Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW error carried forward AWa $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
(ii) (iii) (iv) (v)	constant half-life $\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\checkmark}$ Common error will be to use ' 2 ' from equation. curve downwards getting less steep \checkmark curve goes through 1200,0.30; 2400,0.15; 3600,0.075 \checkmark tangent shown on graph at $t=1200 \mathrm{~s} \checkmark$ $3.7(2) \times 10^{-4} \checkmark \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \checkmark$ ecf possible from (ii) using $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{x}$ (2nd order answer: $2.2(3) \times 10^{-4}$)	[1] [1] [2] [1] [2]
(b) (i) (ii) (iii) (iv)	slow step ${ }^{\checkmark}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \checkmark$ H^{+}is a catalyst \checkmark H^{+}used in first step and formed in second step/ regenerated/not used up \checkmark $\text { rate }=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}\right]\left[\mathrm{H}^{+}\right]$ common error will be use of $\mathrm{H}_{2} \mathrm{O}$ instead of H^{+}	[1] [1] [2] [1]
		Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme	\prime $=$ alternative and acceptable answers for the same marking i $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
	High Pressure Equilibrium \longrightarrow right as fewer moles on right hand side and the shift reduces number of molecules/compensates for increasing pressure \checkmark Rate increases/more collisions \checkmark High temperature Equilibrium \longrightarrow left as equilibrium goes to the left to compensate for increased temperature/absorbs the energy/in endothermic direction (ora) \checkmark Rate increases/ more successful collisions \checkmark Other effect High pressures expensive/ high temperatures expensive /high pressures cause safety problems One correct statement followed by correct explanation	[2] $[2]$ $[1]$ $[1]$
(b) (i)	CO H_{2} $\mathrm{CH}_{3} \mathrm{OH}$ 1.0 2.0 0.0 0.9 $1.8 \checkmark$ $0.1 \checkmark$ $0.9 / 2.8$ or 0.321 or $0.32 / 0.3$ $1.8 / 2.8$ or 0.643 or $0.64 / 0.6$ $0.1 / 2.8$ or 0.036 or 0.04 $3.21(\mathrm{MPa})$ $6.43(\mathrm{MPa})$ $0.36(\mathrm{MPa})$ In 3 rd and 4 th rows, ecf from previous row $K_{p}=\frac{p\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{p(\mathrm{CO}) \times p\left(\mathrm{H}_{2}\right)^{2}} \checkmark \checkmark$ 1 mark for K_{c} / use of any []/inverted/power missing. K_{p} stays the same Equilibrium position moves to the right/yield increases \checkmark in response to increase in reactants $K_{p}=\frac{0.261}{3.70 \times 5.10^{2}}=2.71 \times 10^{-3} \checkmark \mathrm{MPa}^{-2} \checkmark$ calc value 2.7120546×10^{-3}; answer and/or units ecf from (ii)	[4] $[2]$
(c)	$\mathrm{CH}_{3} \mathrm{OH}+1.5 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}^{\checkmark}$	[1]
		Total: 18

Abbreviations, annotations and conventions used in the Mark Scheme	I $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT answers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW error carried forward AWa $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
3 (a) (i) (ii)	completely dissociates/ionised proton donor $\mathrm{NO}_{3}^{-} \checkmark$	[2] [1]
(b) (i) (ii)	$\begin{aligned} & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] /-\log (0.015) \checkmark=1.82 / 1.8 \checkmark(\text { Not } 2) \\ & {\left[\mathrm{H}^{+}\right]=0.0075 \mathrm{~mol} \mathrm{dm}} \\ & \mathrm{pH}=-\log (0.0075)=2.12 / 2.1 \checkmark \end{aligned}$	[2] [1]
(c) (i) (ii)	$\begin{aligned} & K_{w}=\left[H^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{\checkmark} \text { state symbols not needed } \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-13.54}=2.88 / 2.9 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & {[\mathrm{NaOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}} \\ & =0.347 / 0.35 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \end{aligned}$	[1] [2]
(d) (i) (ii)	a solution that mininkises/resists/opposes pH changes The buffer must contain both $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ / $\mathrm{CH}_{3} \mathrm{COO}^{-}$/weak acid and conjugate base Solution A is a mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa} /$ / has an excess of acid /is acidic Solution B , contains only $\mathrm{CH}_{3} \mathrm{COONa}$ / only $\mathrm{CH}_{3} \mathrm{COO}^{-}$ /only the salt/ is neutral $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) /$ acid/alkali has been neutralised/ $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and NaOH react together	[1]
(e)	[H^{+}] increases \checkmark $\mathrm{H}_{2} \mathrm{O}$ ionises more / for $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$, equilibrium moves to the right \checkmark exo/endo is 'noise'	[2]
		Total: 15

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT $=$ answers which are not worthy of credit ($=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
4 (a)	$\begin{aligned} & \text { moles of } \mathrm{Cu}=0.68 \times 5 / 1000=0.0034 \checkmark \\ & \text { mass of } \mathrm{Cu}=0.0034 \times 63.5=0.216 \mathrm{~g} \\ & \% \mathrm{Cu}=0.216 / 0.28=77 \% \\ & \\ & \\ & \text { ratios: } \\ & \mathrm{Cu}=26.29 / 63.5=0.41 \\ & \mathrm{~N}=11.6 / 14=0.83 \\ & \mathrm{O}=59.63 / 16=3.73 \\ & \mathrm{H}=2.48 / 1=2.48 \\ & \\ & \\ & \text { empirical formula }=\mathrm{CuN}_{2} \mathrm{O}_{9} \mathrm{H}_{6} \checkmark \end{aligned}$ Formula with $3 \mathrm{H}_{2} \mathrm{O}$ shown separately scores 1: $\text { i.e. } \mathrm{CuN} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ Correct formula shown with $\left(\mathrm{NO}_{3}\right)_{2}$ scores 2nd mark: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \checkmark$ (Correct answer automatically scores both marks)	[3] [2] [2]
(b)	$\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}:$ $\left.\mathrm{NO}_{3}{ }^{-} \longrightarrow \mathrm{NO}: \quad \begin{array}{c}\mathrm{Cu} \text { from } \mathrm{O} \text { to }+2 \checkmark \\ \mathrm{~N} \text { from }+5 \text { to }+2\end{array}\right)$ $3 \mathrm{Cu}+8 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow 3 \mathrm{Cu}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$ 'simple balance' as the only creditworthy response scores 1 mark: $\text { i.e. } \mathrm{Cu}+4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	[3]
(c)	$\begin{aligned} & \text { moles of } \mathrm{A}=90 / 24000=3.75 \times 10^{-3} \\ & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{A}=0.24 / 3.75 \times 10^{-3}=64 \mathrm{~V} \\ & \mathrm{Gas} \text { is } \mathrm{SO}_{2} \checkmark \\ & \mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\longrightarrow} \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Cu}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Cu}+3 \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	[4]
		Total: 14

