```
Abbreviations, / = alternative and acceptable answers for the same marking poin
annotations and ; = separates marking points
conventions used in the NOT = answers not worthy of credit
mark scheme () = words which are not essential to gain credit
    _ (underlining) \(=\) key words which must be used
    \(\overline{\text { ecf }}=\) allow error carried forward in consequential marking
    AW = alternative wording
    ora \(=\) or reverse argument
```

Marking structures in organic chemistry

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. Ch $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{OH}, \mathrm{COOH}, \mathrm{COOCH}_{3}$) to unambiguously define the arrangement of the atoms. (E.g. $\mathrm{C}_{3} \mathrm{H}_{7}$ would not be sufficient).

If not specified by the question, this may be given as either:

- a structural formula - e.g. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$,

- a skeletal formula - e.g.

- a displayed formula - e.g.

or as a hybrid of these - e.g.
The following errors should be penalised - although each one only loses a maximum of one mark on the paper:
- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms -

Benzene rings may be represented as

as well as of the types of formula above.

in an

1 (a)(i)
balanced equation to give
 allow $\mathrm{CH}_{5} \mathrm{O}_{2}^{-}$
(ii) 4-methylphenol reacts (phenylmethanol does not) \checkmark
... because phenols are (more) acidic / donate Hf more easily AW \checkmark
(b)(i) H_{2} / hydrogen
(ii)

prienoxide/sodium phenoxide structure / formula \checkmark rest the equation also correct and balanced \checkmark
allow $\mathrm{CH}_{7} \mathrm{ONa}$ but NOT-NaO or O-Na
(c) (i) H lacid / named strong acid eg $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl}$
(ii)

displayed ester group \checkmark rest of the ester \downarrow

2 (a) (i)

i. trans because H/groups are on opposite sides AW \checkmark
ii. any formula that shows the H on the same side - eg

\checkmark
(c) (i) aldehyde / C=O / carbonyls
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCHO}+2[\mathrm{H}] \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCH}_{2} \mathrm{OH} \checkmark$ allow $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$
(d) method
silver nitrate \checkmark
ammonia / ammoniacal \checkmark
warm / heat \checkmark
silver (mirror) / brown ppt forms \checkmark
explanation
silver ions reduced / $A g^{+}+e^{-} \rightarrow A g \checkmark$
aldehyde oxidised to a carboxylic acid \checkmark
correct structure - eg $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCOO} / \mathrm{COOH} \checkmark$
quality of written communication
mark for correct spelling, punctuation and grammar in at least two sentences \downarrow
(a) (i)

curly arrow from π-bond towards the carbon of ${ }^{+} \mathrm{CH}_{3} \checkmark$
intermediate
structure of the intermediate
curly arrow from C-H bond \checkmark
products
structure of methylbenzene and H^{+}shown \checkmark
(ii) accepts an electron pair $\sqrt{ }$
(i\#) $\mathrm{H}+\mathrm{AlCl}_{4}^{-} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{Cl}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$
products
rest of the equation also correct \checkmark
intermediate must have the "+" within the delocalised area
allow HCl as product if Cl is shown with the intermediate

NOT a "lone" pair

- cingeyearinir.
(i) (benzene) ring is activated \checkmark
lone pair from oxygen is delocalised / interacts with the π electrons around the ring / AW or diagram \checkmark greater electron density (around the ring) \checkmark
attracts ${ }^{+} \mathrm{CH}_{3} /$ electrophiles more easily \checkmark
ignore references to the inductive effect

2 (a) (i)

i. trans because H/groups are on opposite sides AW \checkmark
ii. any formula that shows the H on the same side - eg

\checkmark
(c) (i) aldehyde / C=O / carbonyls
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCHO}+2[\mathrm{H}] \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCH}_{2} \mathrm{OH} \checkmark$ allow $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$
(d) method
silver nitrate \checkmark
ammonia / ammoniacal \checkmark
warm / heat \checkmark
silver (mirror) / brown ppt forms \checkmark
explanation
silver ions reduced / $A g^{+}+e^{-} \rightarrow A g \checkmark$
aldehyde oxidised to a carboxylic acid \checkmark
correct structure - eg $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHCOO} / \mathrm{COOH} \checkmark$
quality of written communication
mark for correct spelling, punctuation and grammar in at least two sentences \downarrow
(a) (i)

curly arrow from π-bond towards the carbon of ${ }^{+} \mathrm{CH}_{3} \checkmark$
intermediate
structure of the intermediate
curly arrow from C-H bond \checkmark
products
structure of methylbenzene and H^{+}shown \checkmark
(ii) accepts an electron pair $\sqrt{ }$
(i\#) $\mathrm{H}+\mathrm{AlCl}_{4}^{-} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{Cl}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$
products
rest of the equation also correct \checkmark
intermediate must have the "+" within the delocalised area
allow HCl as product if Cl is shown with the intermediate

NOT a "lone" pair

- cingeyearinir.
(i) (benzene) ring is activated \checkmark
lone pair from oxygen is delocalised / interacts with the π electrons around the ring / AW or diagram \checkmark greater electron density (around the ring) \checkmark
attracts ${ }^{+} \mathrm{CH}_{3} /$ electrophiles more easily \checkmark
ignore references to the inductive effect
(a) (i)

curly arrow from π-bond towards the carbon of ${ }^{+} \mathrm{CH}_{3} \checkmark$
intermediate
structure of the intermediate
curly arrow from C-H bond \checkmark
products
structure of methylbenzene and H^{+}shown \checkmark
(ii) accepts an electron pair $\sqrt{ }$
(i\#) $\mathrm{H}+\mathrm{AlCl}_{4}^{-} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{Cl}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$
products
rest of the equation also correct \checkmark
intermediate must have the "+" within the delocalised area
allow HCl as product if Cl is shown with the intermediate

NOT a "lone" pair

- cingeyearinir.
(i) (benzene) ring is activated \checkmark
lone pair from oxygen is delocalised / interacts with the π electrons around the ring / AW or diagram \checkmark greater electron density (around the ring) \checkmark
attracts ${ }^{+} \mathrm{CH}_{3} /$ electrophiles more easily \checkmark
ignore references to the inductive effect

4 (a) (i) water / evidence of a solution in water - eg
(aq), 'dil' , '6M' or ' conc' for $\mathrm{HCl} \downarrow$
a named strong acid or alkali (heated under) reflux / a suitable enzyme at around $37^{\circ} \mathrm{C}$ d
(ii) amino acids \downarrow
(iii) correct structure for one of the amino acids \checkmark correct ionic form for reagent used in a(i) - eg

(iv) reaction with water to split/break down the compound \checkmark
peptide bond in the compound is broken / diagram to show AW \checkmark
(b) (i) a carbon with four different groups attached \checkmark
a chiral carbon/centre \downarrow
different spatial / 3-D arrangement (of the groups) \checkmark
(stereo)isomers / mirror images are non-superimposable /molecules are asymmetric \downarrow

ANY 3 out of 4 marks
(ii) contains 2 chiral centres \checkmark
each can have 2 (stereo) isomers/ 2×2 possibilities AW \checkmark
(iii) use naturally occurring / enantiomerically pure amino acids

OR
use a stereospecific catalyst / enzyme / micro-organisms
OR
separate the mixture using a suitable method \checkmark
(iv) higher doses are required \checkmark
the drug lother stereoisomers may have (harmful) side-effects \checkmark
(a) (i) Diamino
two/2 amine groups \checkmark

> 1,4
> their position on the ring / numbering of carbons around ring (or shown on a diagram)
(i) (i) reduction / redox \downarrow
(ii) tin and $\mathrm{HCl} \downarrow$
conc acid under reflux \checkmark
or H_{2} gas +
Ni/Pd catalyst
(iii)

$\mathrm{H}_{2} \mathrm{O}$ as product \checkmark and the equation balanced \checkmark
(c) (i) accepts H^{+}using the lone pair (on N) \checkmark which is donated/forms a (dative) covalent bond \checkmark
either mark can be obtained with a good diagram
(ii)

correct structure with charges shown $\checkmark \checkmark$ one mark for either: just one neutralised, both neutralised, but without Cl^{-}, both neutralised, but no charges shown
(iii) hexane-1,6-diamine is a stronger base because:
electrons move towards the N (due to the inductive effect)
(in hexane-1,6-diamine)
the lone pair from N is (partially) delocalised around the ring (in diaminobenzene) \checkmark
so the electron pair is more easily donated /
H more easily accepted (in hexane-1,6 diamine) ora \checkmark
question 5 continued
(d) (i) \qquad allow any use where a tough flexible material is needed
(ii)
condensation (polymerisation)

structure of benzene-1,4-dicarboxylic acid \checkmark
amide /peptide bond displayed \checkmark
repeat unit of correct polymer indicated \checkmark
formula of water shown as the product in an equation \checkmark

6 (a) Molecular ion peak circled \checkmark
Compound X has $M_{r}=74 \checkmark$

Empirical formula has $M_{r}=(36+6+32)=74$
(so must be the same as the moleculor formula) \downarrow
(b) (i) compound X is not an aldehyde or ketone / not a carbony/ compound \checkmark
(ii) compound X does not contain a $C=C$ double bond/ is not an alkene \checkmark is not a phenol \checkmark
(c) structure 1 ethyl methanoate \checkmark structure 3 propanoic acid \checkmark
(d) presence or absence of relevant peaks (in the context of any of the structures) ...
peak at ~1750 / 1680-1750 $\left(\mathrm{cm}^{-1}\right)$ for $C=O \checkmark$
peak at ~1250 $/ 1000-1300\left(\mathrm{~cm}^{-1}\right)$ for C-OV
no peak at $2500-3300\left(\mathrm{~cm}^{-1}\right)$
structures possible or ruled out
structures 3 is ruled out / can only be structure 1 or $2 \checkmark$
(e)
correct structure:

reasoning:
peak at ~2 / 2.0-2.9(ppm) is due to peak at $\sim 3.7 / 3.3-4.3(\mathrm{ppm})$ is due to

allow max 1 as ecf from the wrong structure for valid reasoning from the δ value
relative peak area is $1: 1 /$ equal as both groups have the same number of protons \checkmark AW
peak(s) not split as there are no protons on the neighbouring carbons \checkmark
quality of written communication
for use and correct organisation of at least two of the scientific terms: ppm,
environment, methyl, proton, adjacent, singlet (doublet etc)
[Total: 17]

