1	Questi	ion	Expected answers	Marks	Additional
1	(a)	(i)	(Enthalpy change of) formation (of magnesium oxide) (1);	3	guidance
			(Enthalpy change of) atomisation (of magnesium) (1);		Allow (enthalpy change of) sublimation (of magnesium)
			First ionisation enthalpy (of magnesium) (1)		Allow <u>first</u> ionisation energy
		(ii)	$Mg^{2+}(g)$ and $O^{2-}(g)$ (1)	1	State symbols essential
		(iii)	Electron being gained is repelled by the negative charge of the ion / aw (1)	1	
	(b)	(i)	Lattice enthalpy = $-149 - 736 - 1450 - 248 - 650 - 602$ (1); = -3835 (kJ mol ⁻¹) (1)	2	Allow ecf from one error (1)
		(ii)	Lattice enthalpy of barium oxide is less exothermic than that of magnesium oxide / lattice enthalpy is smaller in magnitude / ora (1); Mg ²⁺ has a smaller ionic radius than Ba ²⁺ / Mg ²⁺ has a higher charge density than Ba ²⁺ / ora (1);	3	Not bigger or smaller lattice enthalpy Correct particles must be used e.g. not Mg has a smaller radius
,			So stronger attraction between the positive and negative ion (1)		Allow so has stronger ionic bonds
	(c)		High melting point / (very) large lattice enthalpy / aw (1)	_1	Not resistant to heat
	(d)	(i)	$BaCO_3 \rightarrow BaO + CO_2 (1)$	1	State symbols not essential
,	0	(ii)	Decomposition temperature higher for BaCO ₃ / ora (1) Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ (1); Polarisation causes distortion of the charge cloud around the carbonate ion / polarisation weakens the covalent bonds within the carbonate ion (1)	3	Particles used must be correct e.g. not Mg is more polarising Allow marks via a diagram
				Total = 15	

Question		on	Expected answers	Marks	Additional
			•		guidance
2	(a)		Often are catalysts (1)	1	Allow compounds are often paramagnetic Not metallic properties
	(b)	(i)	Tetrahedral / or a clear drawing of a tetrahedral ion (1); Bond angle of 109.5 ± 0.5° (1)	2	Allow square planar (1) with bond angle of 90° (1) Tetrahedral structure must have at least one wedge
		(ii)	CI ⁻ (1)	1	
		(iii)	(Concentrated) hydrochloric acid / (concentrated) solution of an ionic chloride (1)	1	Allow correct formula
		(iv)	Suitable equation e.g. $[Cu(H_2O)_6]^{2^+} + 4CI^- \rightarrow [CuCl_4]^{2^-} + 6H_2O$ Or $[Cu(H_2O)_6]^{2^+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2^+} + 4H_2O$; Reaction in which a ligand is swapped or displaced by another ligand / aw (1)	2	Not ligand is substituted
				Total = 7	

C	Question		Expected answers	Marks	Additional guidance
3	(a)		Oxidation - Oxidation number of oxygen changes from -1 to 0; Reduction - oxidation number of oxygen changes from -1 to -2 (1)	2	Allow one mark if all the oxidation numbers for oxygen (and hydrogen) are correct
	(b)	(i)	$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ Correct reactants and products (1); Balancing (1)	2	Ignore electrons for the first mark
		(ii)	Moles of MnO ₄ ⁻ = 17.5 × 10 ⁻³ × 0.0200 / 3.5 × 10 ⁻⁴ (1); Moles of H ₂ O ₂ = 2.5 x moles of MnO ₄ ⁻ / 8.75 × 10 ⁻⁴ (1); Conc of H ₂ O ₂ = $\frac{8.75 \times 10^{-4}}{0.025}$ = 0.0350 (mol dm ⁻³) (1)	3	Allow ecf within question Allow 0.035 Not 0.04 / 0.03
	(c)		Aqueous sodium hydroxide / potassium thiocyanate / ammonium thiocyanate (1); Appropriate observation e.g. orange-red / brown / brown-red / foxy-red ppt with NaOH(aq) or (blood) red with KSCN (1)	2	oxygen (and hydrogen) are correct Ignore electrons for the first mark Allow ecf within question Allow 0.035
				Total = 9	

2(a) labels on diagram to show

Ni(s) and $Ni^{2+}(aq)(1)$

salt bridge and suitable circuit (1)

platinum electrode (1)

 I_2 and $I^-(1)$

concentration of 1 mol dm⁻³ for at least one solution/ 298K (1) [5]

(ii) Ni \rightarrow Ni²⁺ + 2e⁻(1)

$$I_2 + 2e^- \rightarrow 2I^-(1)$$
 [2]

(iii) Ni +
$$I_2 \rightarrow Ni^{2+} + 2I^-(1)$$
 [1]

(iv) from nickel towards iodine since nickel half-cell standard electrode potential is more negative (1) [1]

[Total: 10]

4 (a)
$$1s^22s^22p^63s^23p^64s^23d^2/1s^22s^22p^63s^23p^63d^24s^2$$
 (1) $1s^22s^22p^63s^23p^6$ (1) [2]

(b) colour due to energy being absorbed (1)

when electrons are promoted (1)

energy lies within visible part of spectrum/ complementary colour seen

E = hf(1)

transition metal ions have incomplete d shells (1)

d sub-shell split into 2 energy levels (1)

titanium(IV) has no d electrons (1)

[6 max]

(1)

QWC for use of scientific language

account to include at least 2 of electron excitation energy absorption complementary colour d shell/d sub-shell (1)

[1]

[Total:9]

5(a) Mr of $KCr(SO_4)_2 = 283$ (1)

$$KCr(SO_4)_2: H_2O = \underbrace{0.98}_{283} : \underbrace{0.75}_{18} (1)$$

= 0.00346 : 0.0417 = 1 : 12(1)

other valid methods credited [3]

(b)(i) 3D diagram to show octahedral shape (1)

bond angle marked as 90° (1) [2]

(ii) octahedron/ octahedral (1) [1]

(c)(i) $[Cr(H_2O)_4Cl_2]^+(1)$ [1]

(ii) cis isomer drawn (1)

trans isomer drawn (1)

correct labels cis and trans (1) [3]

[Total: 10]

Question	Expected Answers	Marks
1 (a)	$K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} \checkmark \checkmark$ award 1 mark if upside down	[2]
(b) (i)	CH₃COOH C₂H₅OH CH₃COOC₂H₅ H₂O 6.0 12.5 0 0 1 7.5 5 5	[2]
(ii)	$K_c = \frac{5 \times 5}{1 \times 7.5} = 3.3 \checkmark \text{ no units } \checkmark$ (or ecf based on answers to (i) and/or (a))	[2]
(c)	leave experiment longer ✓ monitor compositions and repeat until constant value ✓	FOI
(d) (i)	more $CH_3COOC_2H_5$ & H_2O / less CH_3COOH & C_2H_5OH \checkmark equilibrium \longrightarrow right \checkmark AW	[2]
(ii)	K _c stays same ✓	[1]
(e)	stays the same/ catalyst does not shift equilibrium position forward & reverse reactions altered by same amount/ equilibrium achieved in less time	[0]
(f) (i)	equilibrium — left \checkmark more reactants / less products \checkmark	[2]
(ii)	forward reaction is exothermic \checkmark	[1] Total: 16

Question	Expected Answers	Marks
2 (a)	$H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$ equation includes $H_2O_1^-$, H^+ as reactants and I_2 as product \checkmark equation balanced \checkmark	[2]
(b) (i	so order = 2 with respect to I ⁻ \(\sigma\) Exp 3 has twice [H ⁺] as 2 and rate is unchanged \(\sigma\),	
(i	so order = 0 with respect to H ⁺ \checkmark	[4]
(i	(ecf from (i)) ii) $k = \text{rate/}[H_2O_2][I^-]^2 \checkmark (\text{ecf from (ii)})$	
	From one of expts, e.g. Exp 1: $k = 1.15 \times 10^{-6}/(0.01)(0.01)^2$ = 1.15 \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark (ecf from (ii))	[3]
(c)	rate of reaction	
	straight line increasing \checkmark through 0,0 \checkmark 0 [H ₂ O ₂ (aq))] /mol dm ⁻³	[2]
(d) (i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	[1]
(ii	1 dm ³ H ₂ O ₂ \longrightarrow 20 dm ³ O ₂ \checkmark amount of O ₂ = 20/24 mol \checkmark concentration of H ₂ O ₂ = 2 x 20/24 = 1.67 mol dm ⁻³ \checkmark	[3]
		Total: 17

Questi		Expected Answers	Marks
3 (a) (i)	a proton donor ✓	[1]
	(ii)	partially dissociates 🗸	[1]
	(iii) pH = -log[H ⁺]	[1]
	(iv	A solution that minimises changes/resists change in pH after addition of acid/alkali ✓ NOT 'maintains constant pH' or 'cancel out'	[1]
(1	b)	H_2CO_3 reacts with added alkali / added alkali reacts with $H^*/H^*+OH^-\longrightarrow H_2O$	
		The base or HCO₃ reacts with added acid ✓	
		$H_2CO_3 + OH^- \longrightarrow HCO_3^- + H_2O \checkmark$	
		HCO ₃ ⁻ + H ⁺ → H ₂ CO ₃ √AW	[4]
		QoWC: equilibrium position moves to counteract change / explanation in terms of le Chatelier's principle 🗸	[1]
(c	s)	$K_{a} = \frac{[H^{+}][HCO_{3}^{-}(aq)]}{[H_{2}CO_{3}(aq)]} \checkmark$	
		$[H^{+}] = 10^{-pH} \checkmark = 10^{-7.4} = 3.98 \times 10^{-8} \checkmark$	
		$\frac{[HCO_3^-(aq)]}{[H_2CO_3(aq)]} = \frac{K_a}{[H^+]} = \frac{4.17 \times 10^{-7}}{3.98 \times 10^{-8}} = 10.5 \checkmark$	[4]
			Total: 13