of degrees (any two for 1 mark)	1 2 2 1	
		Total: 11	

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	point
Question	Expected Answers	Marks
3 (a) (i)	Two orbital boxes higher and 3 orbital boxes lower Correct arrangement of electrons (see additional sheet)	1 1
(ii)	One lower energy and one higher energy d-orbital shown	2
(c)	Electrons promoted from low to high energy d-orbitals Energy involved lies in visible region of spectrum / needs visible light Some of the visible light is transmitted / absorbed Idea that colour depends upon the actual wavelengths transmitted / energy gap Need at least one unpaired d-orbital or Cu ⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ Only Cu ²⁺ has an unpaired electron or Cu ²⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ QWC: communicates by using at least 3 terms from the following list d-orbitals, visible, spectrum, transmitted, wavelength, energy gap, unpaired electron, high or low energy, absorbed, d-sub shell Compound absorbs green/yellow Blue and red transmitted (to give purple) (allow all colours absorbed except violet/blue and red for 1 mark)	1 1 1 1 1 1 1 Total: 13

2815/06

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	point
Question	Expected Answers	Marks
4 (a) (i)	Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6I ⁻ 2Cr ³⁺ + 3I ₂ + 7H ₂ O All species correct (ignore electrons for this mark) Equation balanced (penalise if electrons not cancelled out) Brown colour disappears S ₂ O ₃ ²⁻ reacts with I ₂ (to form colourless I ⁻) Green colour remains due to Cr ³⁺ (must say what gives green colour)	1 1 1 1
(b) (i) (ii) (iii)	Oxidation Number of Cr on both sides = +6 Oxidation Number does not change therefore not redox Orange to yellow (both needed for 1 mark) Any suitable named acid or correct formula eg H ₂ SO ₄	1 1 1 1 Total: 9

Abbr	- detle						
			/ = alternative and acceptable answers for the same marking p	joint			
		1	; = separates marking points				
	entions	_	NOT = answers which are not worthy of credit				
used in the Mark () = words which are not essential to gain credit							
Sche	me	1	= (underlining) key words which <u>must</u> be used to gain credit				
		,	ecf = error carried forward				
		,	AW = alternative wording				
			ora = or reverse argument	T			
Ques	stion		Expected Answers	Marks			
2	(a)	(i)	O ₃ : 1				
	•	, ,	and C2H4 ✓	[1]			
		,					
		(ii)	2 ✓	[1]			
				1			
		(iii)	rate = k[O ₃] [C ₂ H ₄] √	[1]			
				F.1			
	(b)	(i)	measure gradient/tangent √	[2]			
	•		at t = 0/start of reaction \checkmark	F-3			
		(ii)	$k = \frac{\text{rate}}{[O_3][C_2H_4]} \checkmark$				
		- J					
		,	1.0×10^{-12}	[3]			
		J	$k = \frac{1.0 \times 10^{-12}}{0.5 \times 10^{-7} \times 1.0 \times 10^{-8}} = 2 \times 10^{3} \text{ dm}^{3} \text{ mol}^{-1} \text{ s}^{-1} \checkmark$	F			
		J	0.5 × 10 × 1.5 × 10				
		J	1				
			1				
		(iii)	2 mol CH ₂ O forms for every 0.5 mol O ₂ /	[1]			
		• •)	stoichiometry of CH2O: O2 is not 1:1 1	1.3			
		(iv)	rate increases √	[2]			
			k increases	5			
	(c)	(i)	each atom has two unpaired electrons 🗸	[1]			
	•			6.4			
		(ii)	2 oxygen atoms bonded by double bond √				
		/	third oxygen bonded by a covalent bond and outer shells				
		/	correct				
	/	<u></u>	For 2nd mark, all O atoms must have an octet.				
		1					
			A triangular molecule would have 3 single covalent bonds				
		/	for 1st mark but the origin of each electron must be clear				
		,	for 2nd mark	[2]			
)					
		(iii)	amount of O_3 in 150 kg = 150 x $10^3/48 = 3.13 \times 10^3$ mol \checkmark				
			amount of CI radicals in 1 g = 1 /35.5 = 2.82 \times 10 ⁻² mol \checkmark 1 mol CI destroys 3.13 \times 10 ³ /2.82 \times 10 ⁻² = 1.11 \times 10 ⁵ mol O ₃				
		,	1 mol Cl destroys 3.13 x 103/2.82 x 10-2 = 1.11 x 100 mol 03				
)	1 Cl radical destroys 1.11 × 10 ⁵ O ₃ molecules ✓				
		1	(calculator: 110937)	[3]			
		1		Total: 17			
L							

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to get ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
3 (a) (i)	proton donor ✓	[1]
(ii)	partially dissociates 🗸	[1]
(b)	$C_6H_5OH(aq) + OH^-(aq) \Rightarrow C_6H_5O^-(aq) + H_2O(1)$ acid 1 base 2 \checkmark base 1 acid 2 1 mark for each acid-base pair	[2]
(c) (i)	$K_a = \frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]} \checkmark$	[1]
(ii)	concentration = $38/94 \checkmark = 0.40 \text{ mol dm}^{-3} \checkmark$ (first mark for M_r of phenol - incorrect answer held give ecf for remainder of question) $1.3 \times 10^{-10} \approx \frac{[H^+(aq)]^2}{0.40} \checkmark ('=' \text{ sign is acceptable})$ $[H^+] = \int \{ (1.3 \times 10^{-10}) \times (0.40) \} = 7.2 \times 10^{-6} \text{ mol of } 1.3 \times 10^{-10} = -100 $	dm ⁻³ ✓
	Without square root, answer = 10.28 ✓ ✓ × Use of 38 as molar concentration does not score 1s marks. This gives an answer of 4.15 for 3 marks ✓	
(d)	O ⁻ Na ⁺ O ⁻ Na ⁺ O ⁻ Na ⁺ CH ₂ (CH ₂) ₄ CH ₃ / NaOH /Na√	her or
	weak acid/base pair mixture formed √	
		Total: 12

281	16/	U	7

Abbreviations,	/ = alternative and acceptable answers for the same marking	point
annotations and	; = separates marking points NOT = answers which are not worthy of credit	
conventions		
used in the Mark		
Scheme	= (underlining) key words which <u>must</u> be used to gain credi	t
	ecf = error carried forward	
	AW = alternative wording	
	ora = or reverse argument	
Question	Expected Answers	Marka
4 (a)	graphs are of pH against volume acid/alkali added with	Marks
- (a)	scale and units 🗸	
	sharp rise between two slight rises ✓ equivalent point > 7 ✓	
	sharp rise after addition of 25 cm ³ of alkali \checkmark	
	start pH = 2.9 √	[6]
	finish pH = $12 \rightarrow 13 \checkmark$	[0]
(b)	phenolphthalein changes colour in the pH range	
(♥)	corresponding to the sharp rise in the titration curve \checkmark	
	methyl orange changes colour before the sharp rise \checkmark	[0]
	The sharp rise v	[2]
(c)	sharp rise in pH after addition of 12.5 cm³ NaOH ✓	
	pH start is higher than 2.9 √	[2]
1		L-3
(d)	moles HCl in 23.2 cm ³ = $0.200 \times 23.2/1000 = 4.64 \times 10^{-3} \checkmark$	
	moles B in 25 cm ³ = moles HCl = $4.64 \times 10^{-3} \checkmark$	
	moles B in 250 cm ³ = $4.64 \times 10^{-3} \times 10 = 4.64 \times 10^{-2}$	
	4.64×10^{-2} mol B has a mass of 4.32 g	
	molar mass of B = $4.32/4.64 \times 10^{-2} = 93 \text{ g mol}^{-1} \checkmark$	
	93 - 16 = 77 ✓	
	Therefore B is phenylamine / $C_6H_5NH_2$ \checkmark	
	There may be other valid structures that are amines.	
	These can be credited provided that everything adds up	
	to 93.	
	Answer could be a primary, secondary or tertiary amines.	[6]
		Total: 16