28

Al an co us So

Q(2

Abbreviations,	breviations. / = alternative and acceptable answers for the same marking pe			
annotations and	; = separates marking points			
conventions	NOT = answers which are not worthy of credit			
used in the Mark	 () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit 			
Scheme	ecf = error carried forward			
	AW = alternative wording			
	ora = or reverse argument			
Question	Expected Answers	Marks		
1 (a) (i)	constant half-life √	[1]		
(ii)	rate = k [N₂O₅] ✓	[1]		
	Common error will be to use '2' from equation.	,		
(iii)	curve downwards getting less steep √ curve goes through 1200,0.30; 2400,0.15; 3600,0.075 √	[2]		
(iv)	tangent shown on graph at t = 1200 s 🗸	[1]		
	$3.7(2) \times 10^{-4} \checkmark \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$	121		
(v)	ecf possible from (ii) using $[N_2O_5]^x$ (2nd order answer: 2.2(3) x 10^{-4})	[2]		
(b) (i)	slow step √	[1]		
(ii)	$(CH_3)_2C=CH_2 + H_2O \longrightarrow (CH_3)_3COH \checkmark$	[1]		
(iii)	H⁺ is a catalyst ✓			
	H ⁺ used in first step and formed in second step/ regenerated/ not used up \checkmark	[2]		
(iv)	rate = $k [(CH_3)_2C=CH_2][H^+] \checkmark$ common error will be use of H_2O instead of H^+	[1]		
		Total: 12		

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected Answers	Marks	
2 (a)	High Pressure Equilibrium — right as fewer moles on right hand side and the shift reduces number of molecules/compensates for increasing pressure Rate increases/ more collisions High temperature Equilibrium — left as equilibrium goes to the left to compensate for increased temperature/absorbs the energy/in endothermic direction (ora)	[2]	
	Rate increases/ more successful collisions V	[2]	
	Other effect High pressures expensive/ high temperatures expensive /high pressures cause safety problems ✓	[1]	
QoWC:	One correct statement followed by correct explanation ✓	[1]	
(b) (i)	CO H_2 CH_3OH 1.0 2.0 0.0 0.9 1.8 \checkmark 0.1 \checkmark 0.9/2.8 or 0.321 or 0.32/0.3 1.8/2.8 or 0.643 or 0.64/0.6 0.1/2.8 or 0.036 or 0.04 3.21 (MPa) 6.43 (MPa) 0.36 (MPa) \checkmark In 3rd and 4th rows, ecf from previous row $K_p = \frac{p(CH_3OH)}{p(CO) \times p(H_2)^2} \checkmark \checkmark$	[4]	
(ii)	1 mark for K_c / use of any [] /inverted/power missing. K_p stays the same \checkmark	[2]	
(iii) (iv)	Equilibrium position moves to the right/yield increases \checkmark in response to increase in reactants \checkmark $K_p = \frac{0.261}{3.70 \times 5.10^2} = 2.71 \times 10^{-3} \checkmark \text{ MPa}^{-2} \checkmark$ calc value 2.7120546×10^{-3} ; answer and/or units ecf from (ii)	[3]	
		[2]	
(c)	CH ₃ OH + 1.5O ₂ → CO ₂ + 2H ₂ O ✓	[1]	
		Total: 18	

Abbreviations, annotations and conventions used in the Mark Scheme		and s	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
0	stion		Expected Answers	Marks	
Que:	(a)	(i)	completely dissociates/ionised 🗸		
J	(α)	(')	proton donor	[2]	
		(ii)	NO ₃ ⁻ ✓	[1]	
	(b)	(i)	pH = $-\log[H^+]$ / $-\log(0.015)$ \checkmark = 1.82 / 1.8 \checkmark (Not 2)	[2]	
		(ii)	[H ⁺] = 0.0075 mol dm ⁻³ pH = $-\log(0.0075)$ = 2.12 / 2.1 \checkmark	[1]	
	(c)	(i)	$K_{w} = [H^{+}(aq)][OH^{-}(aq)] \checkmark state symbols not needed$	[1]	
		(ii)	$[H^{+}(aq)] = 10^{-pH} = 10^{-13.54} = 2.88/2.9 \times 10^{-14} \text{ mol dm}^{-3} \checkmark$ $[NaOH] / [OH^{-}(aq)] = \frac{K_{w}}{[H^{+}(aq)]} = \frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$		
			$= 0.347 / 0.35 \text{ mol dm}^{-3} \checkmark$	[2]	
	(d)	(i)	a solution that minimises/resists/opposes pH changes	[1]	
		(ii)	The buffer must contain both CH3COOH and CH3COONa / CH3COO⁻/weak acid and conjugate base ✓		
			Solution A is a mixture of CH₃COOH and CH₃COONa / / has an excess of acid /is acidic ✓		
			Solution B, contains only $CH_3COONa/$ only CH_3COO^- /only the salt/ is neutral \checkmark		
			$CH_3COOH(aq) + NaOH(aq) \longrightarrow CH_3COONa(aq) + H_2O(l) /$ acid/alkali has been neutralised/ $CH_3COOH(aq)$ and NaOH react together \checkmark	[4]	
	(e)		[H ⁺] increases \checkmark H ₂ O ionises more / for H ₂ O \rightleftharpoons H ⁺ + OH ⁻ , equilibrium moves to the right \checkmark	[2]	
			exo/endo is 'noise'		
				Total: 15	

Abbreviations,	/ = alternative and acceptable answers for the same marking	noint
annotations and conventions used in the Mark Scheme	; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Anguage	Marks
	Expected Answers moles of Cu = 0.68 x 5/1000 = 0.0034 ✓	Marks
4 (a)	mass of Cu = 0.00 x 5/1000 = 0.0034 √ mass of Cu = 0.0034 x 63.5 = 0.216 g √ % Cu = 0.216/0.28 = 77% √	[3]
	ratios: Cu = 26.29/63.5 = 0.41	
	empirical formula = CuN₂O9H6 ✓	[2]
	Formula with 3H₂O shown separately scores 1: i.e. CuN₂O6.3H₂O ✓ Correct formula shown with (NO₃)₂ scores 2nd mark: Cu(NO₃)₂.3H₂O ✓ (Correct answer automatically scores both marks)	[2]
(b)	Cu \longrightarrow Cu ²⁺ : Cu from 0 to +2 \checkmark NO ₃ ⁻ \longrightarrow NO: N from +5 to +2 \checkmark 3Cu + 8H ⁺ + 2NO ₃ ⁻ \longrightarrow 3Cu ²⁺ + 2NO + 4H ₂ O \checkmark 'simple balance' as the only creditworthy response scores 1 mark: i.e. Cu + 4H ⁺ + NO ₃ ⁻ \longrightarrow Cu ²⁺ + NO + 2H ₂ O	[3]
(c)	moles of A = 90/24000 = 3.75 x 10^{-3} \checkmark M_r of A = 0.24/ 3.75 x 10^{-3} = 64 \checkmark Gas is SO_2 \checkmark $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$ / $Cu + 4H^+ + SO_4^{2-} \longrightarrow Cu^{2+} + SO_2 + 2H_2O$ / $Cu + 3H^+ + HSO_4^{} \longrightarrow Cu^{2+} + SO_2 + 2H_2O$ \checkmark	[4] Total: 14