Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW error carried forward Ora $=$ alternative wording $=$ or reverse argument	
Question	Expected Answers	Marks
1 (a)	Emf of a cell / voltage / potential difference / cell potential Comprising half cell combined with standard hydrogen electrode Conc $=1 \mathrm{~mol} . \mathrm{dm}^{-3}$; Pressure $\left(\right.$ of $\left.\mathrm{H}_{2}\right)=1 \mathrm{~atm} ;$ Temp $=$ 298K (all of above=1mark)	1 1 1
(b)	+0.16 V (unit required)	1
(c) (i)	$2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cl}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ correct species on both sides of equation equation balanced (ignore electrons for first mark, penalise for balance)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	Chlorine $-1 \rightarrow 0$ Manganese $+7 \rightarrow+2$ Link to $\mathrm{c}(\mathrm{i})$ and allow ecf	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(iii)	Chloride ion oxidised (not chlorine) Manganate(VII) ion reduced (not manganese)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	0.16 V too small/rate too slow/insufficient activation energy/not standard conditions	1
(e)	Peak between 500-550 nm	1
		Total: 12

Question	Expected Answers	Marks
2 (a) (i)	Zinc	1
(ii)	Coins + resist corrosion (not rusting) / hard wearing Or statues + resist corrosion/ attractive patina Or electrical connections + good conductor Or musical instruments + attractive / sonorous Or plumbing fixtures + hard / corrosion resistant	1
(b) (i)	Sodium carbonate/sodium hydroxide/other suitable named alkali (accept correct formulae) Do not accept 'alkali' on its own	1
(ii)	Starch	1
(iii)	Just before the end point/when solution turns pale straw	1
(c) (i)	0.002 mol	1
(ii)	One (1)	1
(iii)	0.002 mol	1
(iv)	0.002 mols Cu^{2+} contains $0.002 \times 63.5 \mathrm{~g}$ of $\mathrm{Cu}=0.127 \mathrm{~g}$ $250 \mathrm{~cm}^{3}$ of solution contains $10 \times 0.127 \mathrm{~g}=1.27 \mathrm{~g}$ $\% \mathrm{Cu}=1.27 / 1.65 \times 100=77.0 \%$ (Allow 76.9-77.0; allow ecf)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question 3

(b) (i) Acceptable shapes for $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ include:

Acceptable shapes for $\left[\mathrm{CoCl}_{4}\right]^{2}$ include:

Question 4

(b) Any examples which show the principle of cis/trans isomerism and optical isomerism are fine but, all diagrams must be 3-d. The shapes, shown in Q3 are allowed for octahedral or tetrahedral. For square planar complexes used to illustrate cis/trans isomerism the following illustrations are fine. For optical isomerism, there must be a mirror line and the isomers must be non-superimposable object/mirror images.

Question	Expected Answers	Marks
4 (a) (i) (ii) (b)	Cis platin Binds to DNA Prevents cell from replicating / cells die (Cis/trans) + Examples (must be 3-d drawings) Correctly labelled as cis and trans (allow this mark if diagrams are planar) Cis has same atoms at $90^{\circ}+$ Trans has same atoms at 180° (need reference to bond angles for mark) (Optical) + examples (must be 3-d drawings) Rotate plane polarised light (by same number of degrees) in opposite directions Non-superimposable mirror images NB If use $\mathrm{H}_{3} \mathrm{~N} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}$ penalise only once (see additional sheet for acceptable 3-d diagrams) QWC - to be awarded for the correct use of scientific terms, to include at least 3 of the following: Cis \& trans, optical, plane, polarised, nonsuperimposable, mirror images, geometric, bidentate, ligand, octahedral, square planar, tetrahedral	1 1 2 1 1 2 1 1 1 Total: 12

